throbber

`
`VIZIO 1013
`VIZIO 1013
`
`

`

`
`
`VIZIO 1013
`VIZIO 1013
`
`

`

`G. Blasse, B. C. Grabmaier
`
`Luminescent
`
`Materials
`
`With I71 Figures and 3] Tables
`
`Springer—Verlag
`Berlin Heidelberg New York
`London Paris Tokyo
`Hong Kong Barcelona Budapest
`
`VIZIO 1013
`VIZIO 1013
`
`

`

`Prof. Dr. G. Blasse
`
`a
`\‘ ‘r L‘! I7 53
`
`Debye Institute
`University Utrecht
`Postbox 80.000
`
`3508 TA Utrecht
`
`.-
`
`_ U-
`
`The Netherlands
`
`Prof.. Dr. B. C. Grabmaier
`
`Siemens Research Laboratories
`
`ZFE BT MR 22
`
`D-81730 Miinchen
`
`Germany
`
`also with Debye Institute
`
`University Utrecht
`
`ISBN 3-540-58019-0 Springer—Verlag Berlin Heidelberg New York
`ISBN 0-387-58019-0 Springer—Verlag New York Berlin Heidelberg
`
`Library of Congress Cataloging-in-Publication Data
`Blasse, G. Luminescent materials I G. Blasse, B.C. Grabmaier. p. cm.
`Includes bibliographical references and index.
`ISBN 3-540-58019-0. -- ISBN 0-387-58019-0 (U.S.)
`I. Phosphors. 2. Luminescence.
`I. Grabmaier, B. C., 1935- ll. Title.
`QC476-7-B53 1994 620.1’ l295——dc20 94-20336 CIP
`
`This work is subject to copyright. All rights are reserved, whether the whole or part of the
`material is concerned, specifically the rights of translation, reprinting,
`re—use of illustrations,
`recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks.
`Duplication of this publication or parts thereof is only permitted under the provisions of the
`German Copyright Law of September 9, 1965, in its current version, and a copyright fee must
`always be paid.
`
`© Springer.Verlag Berlin Heidelberg 1994
`Printed in Germany
`
`in this publication does not imply, even in the
`The use of registered names, trademarks, etc.
`absence of a specific statement, that such names are exempt from the relevant protective laws
`and regulations and therefore free for general use.
`
`Typesetting with TEX: Data conversion by Lewis & Leins, Berlin
`SPIN: 10187460
`023020 - 5 4 3 2 1 0 - Printed on acid-free paper
`
`VIZIO 1013
`VIZIO 1013
`
`

`

`Preface
`
`Luminescence is just as fascinating and luminescent materials (are) just as important
`
`as the number of books on these topics are rare. We have met many beginners in
`
`these fields who have asked for a book introducing them to luminescence and its
`
`applications, without knowing the appropriate answer. Some very useful books are
`
`completely out of date, like the first ones from the late l940s by Kroger, Leverenz and
`
`Pringshcim. Also those edited by Goldberg (1966) and Rich] (I971) can no longer
`
`be recommended as up—to—date introductions.
`
`In the last decade a few books of excellent quality have appeared, but none of
`
`these can be considered as being a general introduction. Actually, we realize that it
`
`is very difficult to produce such a text in view of the multidisciplinary character of
`the field. Solid state physics, molecular spectroscopy, ligand field theory, inorganic
`chemistry, solid state and materi'als chemistry all have to be blended in the correct
`
`proportion.
`
`Some authors have tried to obtain this mixture by producing multi—authored books
`
`consisting of chapters written by the specialists. We have undertaken the difficult task
`of producing a book based on our knowledge and experience, but written by one
`
`hand. All the disadvantages of such an approach have become clear to us. The way in
`
`which these were solved will probably not satisfy everybody. However, if this book
`
`inspires some of the investigators just entering this field, and if it teaches him or her
`how to find his way in research, our main aim will have been achieved.
`
`The book consists of three parts, although this may not be clear from the table of
`
`contents. The first part (chapter I) is a very general introduction to luminescence and
`
`luminescent materials for those who have no knowledge of this field at all. The second
`
`part (chapters 2-5) gives an overview of the theory. After bringing the luminescent
`
`center in the excited state (chapter 2: absorption), we follow the several possibilities
`of returning to the ground state (chapter 3: radiative return; chapter 4: nonradiative
`
`return; chapter 5: energy transfer and migration). The approach is kept as simple as
`
`possible. For extensive and mathematical treatments the reader should consult other
`books.
`
`Part three consists of live chapters in which many of the applications are discussed,
`
`viz. lighting (chapter 6), cathode—ray tubes (chapter 7), X—ray phosphors and scintil-
`lators (chapters 8 and 9), and several other applications (chapter 10)- These chapters
`
`discuss the luminescent materials which have been, are or may be used in the appli-
`
`cations concerned. Their performance is discussed in terms of the theoretical models
`presented in earlier chapters. In addition, the principles of the application and the
`preparation of the materials are dealt with briefly. Appendices on some, often not-well-
`understood, issues follow (nomenclature, spectral units, literature, emission spectra)-
`
`VIZIO 1013
`VIZIO 1013
`
`

`

`vi
`
`Preface
`
`We are very grateful to Mrs. Jessica Heilbrunn (Utrecht) who patiently typed the
`manuscript and did not complain too much when correction after correction appeared
`over many months. Miss Rita Bergt (Miinchen) was of help in drawing some of the
`figures. Some of our colleagues put original photographs at our disposal.
`This book would not have been written without discussions with and inspiration
`
`from many colleagues over a long period of time. These Contacts, some oral, some
`via written texts, cover a much wider range than the book itself. In the preparation of
`this book our communication with Drs. P-W. Atkins, F. Auzel, A. Bril, C.W.E. van
`
`Eijk, G-F- Imbusch, C.K. Jergensen, and B. Smets has been very useful.
`For many years we have enjoyed our work in the field of luminescence. We hope
`that this book will help the reader to understand luminescence phenomena, to design
`new and improved luminescent materials, and to find satisfaction in doing so.
`
`Spring I994
`
`G. Blasse, Utrecht
`B.C. Grabmaier, Mijnchen
`
`VIZIO 1013
`VIZIO 1013
`
`

`

`Table of Contents
`
`Chapter 1 A General Introduction to Luminescent Materials
`Chapter 2 How Does a Luminescent Material Absorb Its Excitation Energy?
`
`2.]
`
`General Considerations .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`2.2 The Influence of the Host Lattice .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`2.3
`
`10
`
`16
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`The Energy Level Diagrams of Individual Ions .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`2.3.l
`The Transition Metal Ions (a'") .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`2.3.2
`The Transition Metal Ions with do Configuration .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`2.3.3
`The Rare Earth Ions (4f") . .
`.
`. .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`2.3.4
`The Rare Earth Ions (4f-5d and Charge—Transfer Transitions) .
`2.3.5
`Ions with 33 Configuration .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`2.3.6
`Ions with dm Configuration .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`2.3.7
`Other Charge—Transfer Transitions .
`2.3.8
`Color Centers .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`. ..
`.
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`2.4 Host Lattice Absorption .
`References .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`. .
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`Chapter 3 Radiative Return to the Ground State: Emission
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`20
`20
`25
`25
`27
`28
`29
`30
`30
`
`30
`3|
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`33
`
`3.]
`
`Introduction .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`3.2 General Discussion of Emission from a Luminescent Center .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`3.3
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`33
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Some Special Classes of Luminescent Centers .
`3.3.]
`Exciton Emission from Alkali Halides .
`
`3.3.2
`
`3.3.3
`3.3.4
`
`Rare Earth Ions (Line Emission) .
`
`.
`
`.
`
`.
`
`.
`
`Rare Earth Ions (Band Emission) .
`Transition Metal Ions .
`.
`.
`.
`.
`.
`. .
`.
`.
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`. .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`
`.
`.
`
`38
`38
`
`40
`
`45
`50
`
`.
`
`.
`
`3.3.5
`3.3.6
`
`3.3.7
`
`d” Complex Ions .
`dm Ions .
`.
`.
`.
`.
`.
`.
`.
`.
`
`S2 Ions .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`.
`.
`.
`.
`. . ..
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. ..
`
`52
`53
`
`55
`
`59
`
`3.3.8
`
`3.3.9
`
`The U“ ion .
`
`.
`
`.
`
`.
`
`Semiconductors .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. .
`
`.
`
`.
`
`.
`
`.
`
`. .
`
`. .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. .
`
`.
`
`.
`
`.
`
`.
`
`. .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`60
`
`64
`
`3.3. I 0 Cross—Luminesccnce .
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`3.4 Afterglow .
`3.5
`Therrnoluminescence .
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`. .
`
`.
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`
`.
`. .
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`
`. .
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`._ .
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`. .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`65
`66
`
`67
`
`3.6. Stimulated emission .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`References .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. .
`
`.
`
`. .
`
`.
`
`. .
`
`.
`
`. .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`70
`
`VIZIO 1013
`VIZIO 1013
`
`

`

`viii
`
`Table of Contents
`
`Chapter 4 Nonradiative Transitions
`
`4.1
`
`4.2
`
`Introduction .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. .
`
`.
`
`. .
`
`.
`
`.
`
`.
`
`.
`
`. .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. .
`
`.
`
`.
`
`.
`
`.
`
`Nonradiative Transitions in an Isolated Luminescent Centre .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. .
`
`.
`
`.
`
`7l
`
`72
`
`.
`
`.
`
`.
`
`4.2.1
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`The Weak—Coupling Case .
`4.2.2
`The Intc1'mediate- and Strong—Coupling Cases .
`Efficiency .
`.
`.
`.
`_
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Maximum Efficiency for High Energy Excitation [13] .
`Photoionization and E1ectron—Transfer Quenching .
`.
`.
`.
`.
`Nonradiative Transitions in Semiconductors .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`4.3
`
`4-4
`
`4.5
`
`4.6
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`.
`
`.
`.
`
`.
`
`.
`_
`.
`
`.
`
`.
`.
`.
`
`.
`
`.
`.
`.
`
`.
`
`.
`.
`.
`
`.
`
`.
`
`_
`.
`
`.
`
`.
`_
`.
`
`.
`
`.
`
`.
`
`.
`.
`
`.
`_
`
`.
`_
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`_
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`_
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`_
`.
`
`_
`.
`
`.
`.
`
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`74
`77
`84
`85
`86
`88
`
`89
`
`References .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Chapter 5 Energy Transfer
`
`5.1
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`91
`
`Introduction .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`5.2
`
`5.3
`
`5.4
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`. .
`.
`.
`.
`.
`
`.
`
`.
`
`.
`.
`.
`.
`.
`
`.
`
`.
`.
`.
`.
`.
`
`.
`
`.
`.
`.
`.
`.
`
`.
`
`.
`.
`.
`.
`.
`
`.
`
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`. .
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`
`.
`.
`.
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`Energy Transfer Between Unlike Luminescent Centers .
`Energy Transfer Between Identical Luminescent Centers .
`5.3.1
`Weak—Coup1ing Scheme Ions .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`5.3.2
`Intermediate- and strong—coupling scheme ions .
`Energy Transfer in Semiconductors .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`References .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. .
`.
`.
`. .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`.
`.
`.
`. .
`
`.
`.
`.
`.
`.
`. .
`
`91
`95
`95
`. 103
`. 106
`. 106
`
`.
`
`.
`
`.
`
`Chapter 6 Lamp Phosphors
`
`6.1
`
`Introduction .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 108
`
`6.2
`6.3
`6.4
`
`.
`.
`.
`.
`.
`.
`.
`.
`Luminescent Lighting [1-3] .
`The Preparation of Lamp Phosphors .
`Photoluminescent Materials .
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`.
`. .
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`. 108
`.
`.
`. ..
`1
`1 1
`.
`.
`.
`1 12
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`. .
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`. .
`.
`.
`.
`.
`.
`Lamp Phosphors for Lighting .
`6.4.1.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Phosphors for Other Lamp Applications .
`6.4.2
`Phosphors for High—Pressure Mercury Vapour Lamps .
`6.4.3
`Phosphors with Two—Photon Emission .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`6.4.4
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. .
`.
`. .
`6.5 Outlook .
`References .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`. .
`.
`.
`
`1 12
`.
`. 126
`. 127
`. 130
`. 130
`. 133
`
`Chapter 7 Cathode-Ray Phosphors
`
`Cathode—Ray Tubes: Principles and Display .
`7.1
`Preparation of Cathode—Ray Phosphors .
`.
`.
`.
`.
`7.2
`7.3 Cathode-Ray Phosphors .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`7.3.1
`Some General Remarks .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`.
`
`.
`.
`.
`
`.
`
`.
`.
`.
`
`.
`
`.
`
`.
`
`.
`. .
`.
`.
`
`.
`
`.
`.
`.
`
`.
`
`.
`.
`.
`
`.
`
`.
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`.
`
`.
`
`.
`
`.
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`.
`
`.
`
`.
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`.
`
`.
`
`.
`
`.
`.
`. .
`.
`.
`
`.
`
`.
`.
`.
`
`.
`
`.
`
`.
`.
`. .
`.
`.
`
`.
`
`.
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`
`.
`
`.
`
`. 134
`. 136
`.
`. .. 137
`.
`.
`. 137
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`
`. 138
`. 138
`. 141
`. 143
`. 145
`
`7.3.2
`7.3.3
`7.3.4
`7.3.5
`7.4 Outlook .
`
`Phosphors for Black—and—White Television .
`Phosphors for Color Television .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Phosphors for Projection Television .
`.
`.
`.
`.
`.
`.
`Other Cathode—Ray Phosphors .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`References .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`.
`.
`.
`
`.
`
`.
`.
`.
`.
`.
`
`.
`
`.
`.
`.
`.
`.
`
`.
`
`.
`.
`.
`.
`.
`
`.
`
`.
`.
`.
`.
`.
`
`.
`
`.
`.
`. .
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`.
`.
`.
`.
`
`.
`
`.
`.
`.
`.
`.
`
`.
`
`.
`.
`.
`.
`.
`
`.
`
`.
`.
`.
`.
`.
`
`.
`
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 145
`
`VIZIO 1013
`VIZIO 1013
`
`

`

`Table of Contents
`
`ix
`
`Chapter 3 X-Ray Phosphors and Scintillators (Integrating Techniques)
`
`8.1
`
`Introduction .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. .
`
`.
`
`.
`
`.
`
`.
`
`. 146
`
`.
`
`I46
`
`8. I .I
`
`X-Ray Absorption .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`_
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 148
`
`8.1.2
`
`8.1.3
`
`The Conventional Intensifying Screen .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`The Photostimulable Storage Phosphor Screen .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`I49
`
`. 153
`
`8.1.4
`
`Computed Tomography .
`
`8.2
`
`Preparation of X—ray Phosphors .
`8.2.]
`Powder Screens .
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`I56
`I56
`
`I57
`
`8.2.2
`
`Ceramic Plates .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`. .
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`. .
`.
`.
`
`.
`.
`
`.
`.
`
`I59
`,
`.
`_
`. .. 159
`
`Single Crystals .
`8.2.3
`8.3 Materials .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`. .
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`. .
`
`.
`.
`
`8.3.1
`
`8.3.2
`
`8.3.3
`8.4 Outlook .
`
`.
`X—Ray Phosphors for Computed Tomography .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. .
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`X—Ray Phosphors for Conventional Intensifying Screens .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`I59
`
`X—Ray Phosphors for Photostimulable Storage Screens .
`
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`
`. 162
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`. 165
`.
`I68
`
`. 169
`
`References .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Chapter 9 X-Ray Phosphors and Scintillators (Counting Techniques)
`
`.
`
`.
`
`.
`
`.
`
`. 170
`
`9.1
`
`Introduction .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`I70
`
`9.2
`
`The Interaction of Ionizing Radiation with Condensed Matter .
`
`9.3 Applications of Scintillator Crystals .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`I72
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`. 178
`.
`.
`. .. 182
`
`9.4 Material Preparation (Crystal Growth) .
`9.5
`Scintillator Materials .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. .
`.
`.
`.
`.
`.
`
`9.5.1
`
`Alkali Halides .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`. .
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`. .
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`I82
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`.
`
`.
`
`.
`
`.
`
`.
`.
`
`.
`.
`.
`
`.
`
`. .
`.
`.
`
`.
`.
`
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`9.5.2
`9.5.3
`9.5.4
`9.5.5
`9.5.6
`
`9.5.7
`9.5.8
`
`.
`.
`.
`.
`.
`.
`.
`Tungstates .
`.
`.
`.
`.
`.
`.
`.
`.
`. .
`.
`.
`.
`Bi4Ge3O]2 (BGO) .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. .
`G(l2SIO5 : Ce3+ and Lu2SiO5 : Ce-1+ . .
`.
`.
`.
`.
`.
`.
`.
`.
`CeF3 .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. .
`.
`. .
`.
`Other Ce3+ Scintillators and Related Materials .
`
`.
`.
`. .
`
`.
`.
`
`.
`
`.
`
`.
`
`BaF3 (Cross Luminescence; Particle Discrimination) .
`Other Materials with Cross Luminescence .
`.
`.
`.
`.
`.
`.
`.
`.
`. .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`I83
`. ..
`I83
`. .. 184
`.
`. 186
`.
`I88
`
`. . 188
`.
`. 190
`
`.
`.
`
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`.
`9.6 Outlook .
`References .
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`.
`. .
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`. .
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`. .
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`. .
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`. 191
`. 193
`
`Chapter 10 Other Applications
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. .. 195
`
`10.1 Upconversion: Processes and Materials .
`
`IO.l.I Upconversion Processes .
`
`. .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. .. 195
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`. .
`. .
`
`.
`.
`
`.
`.
`
`.
`.
`
`. 197
`. 203
`
`10.1.2 Upconversion Materials . .
`I0.2 The Luminescent Ion as a Probe .
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`. .
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`10.3 Luminescence Immuno—Assay .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. .. 206
`
`.
`
`.
`
`Principle .
`10.3.1
`10.3.2 Materials .
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`.
`
`.
`
`.
`. .
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`. .. 206
`.
`.
`. 208
`
`.
`
`VIZIO 1013
`VIZIO 1013
`
`

`

`x
`
`Table of Contents
`
`l0.4 Electroluminescence .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`_
`
`.
`
`.
`
`.
`
`_
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`_ __ 210
`
`. .. 210
`
`l0-4.l
`
`Introduction .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`10.4.2
`
`Light-Emitting Diodes and Semiconductor Lasers .
`
`10.4.3
`
`I-Iigh—Field Electroluminescence .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`10.5 Amplifiers and Lasers with Optical Fibers .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`
`. 210
`
`. .. 212
`
`.
`
`. 214
`
`. .. 216
`. .. 218
`
`.
`10.6 Luminescence of Very Small Particles .
`References .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. .
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`. .
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`. .
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`Appendix 1. The Luminescence Literature .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 221
`
`Appendix 2. From Wavelength to Wavenumber and Some Other Conversions . 223
`
`Appendix 3. Luminescence, Fluorescence, Phosphoresence .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 224
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. .. 225
`
`Appendix 4-. Plotting Emission Spectra .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Subject Index .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 227
`
`VIZIO 1013
`VIZIO 1013
`
`

`

`CHAPTER 6
`
`Lamp Phosphors
`
`6.1 Introduction
`
`The previous chapters presented an outline of the phenomenon of luminescence in
`solids. They form the background for the following chapters which discuss lumines-
`cent materials for several applications, viz. lighting (Chapter 6), television (Chap-
`ter 7), X-ray phosphors and scintillators (Chapters 8 and 9), and other less—general
`applications (Chapter 10). These chapters will be subdivided as follows:
`
`— the principles of the application
`— the preparation of the materials
`— the luminescent materials which were or are in use or have a strong potential to
`become used; a discussion of their luminescence properties in terms of Chapters
`2-5
`
`— problems in the field.
`
`The emphasis will be on the materials in view of the topic of this book.
`
`6.2 Luminescent Lighting [1-3]
`
`Luminescent lighting started even before the Second World War*. The ultraviolet
`radiation from a low-pressure mercury discharge is converted into white light by
`a phosphor layer on the inner side of the lamp tube. These lamps are much more
`efficient than the incandescent lamp: a 60 W incandescent lamp yields 15 lmfW, a
`standard 40 W luminescent lamp 80 lmI'W.
`A luminescent lamp is filled with a noble gas at a pressure of 400 Pa, containing
`0.8 Pa mercury. In the discharge the mercury atoms are excited. When they return to
`the ground state, they emit (mainly) ultraviolet radiation- About 85% of the emitted
`radiation is at 254 nm and 12% at 185 nm. The remaining 3% is found in the longer
`wavelength ultraviolet and visible region (365, 405, 436 and 546 nm).
`
`* We use the term luminescent lighting instead of the generally used fluorescent lighting, since
`most of the luminescent materials that are used do not show fluorescence (which is defined as
`an emission transition without spin reversal, i.e. AS : 0; see also Appendix III).
`
`VIZIO 1013
`VIZIO 1013
`
`

`

`6-2. Luminescent Lighting [I-3]
`
`I09
`
`
`
`"ig. 6.1. Cross section of a low-pressure luminescent lamp. 1 glass tube; 2 luminescent powder;
`3 cathode; 4 lamp cap
`
`The lamp phosphor converts the 254 and 185 nm radiation into visible light
`
`(Fig. 6.1). It is in direct contact with the mercury discharge which rules out many
`
`potential candidates. For example, sulfides cannot be used in lamps since they react
`
`with mercury. A lamp phosphor should absorb the 254 and 185 nm radiation strongly
`and convert the absorbed radiation efficiently, i.e. their quantum efficiency should be
`
`high.
`
`A luminescent lighting lamp has to emit white light, so that the sun, our natural
`
`lighting source,
`
`is imitated. The sun is a black body radiator, so that its emission
`
`spectrum obeys Planck's equation:
`
`A/\"5
`
`5"" :
`
`<6-"
`
`Here A and B are constants, A the emission wavelength and Tc the temperature of
`the black body. With increasing Tc the color of the radiator moves from (infra)red
`
`into the visible. In luminescent lamp terminology, “white” is used for 3500 K light,
`“cool—white” for 4500 K, and “warm-white” for 3000 K.
`
`According to the principles of colorimetry, each color can be matched by mixing
`
`three primary colors- It is possible to represent colors in a color triangle [2]. Most
`currently used is the chromaticity diagram standardized by the Commission Interna-
`
`tionale d’Eclairage. It is depicted in Fig. 6.2- For a definition of the color coordinates
`
`x and 3/, see Refs. [2] and [3]. The real colors cover an area enclosed by the line
`
`representing the spectral colors and the line connecting the extreme violet and the
`
`extreme red. The points within this area represent unsaturated colors.
`
`The color points corresponding to Eq. (6.1) are given by the black body locus
`
`(BBL)- Colors lying on the BBL are considered to be white. White light can be
`
`generated in different ways. The simplest one is to mix blue and orange. However,
`it is also possible to mix blue, green and red- Blending a number of emission bands
`into a continuous spectrum also yields, of course, white light. All these examples of
`
`color mixing are used in lamps, as we will see below.
`
`VIZIO 1013
`VIZIO 1013
`
`

`

`1 10
`
`6. Lamp Phosphors
`
`0.8
`
`Fig. 6.2. CIE ehromaticity diagram with black body locus (BBL). See also text. Reproduced
`with permission from Ref. [3]
`
`Apart from the color point, there is another important lamp characteristic, viz.
`the color rendition. This property depends on the spectral energy distribution of the
`emitted light. It is characterized by comparing the color points of a set of test colors
`under illumination with the lamp to be tested and with a black body radiator. The color
`rendering index (CR1) equals 100 if the color points are the same under illumination
`with both sources. Under illumination with a lamp with low CR1, an object does not
`appear natural to the human eye.
`In addition to the Iow—pressure mercury lamp discussed above, there is the high-
`pressure mercury lamp (Fig. 6.3). The gas discharge is contained in a small envelope
`sunounded by a larger bulb. The phosphor coating is applied to the inside of the outer
`bulb, so that there is no Contact with the discharge.
`In the high-pressure lamp the discharge also shows strong lines at 365 nm. The
`ideal phosphor for this lamp should, therefore, not only absorb short-wavelength ultra-
`violet radiation, but also long-wavelength. Further this discharge shows a considerable
`amount of blue and green emission. However, it is deficient in red. The phosphor has
`to compensate for this deficiency, so that it should have a red emission.
`The phosphor temperature in the high-pressure lamp increases to 300°C, so that
`the emission should have a very high quenching temperature.
`Since high—pressure lamps are used for outdoor lighting, the requirements for color
`rendering are less severe than for low—pressure lamps. However, if the phosphor is
`left out, red objects appear to be dull brown: this not only makes human skin look
`terrible, but also finding a red car in a parking lot problematic.
`
`VIZIO 1013
`VIZIO 1013
`
`

`

`6-3. The Preparation of Lamp Phosphors
`
`1 ll
`
`
`
`
`it I:
`_,p.-5
`
`
`
`I
`
`-'.I'____J I
`“ll
`
`Fig. 6.3. Cross section of a high-pressure luminescent lamp. I glass bulb; 2 luminescent powder;
`3 quartz envelope for gas discharge; 4 lamp cap; 5 electrodes
`
`6.3 The Preparation of Lamp Phosphors
`
`The lamp bulbs are coated with phosphor by using a suspension of phosphor powder
`particles. A lamp phosphor is therefore prepared as a powder. In principle this is
`done by standard solid state techniques in which intimate mixtures of starting mate-
`rials are fired under a controlled atmosphere [4]. As a simple example we consider
`MgWO4: it is prepared by mixing basic magnesium carbonate and tungsten trioxide
`in open silica crucibles at about l000°C. Much more complicated is the case of the
`calcium halophosphate phosphor Ca5(PO4)3(F,Cl): Sb,Mn which is made by firing a
`mixture of CaCO3, CaHPO4, CaF2, NH4Cl, Sb3O3 and MHCO3. Actually the history
`of the preparation of this material is a beautiful illustration that increasing control and
`knowledge yields results: the light output of this phosphor has increased considerably
`during a long period of time. For more details the reader is referred to Chapter 3 in
`Ref. [2]-
`
`The luminescent activator concentration is of the order of 1%. Therefore high-
`quality starting materials and a Clean production process are prerequisite for obtaining
`luminescent materials with a high efficiency. The controlled atmosphere is necessary
`to master the valence of the activator (for example Eu“ or Eu“) and the stoichiom—
`etry of the host lattice. Also the pa1'ticle—Size distribution of the phosphor needs to be
`controlled; this depends on the specific material under consideration.
`
`VIZIO 1013
`VIZIO 1013
`
`

`

`1 I2
`
`6. Lamp Phosphors
`
`In order to obtain homogeneous phosphors it is often necessary to leave the simple
`solid state technique. -Coprecipitation may be of importance, especially if the activator
`and the host lattice ions are chemically similar. This is, of course, the case with rare-
`earth activated phosphors. For example, YZO3 :Eu3+ can be prepared profitably by
`eoprecipitating the mixed oxalates from solution and firing the precipitate [5]. Actually
`the mixed oxides have become available commercially.
`
`Usually phosphors decline slowly during lamp life [2]. This can be due to several
`processes;
`
`— photochemical decomposition by 185 nm radiation from the mercury discharge
`(an illustrative approach to this problem is given in Ref. [6])
`— reaction with excited mercury atoms from the discharge
`
`—— diffusion of sodium ions from the glass.
`
`Quite often, coarse phosphors appear to be more stable than fine-grained phos-
`phors. Obviously a high specific surface makes the phosphors more sensitive to in-
`teraction with radiation, mercury, and so on. This does not Come as a surprise.
`
`6.4 Photoluminescent Materials
`
`6.4.]. Lamp Phosphors for Lighting
`6.4. I. 1'. Early Phosphor:
`
`In the early period of luminescent lighting (l938—1948), a mixture of two phos-
`phors was used, viz. MgWO4 and (Zn,Be)2SiO4 :Mn2+. The tungstatc has a broad
`bluish—white emission band with a maximum near 480 nm (Fig. 6.4) and can be effi-
`ciently excited with short wavelength ultraviolet radiation- The emission spectrum of
`(Zn,Be)2SiO4 : Mn“ is given in Fig. 6.5. It covers the green to red part of the visible
`spectrum.
`The phosphor MgWO4 is an example of a luminescent material with 100% ac-
`tivator concentration, since each octahedral tungstatc group in the lattice is able to
`luminesce. However, there is no concentration quenching. This is due to the large
`
`CO‘ “/04
`
`
`
`550
`
`.__.__l.__
`600 M.
`
`400
`
`45b
`
`J
`500
`km}
`
`Fig. 6.4. Emission spectra of MgWO4 and CaWO4
`
`VIZIO 1013
`VIZIO 1013
`
`

`

`6.4. Photoluminescent Materials
`
`I 13
`
`300
`
`.400
`
`500
`A-Th-r
`
`500 um
`
`Fig. 6.5. Emission spectra of ZH2SlO4 : Mn2+ (8) and (Zn,Be);SiO4 : Mn2+ (C). Curve A gives
`the diffuse reflection spectrum of ZngSiO4 : Mn2+
`
`Stokes shift of the emission which brings the relaxed emitting state out of resonance
`with the neighbors. This, in turn, can be related to the nature of the optical transition
`which is a charge-transfer transition in the tungstate group. Therefore AR in Fig. 2.3
`is large. This yields not only a strongly Stol<es—shifted emission, but also a very broad
`emission which is of importance for the coior rendering.
`The broadness of the (Zn,Be)gSiO4:Mn2+ emission is due to another reason.
`Actually the emission of beryllium—free Zn2SiO4 : Mn“ is narrow (Fig. 6.5). Let us,
`therefore, start with the latter phosphor which shows a bright—green emission.
`
`Both Zn2SiO4 and BegSiO4 hav

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket