throbber
LIBRARY OF CONGRESS
`
`O Fficc of Business l_".|1tcrpt-lacs
`1’JupIic:1tio:1 Services Section
`
`THIS IS TO CERTIFY that the collections of the Library of Congress contain a
`publication entitled IEEE Journal on Selected Areas in Communications Vol. 5, Issue
`3, April 1 987, and that the following pages - title/copyright/table of contents/date
`stamped pages and continuation of contents page and article "256 QAM Modern for
`Multicarrier 400 Mbit/s Digital Radio" pages 329-335 - are a true and accurate
`representation froin that work.
`
`IN WITNESS WHEREOF, the seal of the Library of Congress is affixed hereto on
`December 23, 2016.
`
`Duplication Services, Section Head
`Office of Business Enterprises
`Library of Congress
`
`I01 II1dt:penL.leI1cu .'\vcr1uc, ST‘. Wtlslilngmn, DC 20540—-4917 Tel 202.707.5650 3U\\.'\\r.|tit'_5'«t>v; duplicatit)11scrviccs@|c)c.g()v
`
`Aruba Networks et al. Exhibit 1013 Page 00001
`
`

`
`fi¢:73RIL 1987
`
`VOLUME SAC-5
`
`NUMBER 3
`
`(ESSN 0733-8716}
`
`A PUBLICATION OF THE IEEE COMMUNICATIONS SOCIETY
`
`G1-csl Editorial
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. _ .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. J. C. Y. Huang, K. Kmlriyrmia, A. .Lc*(‘iw'I, and F. Si'rIi)eii.v1k
`
`31?
`
`p..~. = «R5
`
`-
`
`.‘igii Lei.':-i' Mridiiiariaii Ta:’(‘}'miqm*.i‘ for 1)igim.l mm’ Aiinfog Raa'i'r1.v
`‘. diagonal Ccichannel Operaiiion for High Spectrum iiflicieney Based on the Example of 16-QAM--I40 Mbit/s Systems Using Rolioi'i'O l9
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`_
`.
`.
`.
`.
`.
`.
`_
`.
`.
`_
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`_ _
`_
`_
`_
`_
`_
`_
`_
`.
`_
`_
`.
`.
`.
`.
`.
`.
`.
`.-‘C. Vogei
`QA M Modem for Mliliiczirrier 400 Mbii/5 Digiial Radio ,
`,
`.
`.
`.
`.
`.
`.
`.
`. .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. Y. Nakaaimra, Y. Sam), and .5‘. Aikawa
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`iiilcvei QAM Me-dulziiion Techniques for Dig-iini Microwave Radios .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`_
`_
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`. Y. Drzido, S. Trtkenmlm. E. ."'ir/<uda, T. Saimrii’. mm’ H. Nakrrmnrrti
`icm Puraniclcrs and PCi‘iOI'I'I'I:li1CC of High Speed Modems on Analog Radio .
`.
`,
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`_
`_
`.
`.
`.
`.
`.
`.
`. H. .Si'm.=rei'i-ii and D. Siam
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`«gt: and Field Test oia 256—QAM DIV Modem .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`—
`. .1 W. C-7fflPa‘i'?7£’J"1’i'J‘1. C. -'3. HRS-'vi’I'. J. J. M0-‘(’J".i, T. C. ilfock. F. /I. fl:f00tL}’\ R. S. Simons, HI, E. B. D. Ha.l'mi, mid J. A, Ritchie, Jr.
`. 4-{JAM and 256—Q;‘\M Coded Modems for Microwave and Cabie System Applications .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`_
`_
`.
`.
`.
`.
`.
`. K. Fairer
`.
`.
`.
`: ‘.‘liCIillL)Il of Coded Modulation to 1.544 Mbil/5 Data—in—'Voice Modems For FDM FM and SSH Analog Radio Sysicins. .
`,
`. .. .
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. ,
`.
`.
`.
`.
`. B. E. (.'crHirr.s', T. R. Fisdier, S. A. GJ"0.’i(‘J'?i\’_’}’(’l", and R. J. M<‘Gm'rt?
`mprigaiion and Uiamm‘ Mcirim'i'ii_i;
`
`.
`‘-3:
`
`. J. Lmsrr-gram mm’ M. .5‘yii.~ai'n
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`_
`.
`_
`‘alive Fading Radio ChanncJ.~‘.: Modeiingaind Prediction
`iisiicul Analysis/Siinulzilion of 21 Three Ray Model for Mullipiitli Fading with Applications to Outage Prediction .
`.
`.
`.
`.
`.
`.
`.
`. M. .S‘iiafi
`.="!io Clianncl Cliaraclerizzilion by Three Tones .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. _
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. .13. H. Lin wire‘ /1. .4’. Giger
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`fl‘ éCI'\’illl0IlS and Conclusions from 21 Three Year Digilail Radio Field Experiment in Australia .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. .
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. J. C. Campbeli. R. P. COl4l'!.$', A. L. Mwmi. and R.
`.L. Reid
`.;ic1‘:a‘ioii Sigiinturcs, A Sinlislieaily Based. Dynnniic, Digital Microwave Radio System Measurement Technique .
`.
`,
`.
`.
`.
`. A. L. Marlin
`.
`.
`.
`.
`.
`"'7 v Operation of Dual Polarized QAM Sysieins in the Preseiice of Depolarization Crosstalk and Diliei'eiilia| Fading .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`P. F. Duvoisiii, 5'. T. I-fsirir, and E. P. WiHi'rrim'o:I
`
`i {L11prme C01!fl!£’J'HJ(?(I.$'i'l'.l"(’
`
`'.i‘L=c‘!iniqiie.v
`
`“I
`
`iinccd "i"imc— and l—'requeney—|‘)oinain Adaptive liquaiization in Mu]iiievc1QAM Digital Radio Systems _
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`,
`.
`.
`_
`.
`.
`,
`.
`.
`.
`.
`.
`_
`_
`_
`_
`_
`_
`,
`.
`.
`_ _
`_
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`_
`. _ _ _
`,
`. _
`_ __ _ ._ G. St-fmid, B. Imiki. riiid J. A. [V-:.-.r.mlc
`-iplivc iiquaiiralion of iiigli (.'apncity M-QAM Radio Systems on Muiiipatli Fading Channels -
`-
`-
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`_ .
`.
`. . 0. Andn'smm, G. Bi'arimm'. mm’ L. (’m'amiriiio
`_
`,
`,
`_ B_ Baa-e.rrf, S. Bcrii.-'n.r', G. Fi'.’:'be:'.':', and G. 'I‘rm‘am
`_
`_
`_
`,
`,
`,
`,
`,
`,
`_
`,
`.
`.
`.
`'l Digital Adaptive Equaiimliuii in 54—QAM Radio Systems .
`_i_orm:uice of Fiziclioncd and Noniraclioned Equalizers with i-ligli-Level QAM .
`.
`.
`.
`.
`.
`.
`.
`.
`. R. Agusri, F. C1:.9ar."a.'aH,ririd J’. J. Oiiiius
`1_’Cw Class of Adaptive Cr0sS—Pol£iriZ211ion interference Canccllers for Digital Radio Systems . .. . .. . _. .
`.
`.
`.
`.
`_
`.
`,
`.
`.
`.
`.
`.
`. M. Borgne
`E "'.|li1il?.(:d Cross-l’0l21riZa1ion Interference Cnnccller for Mullilcvcl Digiial Radio .
`.
`.
`_
`.
`.
`.
`.
`.
`.
`. .H. Mamie, H. 0.l1i‘S£.‘k(l',m2(2l '1'. Mwase
`.
`.
`.
`.
`.
`.
`.
`.
`3
`11" Cr0s.:‘.~P0l Cancellur for Mierow-.wc Radio Syslcnis .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`-
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`_
`.
`_
`_
`,
`.
`_
`_
`_
`_
`_
`_
`,
`_
`_
`_
`_
`_
`.
`_
`.
`_ J. W. Cr.-rim, Y. Bm-—N._w5s, S, Gross, M. L. .S'.'efnberger,mir1 W. E. Srriddiforzf
`-
`‘.3-:cisi0ri—Dirccled Divttrsity Combiners~—Prineiple:: and Siiiiulaiion Results .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. J. A. Hem'z'!<s.so:i
`.‘.fialJ.sysIz'rii Peiforiiiarice
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`_
`,
`,
`_
`,
`.
`.
`.
`.
`.
`.
`,
`.
`,
`"H13 '|iimes~Four Carrier Iiecovci-y in M—QAM Digital Radio “Receive”; .
`—
`-
`—
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. A. J. Rusiaka, Jr., 1_,.}. G:'eeri.i'r:%!'n, R. S. Rmiirrn. and A. A. M. Safeili
`‘
`*"-:>’furn1:uice Analysis of Digital Radio Links with Nonlinear Transmit Amplifiers .
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`. ..
`.S.PrqJoiii1mru' L. J. Grin:-ii.cic=ixi
`
`"
`
`524
`534
`
`(C'0im'ni«'d on oii.r.rir:l(? bark cover)
`
`Page 00002
`
`

`
`4:
`

`
`IEEE COMMUNICATIONS S0(‘lI~;'I‘Y 3'“
`
`The field of interest of the If-i[iE Cunmmnimtions Society consists of nil lclcoomtuunications iuciutiing tclcpltonc. tclcgratphy, facsintilc. and pui|n—tu_
`point tclcvisitz-n. by tzlcctronntgttctic propagation inclttding radio; wire; aerial. underground. coaxial. and StliJ!'I'J:.'.l1'iI'lI.’. cables: tvttvcgttidcs, communication Satlcl.
`lilC$.;!1'|ti Insure;-. in mztrinc. 21(’.f0l'1:1U|iC:1i-, space. and fiacd stnlion services: rcncatcrs. nulls: relaying. signal .'sl.0mgt:.zt11d rcgcncrzition; telccmmnuniczttion error
`detection and correction: multiplexing and crtrricr tcchnittucs; communication switching sytatcnts; dam cuttimuniczttlamz; and cunuttunicatiun theory.
`In additiott to the above. this JoL=tu..-AI or tht: IE1
`‘ftm.\:.<;m:1'to.\.'s ON C()M.'viUi~E|C.«‘\'I'|0NS contains papers pcrtaitting to analog and digital signal
`pl‘t)CC!i$iiI‘Igt‘l3'1(i 1'I‘t0titli:'t lion. :1 ntliu and video encoding tcclmiqucs. the theory and design of transniitnzrs. receivers. and I'E.pCtlli:f:i for commtnticntions via optical
`nnti snnic media. the design and nu-.tIysis of computer Cl)I1‘I1'llL|I'IiCatIi0l] systems, and tht: development of communication sultwttrc. Cotttribuliuns of theory
`enhancing the untlcrstantling of communication ‘ ‘slants and lCCiI1‘Ii(]|.l|:.\‘ an: included, as are discussions til‘ the social implicalioats of the development of
`tznnmutttictttion tcuhtttalogy. All ttienibcrsuftltc I
`‘
`:tI'C eligible for tttcinbcrship in the Society upon pa 5-'tnt:ntol‘tItu nnnual Society tnt:1t1bcrsItlpt"eeof$ I 2.00.
`Mcrnbcrs. nmy rcccivr; this .|OURN:\I, or the IE -
`'l”t:.ws.\c'Tto:-.-s ow COMMUNIC.-\TIONS upon payment or an additional $8.00 ($20.00 total). or both
`|'}uiJiiC:tLiClf'IS upon pttyntcnt of tin tttiditiottztl $|6.f}D ($28.00 total). For inFo|'m:.ttit)u on joining, write to the TEEE at the address below.
`..
`--
`Rb
`lliiit-. (.0MMUNi_(TA'-l‘iONS $()(II:‘.[‘\
`,9? 5°”
`JotJnN.tL Editorial Board 1937
`.« ‘Put:.hmtr‘:m.:
`.I('Il-IN O. Ltvtn. £'d't‘tor—:‘n-(‘.‘n'ef
`iictvlett-Packard Labs.
`Fiilnn Rtl.
`1
`Stoke Gifford
`Brsstctl B312 6QZ. England
`St-ninr Editors
`M. K.\w.-tsuuwt
`I-'uj'ttsu Limited
`6—|. Marunoutzhi
`Chiyodn-ku
`T-uityu IUD. Japan
`Associate Editors
`
`GRIEHN, JR.. D" i
`P.-\I.‘I.,
`Milt-1 Rcs. C'cn.. Hm.
`I
`r
`'r.--
`Y:Jrkluwni|i:igi1ts.l“:'
`
`_
`
`'
`
`‘I
`
`.9
`
`BT
`
`Slit? L. M(‘i'J().\'A1.u. A.r.t:‘srnnt Jidirm
`Iicll Com mun. Rea. Rm. 2Q—2')3
`-135 South Street
`Morristown. NJ Di'9fil3
`
`2110!‘) Scttimn. Miiancst:
`Milan. ltuly
`
`l—cl1umc
`
`W. it. T‘RAm't<R
`Dcp Elev, En_t_v..
`Univ. MiSttItt1‘i—R(\Iia
`Rtnlla. M0 6540i
`
`A. R(}l!RtJ("k
`Itnltcl
`2t)GI9 Scttitno MEl:trt:.-.<c
`Milan. Italy
`
`I’. B.-'\I_r\E.\N
`.:'\'l‘&T Bell Labs
`(_‘r:tw|':ml.: Ctsrllcr Rd.
`I-Iulntdcl. NJ 07733
`.-'Imii'_\'.\'t".€ am.’
`(tf‘rt:n_i:uter-.-ttldt-rt’ .14-Io.-.lt>h'ri_gr.
`H(’.1'f_i:I: o_,f'tC1:nrmtn:fm-.'n:n .\‘_I-‘.m|m.t H]
`
`|..'.:ia.
`
`_
`I
`I1. littil _lT-(RI.
`Pulttuzcntco tit 'loI':n0
`(-0.50 Duc Dcgli ,“,,.uHi 34
`‘Gm T“"“‘°- :“;"3'
`d J
`.-1m2f_|‘.'.'.r'.t mu."
`(C}9m,'mi‘t'r—At'.' t‘?(
`r1‘.f0
`(' frag.
`nm_w of{lbmnunmwmn Sum” m
`W" Bl_.'>.'
`IBM Zurich Rea.
`nan} Rttsciilikon
`.‘.in.'it1t'.rland
`{In-It-rcni:rJLv<'.'t'ri.ri Q!’ Luraf
`(‘mmirtmttmi.-m 5'_l".FF£'Jut.')
`wt. DI£('|.'N'.-‘\
`|t:tItt'.I
`Sctlimo Milanese
`20019 Milan. Italy
`tSu4'.rt'.I’n‘:tg .S'_t'.\'l'ent.t'_fm
`Bram!-!}.nn-at N -tn-nr.1:.\"_I
`
`Y. I\«lu<:nm.\
`I015 K:m1iku4.lnn:tk-.t
`Naknlniru-kit
`Kawasaki 2| I. lnpnn
`(‘ut-rent Guest Edimrs
`V. L!
`Dcp. Iilcc. ling.
`Univ. of Sautllcrn Gafinrnin
`Les Attgclcs, CA 90039-0272
`(Petffarrttartm Er.‘-a1:mr‘t'uH of
`:1-fttftipfe ri('£‘E.f.§ N:=rimr'i<.rl
`
`_
`I) (iRI|.l.f'J
`Fendnziutn: Ugo iixmluni
`Vial: Europa: am
`tifll-I-1 Runuz.
`i|ili_\'
`[hilt-r:‘rm:m'rn.m of [.o:'.u.‘
`Chnrrmntfz-mi‘.-in .S‘y.<.rrm.t']
`
`W. I). Slmioskila
`Bcll Cnmmun. Rt‘.S.. Rm. 2Q-286
`435 South Street
`Morristown. NJ (17960
`
`F‘. ii. WIIITE.
`|3cll Cnmmun. Re‘... Run 3!?)-226
`435 South Sim.-t
`Mn-rt'i.sttJu.':I. NJ U"I'96n
`(SIN-’L‘r'H'rIg 5J'.=fPm.t' fur
`t'_Frorid—Bmm‘ :\l'm‘mgrk.r_}
`
`I h
`:'l.;:)"‘$"“"“‘:_?":"’|
`‘
`1
`l°5'
`‘:“ _“‘
`I--3. i'\EIkilIlI¢L-’.Ll|0 2-cltomt;
`Japan
`_
`'
`_
`[Lmv Bn—Rme Gacfutg
`tiff :‘rftJt‘trig Imr?_t_'t.’.l')
`It. ‘t’.\1'st.-I10.‘-‘.m
`Fujitsu |..:tbnr:ttoriu§
`I015 I<:t:'t1ikud:tnak:t. Nttkahar:iku
`K:tw;t.\':lki 2| l, J:ip'.tt'I
`[SI-Iitdritrg 5)‘. enn for
`J:‘rr)(u.'—.ti(.-mi’ .-'\-"c-ttmrlixl
`
`MAZ'(Ii\-li’..'Hl..ii
`B_ G_ 1|AHKm_[_
`_v\T&T flcll Lain
`A-I-Mr BC" l_‘.1hh_
`600 Mmmmin Avcnm__
`Cmwlmds Corn” Rd‘
`7"IW*1Y “ilk N3 W974
`I-lullmtcl. NJ ttms
`,mmr¢-om;pL-“'gn ct
`J_m'.gf
`,,
`.-
`_
`-
`A
`I
`-
`-
`,
`E_wmnm”_m“.W mam}
`(Lat. Bar Rim Cn:.'::i_i, af Mot mg .':u.t-',t,ui
`D. E. PE.-\RSUK
`J. HL-‘I
`‘
`Littivcrsity of Essex
`Be“ (_'°'“"";m' R55" km 3N‘397
`Cnlchcstcr C04 350
`“35 '°_‘’“‘‘‘ ’’‘‘°“
`Essex. England
`M°""5'°“"'- N3 ‘’7‘”‘0
`,
`U,ou'
`i‘J’i.r—R(rH.' C.'uIdr'rrg of
`SfWm-lrmigjifirtlfiiffijr
`Mam“ mmg"'fl
`"°“‘i'3""’
`" ""“""R5"
`K. S. S1ia'qE\i}~r'IL;'(.iA.'\i
`M. J::nut'm.\r
`UlIiVt:ffiil)' of Kansas
`Gcncrnl E|u:clt'ic Space Sys.
`229! Irving |'iiII Drive
`P.Cl. Box 8048
`i,:t\\-‘l'Cl'|.CC. Kansas 66045
`Philndclpliin. PA l9lUi
`ttfrrrrtptrtcr-/Sided Mrldrlirrg. A:mt'y.n'.a' and
`.-lm'n‘y.t't'.t' and
`(Curtiptitcr-.rlt't!<-if pi-trm‘n‘r‘ug.
`})r.rt'gtI cf Cr::mmmir.':m'rm .‘}_i-.rrmn- H}
`:‘)e.r:'g;r uf C2-mmrr.'m'¢-u:t'rm .S“_rs‘mn.\ In
`(fltjhrltlrttitlllftlr Jmimrt. (‘m-n.‘1'm Emmi‘ n}'t’}m'r.r'rtur.t. Dr;wr::r:crtt.r. an.-.I' f_'nnatiIt‘l'n-es appmr mt ("in-rr UH
`‘Fill-I !’\i.‘i'|‘1'l‘l'|'l-'. OF I’-‘.l.E(T|llC'.\l. AM) l-‘.i.F.('l‘R0.-‘é!{‘.‘§ E:'\'Gl\.'lII{Ii.‘5.
`[\il'“.
`Uificcrs
`
`l/it-ta Pm-.n‘ra‘<n.'
`
`ROi\‘AI.I) (E. HfJF.I.Zl5..‘\iA\‘. V:'e« I-‘n-.n‘d'rnt. Ednctinbmi.‘.21:-In-titer
`Ilt-:Nnt' L t3.\t':-In-xx‘. Pu-.n'd.vn:
`C-M1|.F.‘f0N A. BAY!
`‘.
`I"a':‘e Pmtrfwtt. P*'|’J_r€.t'.t':'(Jr.Iqi
`;It‘i‘r't‘r'tt't-at
`Mrtt RII.l, W. But. in W. JR.,
`"J‘r't'In'{r'I"t‘
`CI-l;\kLf_-‘S It. Hot:
`I/ire Pr:-strferlr. Publication: .»t.:n't-r'n‘
`Ei';w.\tu> J. DoYt_r—. Tn:(r.mrcr
`Rcnat»:v.'r S. Dbtitir
`‘. Jtt.. Vice t’r<=st’rt'wt-'. Rrgffltlal rfm‘I‘t'"'¢‘-7
`R.\Ml1lI> Ci.-\l1(’I;\ Su.\;..\. .S'mwm-_t-
`EMEIISDN W. Puml. I/ire Pr-arid.-trr. Tvrirnirat xfrn‘n'r:'t-.r
`E. E. SL.i»i.\'I;'R. .D!t‘t'{'l(.hF, I)r'L‘t'sioit 1.‘{—-(‘onnmu:i<'anor:.r Tet.‘mo."ag_I.* Dt't't'.t.=‘on
`Headquarters Staff
`I-lt:R3’..
`El-Zl('
`.€_\‘:‘t'un'l.'v Dirt-(‘tor rmd GHne':'rtI' Mutanger
`Etwoon K. G.\:~:Nt=1'r. Depitry (ieiicrat :\‘f{.ut'r.'g('.F
`SAVA SHIERR, Srtgff i)."r.-mar. Sturrrfnrrzt
`DAVID L. STAIGER. Smyf Dtrmn:-_ Ptihtisnnig S:-rnms
`CI-i.\Rt.t=L-:
`I-'. S'i‘E\w\ItT, .II{.. Staff I)1‘:'rrtar. zlcfna-t't:r'.rIwl't'0u
`E)0Nr\1.t) L, SIJPPRR . .S'ta_,!j"D!ret‘.'or. Ft':I!r.I‘ .5‘:-rt:t‘t‘t*.t'
`Tltou.-as C. Wu: tn, .S‘m_!_?' Dir'r.’¢'w:', Puhiic infarnmnbn
`
`‘
`T, C'nnrmHw
`THOM as W. Batu‘
`. I-.'r!:'tor. !I:‘.t;‘!:' S‘,-rcrrrtmi
`l)tw.\t.r; Ct lRI!1"l'I-\
`I|l\'lN(i EN(;rt_.=_.0t\-, .5‘.-r.-j}'.J,'It-'rat:r)r. Tm‘.-‘im't'4:-’ z'It‘tt't=i.I;'e:
`Ltit) FA-'~.'!-:t\I('.. .‘s’r<{.tfT Dt'r¢*t-mr.
`."’m_ft-.m'u.-tn! .4rrt't'r'rt't'.t
`Publications Department
`Pubtrl-c:r:'un M(i!fflgt‘fJ'.' ANN I-I. BUIt€.‘.MliYIEl{.
`(Sun. S. Ftatttmc. C,\tuJt.v.\t'-. T.\.\tM-iv
`/ts.\--m'ate £:h‘:ar.- Dozwfinn |Nco|u‘M.\
`I‘~¢' 'L().\lMt.?\:IL'.\'t IONS I3: ]‘r'lIi'Ii!fii]L‘tJ niuc linlttli it year in .|
`u:trg,'.
`i"c'l:uu:tr3'. April. May. June. Jiil_\_ August. Uctuliut. .mtl lJ::cci11l.n:r by TIN: |r:~:Iiautc nl' Iilcctrictll :tr‘|I5.
`|I'.|'li JUL k'\’.\I I.>N .\'l=.l.Iit.' I‘!-In A Rt=..J\!\i
`1-.l.-1.-tmaitr,-<1-tit-.tti
`rs. lm:. Rflfipflilfii
`pl‘. for the ctI:||;:nl:. r.~_~|.:; insist: !l|q,' .'|ulI::Ir.-i and not upon "It: II‘
`the Stn:ictyfCcII
`or its 1m:mI:cr<. ll-‘.'EEI-' Headquarters: 345 |'i.-mt -I'l'Slrct:1. .’\i:w Vurlt. NY IQ‘)! 1'» 1“
`?-'tti¢1;t‘;.-.-t.;nn \«1;m;«gur.?91:1;t','onnmI1ux.7148; I‘ub'l':t: nfnnnmiun -'lN(a'-';
`u lisliing Scni 1.-1 -7.<t.0r Spectrum -7535‘
`.ttt:l.-title.-Writ): -i(‘Ci!|1i¢LlI.1\t.‘l.1'\'l{l|:‘,s v'rt:9tt.
`211-75
`491'}. .‘-"5" Tclrx:
`-‘ll I tiIIIn'II:tIiun.t| Iuc<.
`-. nulyl. II'.l:ZE Fitruirt-{'t'nIt:r [Fnr ordcr~s.:‘-t
`cripliont. l'Ll(i'\‘S§l cit:
`gs»:
`-.ation:tl .v\Cli\'ltit.‘$. Reglonjfiiuutiutlfsttttlcnt S4:P|'iIJ!$i:
`-
`‘VJ f.liui,‘>-I. 3\'.I felt-pIn.m~: It: I -93 I —Ut:tifl. If
`|sIIil1j:lnI'I Office {fur L.5.§'3!I.|fI.'!€fiitN'Iv\1:!Cli\
`;s:'. I
`I ll IOII1 Street. N \\
`Ill: lutlx \\'.'t-thingtun. DC 20016 'n'I«';uahint:Inn'{cF«'t1'?Il'
`‘
`'
`ntiwiclnnl rttnit-<'
`ll-"F
`nln-n Sltltttl tfirst mp) un|\']. nnnrnctulxn. Slt-‘H210 no.-.r c0P."- INIPLCL Add 54.130 txtsttngc and lt:IrI-llirut chmgt‘ to Mt,“ -’"1l'|' """“ Sm“ w
`S.'~EI.lJl'.|. tncltuling prep.--'nluttlur>.l .\1cmbt. and n:m:us:mbcr .<nh\-s. 1-itiun 1rrin:t :n-.-1ii:ibIu tan f:.'\;IlCSl.'a\\v‘Hii{|i}iI! in nucrn-ftciiu and microfilm Co[Iw-iglit and Reprint Pt-tmissions: .-'\b\Il;|t‘1i|'!!_! i1g)cnuitIt:d with credit
`In I I1» :c|lIF\.‘L‘.. I.ihr.-Ilia:-t um f|t.'fl|1Il'|.\'I.| to pittltu-_‘np_\' i.)t‘§I)I|ti the
`Ilih tzftltc l....‘.\'. (_'t!|'l)rigill l.;m Fur private nsi.-of p:t'lfUl1$:1 ll t!Ir.1St': post-I97? ‘I
`K li1'IEturr_\ .1 cntli: .11 the lzittttorn ufttttg fin: pttgc. tIf1I\'I\l|=‘! "1"
`l'"-‘F-t‘-Ii‘t' llzc imhc
`cd In the I.'\Ili§: F.- |,I.Iid Iltruugln llli‘ C nt\._\'rt1:iit C|c.ir.tncc ('t:nr.i:r. 2‘? Cungrms 5trc\:t.Sn|:I1\. MA (NW0: 2] wt I 918-.
`cu «ill:
`ll let:
`':
`3‘ iWl“_""‘I ‘”m.:m
`tin nnnunt-.n|ur
`-In.~.-nuun ust: u-itimnt |.,-c_ I-or .t|l otli.-r ;_‘q_7p_\'ing_ rI:prl|tI_n[ :q:u|_~.|ic;.|..)n nc.-.ni;.-sinti. n-sue tn Cunt-riglits .1ut| P'.'fIIIl:iy~
`lli D.-.p; um-nu. IE -3
`..
`‘
`‘
`.
`‘ 47"‘ -"'””‘ NC“
`‘t'ur}.'. :\l Y Iflllli.
`tipyritglil (3) I93? by TIIt' Imtittttt‘ -tf l:!l'Ci
`:nuI lJL‘1‘[fl\t1iL'ifi1'|gi|'lEEF§_ll1[‘. All rights restzn-ad. Sccattd-Llnss 1)D&|itg{' pnitl an New York. Vi’. am
`Send ttdttrcss t-I::ti1;_t-.<tt;l
`.
`it-i J0|.fR?\'Ai..0'\ .‘$l-II.l£<.'T'l'-.D .-Ht
`. 5 IE\' t‘o.\I:t.:L'.~ut<'.\1|¢)\'.~s.
`|t;L‘[—'__ -145 lines Lane. I’m-:ttm\..t_u-. SJ DESH
`
`Page 00003
`
`

`
`3 IOL
`
`(AL ON SELECTED AREAS IN COMMUNICATIONS, VOL. SAC-5, NO. 3, APRIL I987
`
`256 QAM Modem for Multicarricr 400 Mbit/s
`Digital Radio
`
`YASUHISA NAKAMURA, YOICHI SAITO, MEMBER,
`
`IEEE, AND SATORU AI-KAWA
`
`Absl‘ract—-This paper describes the performance of a 256 QAM Ino-
`dem with 400 Mbit /5 transmission capacity. A variety of novel tech-
`niques are introduced as ways to achieve good performance. Key tech-
`niques include 1) an accurate 256 QAM modulator employing a new
`]Lnm.mit|iic multiplier EC, 2) a carrier recovery circuit which satisfies
`such requirements: good phase jitter performance and no false lock
`plienomenon, 3) a highly stable high-level decision circuit, and 4) a
`forward error correcting code. As an overall modem performance, BER
`characteristics and signatures are presented. The equivalent CNR deg-
`radations ol‘ 1 dB (at BER of 10“) and 2 dB (at BER of IV’) are
`obtained using a single l.-ee—error correcting code and n seven-tap
`baseband transversal equalizer. The residual bit errors are decreased
`below the order of 10"". The performance of a 256 QAM multicarrier
`modem has given prospect for the development of 400 Mbit / s digital
`microwave radio system.
`
`sion threshold control (AGTC) circuits.” Due to these
`circuits, an excellent 256 QAM BER performance can be
`obtained. Forward crror correction (FEC) is one of the
`key techniques for high-level modulation systems, bo-
`causc it eliminates residual bit errors. A single Lcc—error
`correcting code with low redundancy is employed.
`Finally, the 256 QAM BER performance, and signature
`with and without adjacent channel interference are pre-
`sented. The equivalent CNR degradations of 1 dB at BER
`of 10”‘ and of 2 dB at BER of 10-9 are obtained. The
`residual bit errors are decreased below the order of 10‘1°.
`
`11. GENERAL DESCRIPTION
`
`I.
`
`INTRODUCTION
`
`'
`
`‘:
`
`NE of the most important criteria in the design of
`digital radio systems is the transmission capacity per
`i.o., bits/second/Hertz. High—levcl
`H" RF bandwidth,
`modulation schemes for increasing‘ spectrum utilization cf-
`ficicncy are now a major subject in the development of.
`digital microwave radio. In recent years, several digital
`radio systems with 16 QAM, and even with as high as 64
`QAM modulation have been developed and are in opera-
`tion in the microwave frequency band [l]—[4]. The trend
`to increase spectrum utilization cfiicicncy may continue
`[5]-
`As the modulation level increases, the system becomes
`more sensitive to multipath induced waveform distortion
`and interference noise. It was already demonstrated [8]
`that the multicarricr transmission method is effective for
`high—lcvcl modulation schemes in a multipath environ-
`ment. On the basis of the above considerations, this paper
`describes a 256 QAM rnulticarricr modem for the 400
`Mbit / s digital microwave radio (DM—400M) system [6],
`[7].
`First, the performance of a newly developed monolithic
`fllultiplicr IC for 2.56 QAM modulation and demodulation
`15 described. Next, two principal techniques employed in
`3 demodulator are stated. One is “a carrier recovery PLL
`With control mode selection function” which satisfies such
`Tequircrncnts as good phascjittcr performance and no false -
`lock phenomenon. Another is “automatic gain and deci-
`
`Manuscript received September 15, 1986; revised December 12, 1986.
`The authors are with NTI‘ Electrical Communication Laboratories, Nip-
`P°Il Telegraph and Telephone Corporation, Kanagawa, 238-03 Japan.
`IEEE Log Number 8613242.
`
`A. Outline of 256 QAM Four—Carr£er Modem
`For the realization of a digital radio system having a
`transmission capacity of 400 Mbits/s within 80 MHZ
`bandwidth, a 2.56 QAM modulation using the Nyquist
`spectral shaping (or = 0.5) is required. This enables the
`frequency utilization efliciency of 10 bits / s /Hz when the
`orthogonal dual polarization is employed.
`In a high-level modulation system such as 64 QAM or
`256 QAM, the multipath fading causes large degradation
`of BER performance. A multicarricr system is considered
`to be a promising method for high-level signal transmis-
`sion in a fading channel. From the 256 QAM transmission
`characteristics estimation, a four—carrier system with 12.5
`MBaud data rate and rolloif factor of 0.5 was found nec-
`cssary to achieve 400 Mbits / s [8]. In this situation, the
`frequency spacing between adjacent carriers is 20 MHz
`and the radio channel is composed of four modems. The
`modem block-diagram and major system parameters are
`shown in Fig. 1 and Table 1.
`The transmitting terminal equipment converts 400
`Mbit/ s data into 32 rails of 12.5 MBaud binary signals.
`These 32 binary bit streams are fed to the four modulator
`circuitry. In each modulator, eight binary streams are dif-
`ferentially encoded (quadrant symmetry encoding) and re-
`dundant bits for error correcting are added by an FEC
`coder circuit. Those streams are converted by DIA con-
`vertcrs to form in-phase and quadrature 16 level signals.
`Each 161evcl signal modulates a local oscillator. The 256
`QAM signals with cosine rolloff spectrum shaping (ct =
`0.5) are then combined by a hybrid circuit and supplied
`to the transmitter. The 256 QAM f0ur—carrier spectrum is
`shown in Fig. 2.
`At a demodulator, the 256 QAM four-carrier signals are
`
`0733-8716f87f0400—0329$01.00 © 1987 IEEE
`
`Page 00004
`
`

`
`IEEE JOURNAL ON SELECTED AREAS [N COMMUNICATIONS, VOL. SAC—5, NO. 3, APRIL [987
`
`:.n::’.-*'.'r=7-*5"I"
`
`Demodulator
`
`Fig. 1. Block diagram of 256 QAM four-carrier modem.
`
`v : l0dB/div.
`H :
`l0MHz/div‘.
`IF aw : i0l]KHz
`
`Video BW : 30.0Hz
`
`Fig. 2. Four-carrier spectrum.
`
`in [5]. Concerning the modulation section, it was revealed
`that the allowable maximum modulation phase error is
`i0.5° to satisfy the requirement for an equivalent CNR
`degradation of 0.6 as at a BER of 10-6 for 256 QAM.
`Therefore, a new monolithic multiplier IC capable of
`reducing the modulation phase and amplitude errors has
`been developed for the 256 QAM [9]. The main perfor-
`mance of the multiplier itself is presented in Table II. The
`new IC has a baseband input voltage linearity of more
`than 1.5 V and modulation phase error is less than 0.2‘,
`which are extremely superior to the conventional ring
`modulators and to multiplier IC developed for a 16 QAM
`system. Third-order interrnodulation products (IM3) of
`more than 55 dB at the average output power level is ob-
`tained. These performances are achieved with the aid of
`the latest device technology: SST (super seif—aligned pro-
`cess technology) [10]. The modulation phase error ob-
`
`TABLE 1
`MAIN PARAMETERS or: 256 QAM 400 Mbit / s MULTICARRIER MODEM
`
`J (
`
`hiflwith arthogunnl dual polarization
`
`-
`
`distributed by a hybrid circuit and coherently detected to
`produce two orthogonal 16 level baseband signals. The
`seven-tap baseband transversal equalizers are employed
`to equalize both in-phase and quadrature waveform dis-
`tortions. In order to improve pull-in performance, ZF
`(zero forcing) with MLE (maximum level error) algo-
`rithm is employed [6}. Denrodulated 16 level signals are
`regenerated by AID converters to produce eight rails of
`12.5 MBaud binary signals. Error correction is then car-
`ried out in the FEC decoder circuit.
`
`B. Key Techniques for an Accurate 256 QAM Modem-
`In order to realize an accurate 256 QAM modem, the
`following novel techniques are applied.
`1) monolithic multiplier IC for the modulator and the
`phase detector,
`2) high—level decision circuit with automatic gain and
`decision threshold control (AGTC circuit),
`3) carrier recovery with control mode selection func-
`tion,
`'
`
`4) forward error correction (FEC) technique.
`
`Ill. CIRCUIT DESCRIPTION
`A. Modulation Section
`
`The degradation factors arising at various parts in a mo-
`dern, such as waveform distortion, phase error. carrier jit-
`ter, etc. , were categorized and the effects of these factors
`on 256 QAM equivalent CNR degradation were presented
`
`Page 00005
`
`

`
`NAKAMURA e: «L: 256 QAM MODEM FOR MULTICARRIFR 400 Mbit/s I)IGI'1‘Al. RADIO.
`MI:9
`
`Gto
`
`
`
`NumberofSignalPoints 33
`
`New Accurate -
`~'°E'.°;.'.9
`Conventions!
`modulator‘
`
`"
`
`0.5
`.5
`[deal
`Phase err-or
`‘(developed for IE QAM
`
`1
`
`CNFu‘*5l]dE
`
`0
`
`In 15 20 253:: as 40 -‘.5
`'-a 5
`Phase error [deg.}
`
`Fig. 5. Phase comparator characteristic.
`
`Fig. 3. Modulation phase error distributions comparing new monolithic 1C
`and conventional modulator.
`
`Fig. 4. 256 QAM signal constellation.
`
`TABLE 1i
`MONOLITHIC MuLrn>t.I1=,R IC PERFORMANCE.
`
`_
`
`modulation phase error"
`modulation .9_-mplitudc error
`
`less than 0.2 degree
`less than [I.2dB
`
`amplitude deviation between
`ti
`te .
`h
`I.
`more than 1_5v
`bascband inputlinearity voltage
`IM3 (‘third-order inlierruodulation more than 55:13
`products}
`Where the eutputbacimffis 'l'dB
`
`fabrication process
`
`SST (Sun 21' Sell’-aligned process
`technology}
`
`tained from the new monolithic multiplier IC and conven-
`tional one developed for a 16 QAM system are measured.
`Fig. 3 shows the number of signal points versus modu-
`lation phase error comparing the two multiplier [C5, The
`no niber-of signal points of the quadrature multiplier with
`phase error of less than :O.5° are 238 by using the new
`monolithic IC’s. The measured maximum phase error of
`less than i1° has been obtained.
`it is concluded from experimental results that the newly
`developed monolithic multiplier IC almost satisfies the re-
`quirements for 256 QAM modulator. Fig. 4 shows the
`measured 256 QAM signal space diagram.
`
`3. Demodulation Section
`
`1 1) Carrier Recovery with Central Mode Selection
`}"Ltnetion.' A variety of carrier tracking loops for the QAM
`Signal have been proposed [11], [12]. One of the most
`Effective methods for 16 QAM carrier recovery was a se-
`lect“-’e gated phase locked loop (PLL), which uses only
`tilt‘: error signal derived from the same phases of a 4'-PSK
`Signal. The recovered carrier jitter of more than 35 dB for
`3 15 QAM signal was obtained by this method [11]. How-
`
`ever, the required carrier jitter for 256 QAM is more than
`45 (113 when the equivalent CNR degradation of 0.3 dB is
`permitted. Therefore, it is necessary to design a carrier
`recovery circuit which satisfies such requirements: a) good
`phase jitter performance and b) no false lock phenome-
`non.
`
`The received 256 QAM signal is demodulated into 16-
`level baseband signals at in—phase and quadrature chan-
`nels. The regenerated first-bit signal sets (a1, bl), which
`are the most significant bit (MSB) of AID converters, and
`the fifth-bit signal sets (a5, 175), which are error polarity
`signals, are multiplied and is used as the VCO control
`signal. The phase control voltage V(ti) is obtained as fol-
`lows.
`
`: 6-155 "' 51 (£5.
`
`(1)
`
`The reduction of a PLL noise bandwidth and the im-
`
`provement of VCO phase jitter are necessary to obtain a
`recovered carrier jitter of more than 45 dB. The carrier
`jitter of more than 45 dB has been achieved by designing
`RF local oscillator frequency stability of the order of 10"
`and employing a voltage controlled crystal oscillator
`(VCXO) in the demodulator. In spite of a good carrier
`jitter performance,
`it has been clarified from the phase
`comparator characteristic that the carrier recovery circuit
`has a false-lock point in the same frequency when input
`CNR is sufliciently high [5].
`The selective gating of VCXO control signal during the
`course of an acquisition is effective in order to prevent the
`false-lock phenomenon.
`After locking into a normal phase, the operation of se-
`lecting the control signal is inhibited. The switching is
`performed by monitoring the intersymbol
`interference
`which is easily estimated from the multiplication of the
`fifth and the sixth bits of AID converter. This technique
`simultaneously enables the improvement of pull«in and
`carrier jitter performance.
`The phase comparator characteristic in a selective gat-
`ing mode is obtained as follows.
`Let Dsi be the probability that the signal point 1' is in-
`volved in a selective area. D31’ is shown as
`
`Dsi =
`
`H
`
`RsUEs
`
`Pi(x,y)dx dy
`
`(2)
`
`where, P.i(x, y) is a Gaussian pdf
`
`(i = 1 -- 256).
`
`Page 00006
`
`

`
`332
`
`IEBE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. VOL. SAC-5, N0. 3, APRIL 1937
`
`Pi(x, y) = Pt'[x) - Pi(y)
`
`.
`
`2
`
`.
`
`2
`
`= .r“21....2°‘Pi‘ iiigifll - as l” ‘mizyl
`
`(3)
`
`inwphase component of signal point 1'
`Six
`quadrature component of signal point If
`Say
`white Gaussian noise power
`02
`26 = minimum distance between signal points.
`
`The average CNR (carrier to noise ratio) of 256 QAM
`can be obtained as
`
`CNR = 35 two? = kg.
`
`(4)
`
`In (2), Rs. means the positive area producing correct
`control voltage “+1” and E5 means the negative area
`producing error control voltage “-1.” When the signal
`point i is involved in a selective area, the phase control
`voltage Vi(G) is shown as
`
`14(9) = “R5 Pi(x, 3’) Cir dy
`
`—
`
`Pstx. y) «my.
`
`(5)
`
`When the signal point t' is involved in a nonselective
`area, the phase control voltage Vi(9) is put into “hold”
`condition by a sample and hold circuit. Then, the follow-
`ing equations are introduced.
`256
`
`Pe(ti) = phase comparator characteristic.
`
`From (6), Pe(3) can be written as
`
`Pe(6) = 2} V(a)Ds;'[§1Dst.
`
`2E6
`i=1
`
`256
`
`(6)
`
`(7)
`
`The phase comparator characteristic in a selective gat~ _
`ing mode is shown in Fig. 5. The number of error signals
`used in the selective gating in Fig. 5 is 96 out of 256.
`Note that the loop exhibits no false lock point. The re—
`covered carrier spectrum is shown in Fig. 6. The mea-
`sured carrier jitter was 45.5 dB and the pu1l—in frequency
`range of more than 8 kHz was obtained.
`2) High-Level Decision Circuit with Automatic Gain
`and Decision Threshold Control
`(AGTC): In order to
`achieve a good BER performance, an automatic gain and
`decision threshold control (AGTC) circuit is employed
`[14]. It uses the first and fifth bits of A.-‘D converter as the
`feedback signals for the amplitude variation and dc drift
`of demodulated signals. These degradations are mainly
`caused by a local leak of the modulator, AGC level vari-
`ation and temperature characteristic of amplifiers. The
`feedback signals are fed to the dc amplifier which is lo-
`cated before the A/Dconverter. Fig. 7 shows the circuit
`configuration.
`
`IF BWZ l_K|-lz
`Video BW1 l{)0Hz
`
`Fig. 6. Recovered carrier spectrum.
`
`dc level
`monitor
`
`Fig. 7. Feedback circuit configuration.
`
`pno cbntrnl
`
`I’IIIIII
`
`i:1
`
`
`
`EquivalentUNdegradationI581
`
`_
`
`Input
`
`level variation can}
`
`Fig. 8. Equivalent C /N degradation due to input level variation".
`
`Let the input signal to the AID converter be 11(1) and
`applying Laplacian “s" to u(I), in dc drift compensation
`feedback loop [5]:
`
`U(s) = I/(s) + 5(3)/(1+ Kd.'F(s)).
`
`(8)
`
`When F (.9) is supposed to be a perfect integrator,
`
`'
`
`F(s) = Kn/s,
`
`(9)
`
`then,
`
`U“) 3 Vi‘) “
`
`’
`
`19(5):
`
`(10)
`
`In amplitude variation compensation feedback loop (866
`Appendix),
`
`Page 00007
`
`

`
`NM-(AM-URA et n.i.: 256 QAM MODEM FOR MULTICARRIER 400 Mbit/s DIGITAL RADIO
`
`o—-o Iwithout FEC
`-----a Iwith
`FEC
`Modern back to back
`Clock I
`|2.5MB
`
`l |
`
`:,\
`‘
`‘.
`'n\\
`
`38
`
`C N R (dB}
`
`Fig. 9. 256 QAM BER performance.
`
`gle Lee-error correcting code (72, '70} is shown as
`Pa = 107 - P3
`
`(13)
`
`Pa = SER after FEC
`
`P = SER before FEC.
`
`The rate overhead of this code is only about 3 percent.
`The differential decoding is performed after error correc-
`tion.
`
`IV. OVERALL PERFORMANCE
`
`The 256 QAM signal has 16 baseband levels. The
`baseband signal is obtained by D.’ A converters as
`
`S[=23'fl|+22'a2+2'fl3'l'I5l4
`
`s,=2“-b,+2*-b,+2-b,+b...
`
`- (ad, b4) are binary codes and
`-
`Signal sets (al, bi), -
`categorized as “Path 1’? to “Path 4" indicating the first
`to fourth bit. The BER of 256 QAM is obtained as the
`average of the BER’s of each path. Considering a quad-
`rant symmetry differential encoding, the average BER of
`256 QAM becomes
`‘
`
`Pr: = 19/64 errc(a/x/E 0')
`
`= 19/54 errc(k,/«fi%)
`
`(14)
`
`minimum distance between signal points,
`' 25
`02 .= white Gaussian noise power.
`
`The 256 QAM BER’s for Path 4 {modern back to back)
`are shown in Fig. 9. The single Lee-error correcting code
`and a seven-tap baseband transversal equalizer are imple-
`mented in this system. The equivalent CNR degradation
`of 1 dB {at a BER of 1o“‘) and 2 as (at a BER of 10-”)
`are obtained. The measured coding gain by the FEC at a

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket