throbber
I: 0 M M U N I C A I I 0 N S www.newtypecommunications.com
`
`STATE OF NEW YORK )
`CITY OF NEW YORK
`:
`COUNTY OF NEW YORK)
`
`445 Fifth Avenue
`
`New York, New York 10016
`
`Phone 212-686-5555
`Fax 212-686-5414
`
`CERTIFICATION
`
`I hereby declare that all statements made herein of my own knowledge are true and
`that all statements made on information and belief are believed to be true; and further
`that these statements were made with the knowledge that willful false statements and
`the like so made are punishable by fine or imprisonment, or both, under Section 1001
`of Title 18 of the United States Code and that such willful false statements may
`jeopardize the results of these proceedings.
`
`I declare under penalty of perjury under the laws of the United States of America that
`the translation into ENGLISH is true and accurate of the attached document relating to:
`
`DE 196 18 864 A1
`
`written in GERMAN.
`
`NEWTYPEICOMII/IUNICATIONS, INC.
`
`Sworn to and subscribed before me
`this 27th day of September, 2016
`
` /54
`NOTARY PU
`
`BRIAN G. BROWN
`Notary Public, State of New York
`No. 01BR6151227
`
`Qualified in Suffolk County
`Commission Expires August 14, 2018
`
`
`
`Translations
`
`' Typesetting/Desktop Publishin
`_
`_
`\/galeo Exhlblt 1021, pg. 1
`
`Valeo Exhibit 1021, pg. 1
`
`

`
`DE 196 18 864 A1
`
`51
`
`Int. Cl.6:
`F 16 F 15/131
`F 16 D 13/60
`
`12
`
`10
`
`21
`22
`43
`
`Unexamined Application
`DE 196 18 864 A1
`
`
`
`
`Serial No.:
`Application date:
`Date laid open:
`
`196 18.864.4
`10 May 1996
`20 November 1997
`
`19
`
`FEDERAL REPUBLIC
`OF GERMANY
`
`
`GERMAN
`PATENT OFFICE
`
`
`
`
`71 Applicant:
`
`Fichtel & Sachs AG, 97424 Schweinfurt, DE
`
`
`
`
`
`
`
`72
`
`
`Inventor:
`Sudau, Jörg, Dipl.-Ing., 97464 Niederwerrn,
`DE
`
`56 Opposition references:
`
`
`DE
`44 26 317 A1
`
`Request for examination filed in accordance with § 44 Patent Act
`54
`Torsional vibration damper with a compensating inertial mass
`
`
`
`A torsional vibration damper is provided
`57
`
`
`with a drive-side transmission element and with a
`power-takeoff-side transmission element that can
`be rotated relative thereto, at least one of which
`has an activating means for elastic elements of a
`damping device and with at least one of which a
`compensating inertial mass is associated. At least
`one of the transmission elements has a recess for
`receiving the compensating inertial mass, which at
`least in its zone of contact with a guide race of the
`recess is provided with a curvature for a rolling
`motion of the compensating inertial mass to take
`place along the guide race upon introduction of a
`torsional vibration.
`
`
`
`
`
`DE 196 18 864 A 1
`
`The following text is taken from the documents filed by the Applicant
`GERMAN GOVERNMENT PRINTING OFFICE 09.97 702 047/50
`
`
`
`9/23
`
`Valeo Exhibit 1021, pg. 2
`
`

`
`2
`
`Description
`The invention relates to a torsional vibration damper according to the preamble of claim
`
`
`1.
`DE 36 43 272 A1 describes a torsional vibration damper that has an inertial mass as a
`
`drive-side transmission element and a clutch plate that can be rotated relative thereto and
`disposed on a gear shaft, to rotate therewith, as a power-takeoff-side transmission element,
`wherein the latter has activating means for elastic elements of a damping device. The clutch plate
`is connected via a shift clutch having a compensating inertial mass, which is mounted in freely
`rotatable relationship relative to the actual inertial mass and on the basis of its mass inertia
`develops a resisting moment upon introduction of a torsional vibration.
`
`The compensating inertial mass is provided with spring-mounted compensating weights,
`which experience a deflection from their rest position as a function of centrifugal force.
`
`Thus the compensating inertial mass is indeed effective as a function of rpm, but on the
`basis of a spring connection with one of the transmission elements it is functional with sufficient
`action only in frequency ranges determined by the springs, but can fail in other frequency ranges.
`
`DE 43 03 303 C1 shows the release cylinder area of a torsional vibration damper
`provided with a compensating inertial mass. The compensating inertial mass has a shift clutch in
`operative connection with the release cylinder, so that upon disengagement the compensating
`inertial mass is decoupled from the power takeoff side. This is advantageous because the rpm
`equalization of the gear shaft to the speed corresponding to the gear to be engaged takes place
`rapidly by the gear synchronization, and in addition the smallest possible moment of inertia on
`the power takeoff side is supposedly achieved. A disadvantage of the torsional vibration damper
`according to that patent, however, is that it is effective only at a natural frequency determined by
`spring elements of the compensating inertial mass.
`
`US Patent 5 295 411 teaches an inertial mass that receives a circular compensating
`inertial mass in each of a multiplicity of circular recesses, wherein the diameter of the said mass
`is smaller than that of the recess. Such an inertial mass is commonly known as a "Salomon
`absorber" and it has the advantage that the speed of deflection of the compensating inertial
`masses is dependent on rpm changes of the inertial mass, and so the inertial mass is active as a
`function of rpm. With such an inertial mass, torsional vibrations of a certain order, preferably the
`second order in four-cylinder internal combustion engines, can be decreased extremely well by a
`
`Valeo Exhibit 1021, pg. 3
`
`

`
`3
`
`certain amount at certain amplitude magnitudes, but the possibility of acting on vibrations of
`other orders is lacking.
`
`DE 36 30 398 C2 describes a torsional vibration damper with a drive-side transmission
`element and a power-takeoff-side transmission element capable of rotation relative thereto,
`wherein an inertial mass is associated with each of these transmission elements. Such torsional
`vibration dampers are suitable for filtering a complete frequency range, i.e. for damping
`amplitudes of different orders. In particular, interfering amplitudes of a certain order cannot be
`suppressed as effectively as would often be necessary.
`
`The object of the invention is to improve a torsional vibration damper to the effect that
`the vibrations generated by a drive, such as an internal combustion engine, can be filtered out as
`well as possible.
`
`This object is achieved according to the invention by the features specified in the body of
`claim 1.
`
`By the special configuration of a torsional vibration damper with at least one
`compensating inertial mass, an overall device is obtained in which the advantages of the
`torsional vibration damper active as the filter for a complete frequency range can be combined
`with the advantage of compensating inertial masses that counteract a vibration of certain order.
`By virtue of the structure of the transmission element with at least one recess, which at least in
`its zone of contact with the at least one compensating inertial mass is provided with a guide race,
`on which the compensating inertial mass, which has a curvature, is able to execute a rolling
`motion upon introduction of a torsional vibration, this transmission element contains a so-called
`"Salomon absorber", in which a high speed of deflection at the transmission element always also
`results in a high speed of deflection of the compensating inertial mass from its rest position. In
`this connection, the compensating inertial mass can be dimensioned in such a way that it is
`effective for vibrations of a certain order and, in fact, in such a way that the amplitude magnitude
`of this vibration is reduced by a certain amount.
`
`Furthermore, the damping behavior of this "Salomon absorber" is determined by
`geometric ratios, such as the respective bend of the guide race relative to the curvature of the
`compensating inertial mass in the zone of contact with the guide race as well as by the vibration
`angle of the compensating inertial mass.
`
`Valeo Exhibit 1021, pg. 4
`
`

`
`4
`
`The Salomon absorber can be designed particularly simply when both the guide race on
`
`the recess of the transmission element and the curvature on the compensating inertial mass are
`respectively of circular shape at least in the mutual contact zone, wherein the guide race is
`formed with a larger radius than the compensating inertial mass to ensure movement of the
`compensating inertial mass.
`
`The latter structural feature can have the consequence that, when the torsional vibration
`damper is stationary and centrifugal force is no longer acting on the compensating inertial mass,
`this falls downward under the action of gravity to the other end of the recess. Upon restart of the
`torsional vibration damper, the compensating inertial mass is accelerated radially outward, until
`it impinges on the corresponding zone of the guide race there. This problem is eliminated by the
`fact that, according to the claim, a displacement limitation is associated with the guide race to
`prevent the compensating inertial mass from falling down under the effect of gravity upon
`stoppage of the torsional vibration damper.
`
`By disposing the inventive Salomon absorber in a torsional vibration damper, in which
`each transmission element is assigned its own inertial mass, the capability of the Salomon
`absorber to damp amplitudes of a certain order is combined with an excellent filter, and so a
`particularly good decoupling quality is achieved.
`
`A further claim shows the combination of the Salomon absorber with a conventional
`clutch, which has only one inertial mass, wherein an advantageous constructive solution is
`shown for separating the compensating inertial mass from the power-takeoff-side transmission
`element by an additional shift clutch as soon as the friction clutch is disengaged.
`
`An exemplary embodiment of the invention will be explained in more detail hereinafter
`on the basis of a drawing, wherein:
`Fig. 1 shows a longitudinal section through a half diagram of the inertial mass device
`
`with a hub plate acting as a ring gear and a planet wheel, wherein a recess for receiving a
`compensating inertial mass of circular cross section is provided in the inertial mass on the power
`takeoff side;
`Fig. 2 is the same as Fig. 1, but with a compensating inertial mass of substantially
`
`semicircular cross section;
`Fig. 3 is the same as Fig. 1, but with a recess limited in radial direction;
`
`
`Valeo Exhibit 1021, pg. 5
`
`

`
`5
`
`Fig. 4 is the same as Fig. 1, but with the compensating inertial mass received in the hub
`
`
`plate;
`Fig. 5 shows a torsional vibration damper with only one inertial mass with a housing for
`
`receiving the compensating inertial mass.
`The torsional vibration damper shown in Fig. 1 has a drive-side transmission element 1,
`
`which is formed with an inertial mass 2 having a primary flange 3 which runs radially outward
`and in the circumferential zone has an axial rim 4, on which a sprocket 5 in engagement with a
`starter pinion, not shown, is mounted. Axial rim 4 supports a seal plate 6, which projects radially
`inward. Together with axial rim 4 and primary flange 3, this defines a grease chamber 8, in
`which elastic elements 10 of a damping device 11 running in circumferential direction are
`disposed in the radially outer zone. At one end elastic elements 10 can be acted on by activating
`elements 12 on primary flange 3, while at the other end they are braced on radially outwardly
`projecting fingers 14 of a hub plate 15, which is active as the ring gear 17 of a planet gear and
`has on its radially inner end a secondary hub 16 for receiving a bearing 18. The latter in turn
`supports a primary hub 20 of primary flange 3. Viewed in axial direction, primary hub 20,
`starting from primary flange 3, extends toward hub plate 15, while secondary hub 16 runs from
`the latter toward primary flange 3.
`By means of bearing 18, hub plate 15 is mounted pivotally on drive-side inertial mass 2
`
`and via rivets 22 is joined to a second inertial mass 23, which together with hub plate 15 is active
`as power-takeoff-side transmission element 24. Just radially outside bearing 18, hub plate 15 is
`provided with an assembly aperture 26, through which fastening means 27 can be inserted. With
`their head 28, the fastening means retain a seal 30, by which grease chamber 8 can be sealed at
`the radial inward end. Via fastening means 27, the torsional vibration damper can be fastened to
`a crankshaft, not shown, of an internal combustion engine.
`Primary flange 3 has, projecting toward hub plate 15, at least one bearing shoulder 31, on
`
`which a planet wheel 33 is respectively mounted via a needle bearing 32 and is engaged via its
`toothing 35 with ring gear 17.
`In second inertial mass 23, on its side turned toward first inertial mass 2, a recess 38 is
`
`provided which, as shown by the view along line A-A illustrated at the side of Fig. 1, is of
`circular shape with radius R and receives a compensating inertial mass 40, which is formed by a
`roller of circular cross section with radius r. During operation of the torsional vibration damper,
`
`Valeo Exhibit 1021, pg. 6
`
`

`
`6
`
`compensating inertial mass 40 is moved under the action of the centrifugal force developed in
`response to rotation around axis 41 into the position shown in Fig. 1, where the introduction of a
`torsional vibration resulting in acceleration or deceleration of second inertial mass 23 causes
`deflection of compensating inertial mass 40 from its shown rest position in clockwise or
`counterclockwise direction. The outside circumference of recess 38 acts here as a guide race 42
`for the compensating inertial mass, while this, by virtue of its circular cross section, is formed
`with a curvature 44 over its entire circumference and is able to roll along a zone of contact 45 on
`guide race 42. Because of the compensating inertial mass 40, the moment of inertia of second
`inertial mass 23 is apparently increased, since a mechanical advantage becomes effective during
`the rolling movement of compensating inertial mass 40 with its curvature 44 on guide race 42.
`By virtue of compensating inertial mass 40 in recess 38 of inertial mass 23, the latter is active as
`a "Salomon absorber", the speed of deflection of which is influenced by, for example, the
`dimension of radius r of compensating inertial mass 40 relative to radius R of recess 38, the
`angular deflection width between compensating inertial mass 40 and second inertial mass 23 as
`well as the deflection acceleration of second inertial mass 23 due to an introduced torsional
`vibration. The Salomon absorber is active according to the general differential equation
`ψ + f (R, r, a) Ω2 ψ = 0, wherein a denotes the distance of contact zone 45 of compensating
`inertial mass 40 and guide race 42 of second inertial mass 23 from axis of rotation 41 of the
`torsional vibration damper less radius r of curvature 44 of compensating inertial mass 40, and Ω
`denotes the exciting rpm at second inertial mass 23. The speed of deflection ω of the
`compensating inertial mass in this case is a function of the root of R, r and a, multiplied by Ω,
`wherein this root represents the order n of the amplitude to be damped by the Salomon absorber.
`Fig. 2 shows a compensating inertial mass 40 with substantially semicircular cross
`
`section, wherein contact zone 45 between guide race 42 and curvature 44 depends on the angular
`extent of the latter. Otherwise the embodiment of the torsional vibration damper of Fig. 2
`corresponds to that according to Fig. 1.
`
`During stoppage of the torsional vibration damper described hereinabove, compensating
`inertial mass 40 will fall down under the action of gravity, while during operation, due to the
`effect of centrifugal force, it will be accelerated outward again, where compensating inertial
`mass 40 will impinge on guide race 42. In the embodiment of recess 38 according to Fig. 3, this
`is prevented, since during stoppage of the torsional vibration damper compensating inertial mass
`
`Valeo Exhibit 1021, pg. 7
`
`

`
`7
`
`40 is prevented from falling downward, specifically by radial inner edge 48 of recess 38 acting
`as displacement limitation 47.
`Fig. 4 shows yet another embodiment, wherein compensating inertial mass 40 is disposed
`
`in a recess 50 of ring gear 17. Since this ring gear 17 is joined inflexibly to second inertial mass
`23 by virtue of its one-piece construction with hub plate 15, the different installation position of
`compensating inertial mass 40 compared with the previously described exemplary embodiments
`does not cause any change in the functional behavior of the torsional vibration damper.
`Fig. 5 shows another embodiment of the inventive torsional vibration damper, which has
`
`only one single inertial mass 52 as drive-side transmission element 1. In its radially central zone,
`this has a chamber 53 in which a housing 56 for compensating inertial mass 40 is mounted
`pivotally relative to inertial mass 53 via a bearing 54. In the radially inner zone, housing 56 has a
`carrier 55 for a friction lining 57, via which housing 56 is in frictional connection therewith or is
`separated therefrom depending on axial position of a clutch plate 60 acting as transmission
`element 24 on the power takeoff side, or in other words depending on whether friction clutch 62
`is engaged or disengaged. In the engaged condition, clutch plate 60 and thus in particular left
`cover plate 59 thereof in Fig. 5 is held by pressure spring 64 of friction clutch 62 in contact with
`friction lining 57 of housing 56, so that this is connected to clutch plate 60 so as to rotate
`therewith and thus with the gear shaft, not shown. From this it follows that compensating inertial
`mass 40 is coupled in moving relationship with the gear shaft during operation of the friction
`clutch, whereas after the frictional connection of housing 56 to clutch plate 60 has been
`disengaged, the connection between compensating inertial mass 40 and the gear shaft is
`separated. The background of this is that the mass suspended on the gear shaft should be as small
`as possible for protection of synchronization devices in the gear. Accordingly, on the basis of
`friction coating 57 formed on carrier 55, a shift clutch 65 is associated with compensating inertial
`mass 40.
`
`
`Claims
`
`1. A torsional vibration damper with a drive-side transmission element and a power-
`takeoff-side transmission element that can be rotated relative thereto, at least one of
`which has an activating means for elastic elements of a damping device and with at least
`
`
`
`Valeo Exhibit 1021, pg. 8
`
`

`
`8
`
`one of which at least one compensating inertial mass is associated, characterized in that
`at least one of the transmission elements (1, 24) has at least one recess (38) for receiving
`the at least one compensating inertial mass (40), which at least in its zone of contact (45)
`with a guide race (42) of the recess (38) is provided with a curvature (44) for a rolling
`motion of the compensating inertial mass (40) to take place along the guide race (42)
`upon introduction of a torsional vibration.
`2. A torsional vibration damper according to claim 1, characterized in that both the guide
`race (42) of the recess (38) of the transmission element (1, 24) and the curvature (44) of
`the compensating inertial mass (40) are of circular shape, at least in the mutual contact
`zone (45).
`3. A torsional vibration damper according to claim 2, characterized in that the guide race
`(42), in its zone of contact (45) with the compensating inertial mass (40), is formed with a
`considerably larger radius than the curvature (44) thereof.
`4. A torsional vibration damper according to claim 1, 2 or 3, characterized in that a
`displacement limitation (47) for the compensating inertial mass (40) is associated with
`the guide race (42) perpendicular to the direction of movement of the compensating
`inertial mass (40) in order to limit the movement of separation from the guide race (42).
`5. A torsional vibration damper according to one of claims 1 to 4, with a first inertial
`mass associated with the drive-side transmission element and a second inertial mass
`associated with the power-takeoff-side transmission element, characterized in that the
`second inertial mass (23) is provided with the recess (38) for receiving the compensating
`inertial mass (40).
`6. A torsional vibration damper according to one of claims 1 to 4, with an inertial mass as
`the drive-side transmission element and a clutch plate as the power-takeoff-side
`transmission element, wherein in the latter the compensating inertial mass is received in
`such a way that it can be separated from the power takeoff side by a shift clutch during
`disengagement, characterized in that a housing (56), which is provided with the recess
`(38) for the compensating inertial mass (40) and is separably connected via the shift
`clutch (65) with the clutch plate (60), is disposed pivotally on the inertial mass (52).
`
`Attached hereto: 5 pages of drawings
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`Valeo Exhibit 1021, pg. 9
`
`

`
`
`
`
`
`– Blank page –
`— Blank page —
`
`Valeo Exhibit 1021, pg. 10
`
`Valeo Exhibit 1021, pg. 10
`
`

`
`Number:
`Int. Cl.6:
`Date laid open:
`
`DE 196 10 864 A1
`F 16 F 15/131
`20 November 1997
`
`
`
`DRAWINGS PAGE 1
`
`
`
`Valeo Exhibit 1021, pg. 11
`
`

`
`Number:
`Int. Cl.6:
`Date laid open:
`
`DE 196 10 864 A1
`F 16 F 15/131
`20 November 1997
`
`
`
`DRAWINGS PAGE 2
`
`
`
`
`
`Valeo Exhibit 1021, pg. 12
`
`

`
`
`
`Number:
`Int. Cl.6:
`Date laid open:
`
`DE 196 10 864 A1
`F 16 F 15/131
`20 November 1997
`
`
`
`DRAWINGS PAGE 3
`
`
`
`Valeo Exhibit 1021, pg. 13
`
`

`
`Number:
`Int. Cl.6:
`Date laid open:
`
`DE 196 10 864 A1
`F 16 F 15/131
`20 November 1997
`
`
`
`DRAWINGS PAGE 4
`
`
`
`
`
`Valeo Exhibit 1021, pg. 14
`
`

`
`Number:
`Int. Cl.6:
`Date laid open:
`
`DE 196 10 864 A1
`F 16 F 15/131
`20 November 1997
`
`
`
`DRAWINGS PAGE 5
`
`
`
`
`
`Valeo Exhibit 1021, pg. 15
`
`

`
`BUNDESHEPUBLIK ® Offenlegungsschrift
`DEUTSCHLAND
`A1
`
`@ :nt.cu.6:
`F 16F 15/131
`F16D 13/50
`
`lllllllllllblllillllHillWINI!illIJ1|!!!!|llll!ll!lI!l!1!ll?l!l!fill
`
`-
`-
`naurscmas
`
`PATENTAMT
`
`® Aktenzeichen:
`® Anmeldetag:
`@ Offenlegungstag:
`
`196188544
`10. 5.96
`20. 11. 97
`
`DE19618864A1
`
`®Anmelder:
`Fichtel & Sachs AG, 97424 Schweinfurt, DE
`
`® Erfinder:
`Sudau, Jérg, Dipl.-Ing., 97464 Niederwerrn, DE
`
`@ Entgegenhaitungen:
`DE
`44 25 317 A1
`
`Prfifungsantrag gem. § 44 PatG ist gestellt
`
`@ Torsionsschwingungsdémpfer mit einer Ausgleichsschwungmasse
`@ Ein Torsionsschwingungsdémpfer ist mit einem antriebs—
`seitigen Ubertragungselement und mit einem relativ hierzu
`drehbaren abtriebsseitigen Ubertragungselement versehen,
`von denen zumindest eines Ansteuermittel fir elastische
`Elemente einer Démpfungseinrichtung aufweist, und von
`denen wenigstens einem eine Ausgieichsschwungmasse
`zugeordnet ist. Zumindest eines der Ubertragungselemente
`weist eine Aussparung zur Aufnahme der Ausgleichs-
`schwungmasse auf, die zumindest in ihrem Kontaktbereich
`mit einer Filhrungsbahn der Aussparung mit einer Kram-
`mung fiir eine bei Einleitung einer Torsionsschwingung
`erfolgende Abwélzbewegung der Ausgleichsschwungmasse
`entlang der Filhrungsbahn versehen ist.
`
`DE19618864A1
`
`Die folgenden Angaban sind den vom Anmelder eingereichten Unterlagen entnommen
`"””°ES°“”°"E'i9'a|8’o9E>3fi‘%t‘%?£”%21 pg 15/23
`
`Valeo Exhibit 1021, pg. 16
`
`

`
`DE
`
`196 18 864 A1
`
`2
`
`1
`
`Beschreibung
`
`Die Erfindung betrifft einen Torsionsschwingungs-
`dimpfer geméiB dem Oberbegriff des Anspruchs 1.
`In der DE 36 43 272 A1 ist ein Torsionsschwingungs-
`dampfer beschrieben, der eine Schwungmasse als an-
`triebsseitiges Ubertragungselement und eine relativ
`hierzu drehbare, auf einer Getriebewelle drehfest ange-
`ordnete Kupplungsscheibe als abtriebsseitiges Ubertra-
`gungselement aufweist, wobei die letztgenannte An-
`steuermittel ffir elastische Elemente einer Déimpfungs-
`einrichtung aufweist. Die Kupplungsscheibe ist fiber ei-
`ne Schaltkupplung mit einer Ausgleichsschwungmasse
`verbunden, die gegeniiber der eigentlichen Schwung-
`masse frei drehbar gelagert ist und aufgrund ihrer Mas-
`sentragheit bei Einleitung einer Torsionsschwingung ein
`Widerstandsmoment aufbaut.
`
`Die Ausgleichsschwungmasse ist mit federnd gelager-
`ten Ausgleichsgewichten versehen, die fliehkraftabham
`gig eine Auslenkung aus ihrer Ruhestellung erfahren.
`Damit ist die Ausgleichsschwungmasse zwar dreh-
`zahlabhéngig wirksam, jedoch ist sie aufgrund einer Fe-
`derverbindung mit einem der Ubertragungselemente le-
`diglich in durch die Federn bestimmten Frequenzberei-
`chen mit ausreichender Wirkung funktionsfahig, kann
`aber in anderen Frequenzbereichen versagen.
`In der DE 43 03 303 C1 ist der Ausrfickerbereich ei-
`nes Torsionsschwingungsdéimpfers, der mit einer Aus-
`gleichsschwungmasse versehen ist, gezeigt. Die Aus-
`gleichsschwungmasse weist eine Schaltkupplung auf,
`die mit dem Ausriicker in Wirkverbindung steht, so daB
`beim Ausriicken die Ausgleichsschwungmasse von der
`Abtriebsseite abgekuppelt wird. Dies ist Von Vorteil,
`weil die Drehzahlangleichung der Getriebewelle an die
`entsprechende Drehzahl, die dem einzulegenden Gang
`entspricht, durch die Getriebesynchronisation rasch er-
`folgen und dazu eine moglichst geringe abtriebsseitige
`Tr.‘-igheitsmasse realisiert sein sollte. Nachteilig beim
`Torsionsschwingungsdiimpfer gemiiB der PS ist aller-
`dings, daB er, lediglich bei einer durch Federelemente
`der Ausgleichsschwungmasse bestimmten Eigenfre-
`quenz wirksam ist.
`Durch die US-PS5295 411 ist eine Schwungmasse
`bekannt, die in einer Mehrzahl kreisformiger Ausspa-
`rungen jeweils eine kreisformige Ausg1eichsschwung-
`masse aufnimmt, wobei der Durchmesser der letztge-
`nannten kleiner als derjenige der Aussparung ist. Eine
`derartige Schwungmasse wird iiblicherweise als ”Sa1o-
`mon-Tilger” bezeichnet und hat den Vorteil, dafi die
`Ausgleichsschwungmassen hinsichtlich ihrer Auslenk-
`geschwindigkeit von Drehzahlanderungen an der
`Schwungmasse abhangig sind, die Schwungmasse mit-
`hin also drehzahlabhéingig wirksam ist Mit einer derar-
`tigen Schwungmasse lassen sich Torsionsschwingungen
`einer bestimmten Ordnung, bei Brennkraftmaschinen
`mit vier Zylindern vorzugsweise der zweiten Ordnung,
`bei bestimmten Amplitudengrofien hervorragend um
`einen bestimmten Betrag verringern, jedoch fehlt die
`Méglichkeit, auf Schwingungen anderer Ordnungen
`einzuwirken.
`
`In der DE 36 30 398 C2 ist ein Torsionsschwingungs-
`diimpfer mit einem antriebsseitgen Ubertragungsele-
`rnent und einem relativ hierzu drehbaren abtriebsseiti-
`gen Ubertragungselement beschrieben, wobei jedem
`dieser Ubertragungselemente eine Schwungmasse zu-
`geordnet ist. Derartige Torsionsschwingungsdéimpfer
`sind dazu geeignet, einen kompletten Frequenzbereich
`zu filtern, das heiBt Amplituden unterschiedlicher Ord-
`
`'
`
`nung zu diimpfen, jedoch sind besonders storende Am-
`plituden einer bestimmten Ordnung nicht derart wir-
`kungsvoll unterdriickbar, wie dies oftmals erforderlich
`ware.
`
`Der Erfindung liegt die Aufgabe zugrunde, einen Tor-
`sionsschwingungsdfimpfer so weiterzubilden, daB die
`von einem Antrieb, wie beispielsweise einer Brennl<raft-
`maschine, gelieferten Schwingungen soweit als moglich
`ausfilterbar sind.
`
`Diese Aufgabe wird erfindungsgeméifi durch die im
`Kennzeichen des Anspruchs 1 angegebenen Merkmale
`gelost.
`Durch die spezielle Ausgestaltung eines Torsions-
`schwingungsdéimpfers mit zumindest einer Ausgleichs-
`schwungmasse entsteht eine Gesamteinrichtung, bei
`welcher die Vorteile des als Filter fiir einen kompletten
`Frequenzbereich wirksamen Torsionsschwingungs-
`diimpfers mit dem Vorteil von Ausgleichsschwungmas-
`sen, einer Schwingung bestimmter Ordnung entgegen-
`zuwigken, kombinjerbar ist. Aufgrund der Ausbildung
`des Ubertragungselementes mit wenigstens einer Aus-
`sparung, die zumindest in ihrem Kontaktbereich mit der
`wenigstens einen Ausgleichsschwungmasse eine Fuh-
`rungsbahn aufweist,
`auf welcher die Ausg1eichs-
`schwungmasse, die eine Kriimmung aufweist, bei Einlei-
`tung einer Torsionsschwingung eine Abwéilzbewegung
`ausffihren kann, enthalt dieses Ubertragungselement ei-
`nen sogenannten ”Salomon-Tilger”, bei dem eine erh6h-
`te Auslenkgeschwindigkeit am Ubertragungselement
`stets auch eine erhohte Auslenkgeschwindigkeit der
`Ausgleichsschwungmasse aus ihrer Ruhelage zur Folge
`hat. Die Ausgleichsschwungmasse ist hierbei derart di-
`mensionierbar, daB sie bei Schwingungen einer be-
`stimmten Ordnung wirksam ist, und zwar derart, daB die
`AmplitudengrE>Be dieser Schwingung urn einen be-
`stimmten Betrag verringert wird.
`Weiterhin wird das Dimpfungsverhalten dieses ”Sala-
`mon-Tilgers” von geometrischen Verhiiltnissen, wie bei-
`spielsweise der jeweiligen Biegung der Ffihrungsbahn in
`Bezug zur Kriimmung der Ausgleichsschwungmasse im
`Kontaktbereich mit der Ffihrungsbahn sowie vom
`Schwingwinkel der Ausgleichsschwungmasse bestimmt.
`Besonders einfach ist der Salomon-Tilger auslegbar,
`iyenn sowohl die Fiihrungsbahn an der Aussparung des
`Ubertragungselementes als auch die Kriimmung an der
`Ausgleichsschwungmasse jeweils zumindest im gegen-
`seitigen Kontaktbereich kreisforinig ausgebildet sind,
`wobei die Fiihrungsbahn zur Gewéhrleistung einer Be-
`wegung der Ausgleichsschwungmasse mit einem gr6Be—
`ren Radius als die Ausgleichsschwungmasse ausgebildet
`ist.
`
`Die letztgenannte konstruktive Mafinahme kann zur
`Folge haben, dal3 sich, wenn bei Stillstand des Torsions-
`schwingungsdiimpfers keine Fliehkraft mehr auf die
`Ausgleichsschwungmasse wirksam ist, diese unter der
`Wirkung der Schwerkraft nach unten an das andere
`Ende der Aussparung ffillt. Beim Wiederanlauf des Tor-
`sionsschwingungsdampfers wird
`die Ausgleichs-
`schwungmasse nach radial auBen beschleunigt, bis sie
`dort im entsprechenden Bereich der Fiihrungsbahn auf-
`prallt Dieses Problem wird dadurch beseitigt, daB der
`Fiihrungsbahn anspruchsgeméifi eine Wegbegrenzung
`zugeordnet ist, die beim Stillsetzen des Torsionsschwin-
`gungsdampfers ein Herunterfallen der Ausg1eichs-
`schwungmasse unter der Wirkung der Gewichtskraft
`verhindert.
`
`Durch Anordnung des erfindungsgem‘<iBen Salomon-
`Tilgers in einem Torsionsschwingungsdimpfer, bei dem
`
`Valeo Exhibit 1021, pg. 17
`
`Valeo Exhibit 1021, pg. 17
`
`

`
`DE 19618 864 A1
`
`4
`
`3
`
`jedem Ubertragungselement eine eigene Schwungmas-
`se zugeordnet ist, wird die Fahigkeit des Salomon-Til-
`gers,Amp1ituden einer bestimmten Ordnung zu damp-
`fen, mit einem hervorragenden Filter kombiniert, so” daB
`eine besonders gute Entkopplungsgiiie entsteht.
`In einem weiteren Anspruch wird die Kombination
`des Salomon-Tilgers mit einer konventionellen Kupp-
`lung, die lediglich eine Schwungmasse aufweist, gezeigt,
`wobei eine vorteilhafte konstruktive Léisung aufgezeigt
`ist, um die Ausgleichsschwungmasse durch eine z{usatzli-
`che Schaltkupplung vom abtriebsseitigen Ubertra-
`gungselement zu losen, sobald die Reibungskupplung
`ausgerfickt wird.
`Im Folgenden wird ein Ausfiihrungsbeispiel der Erfin-
`dung anhand einer Zeichnung naher erliiutert. Es zeigt:
`Fig. 1 einen Langsschnitt durch eine halftige Darstei-
`lung der Schwungmassenvorrichtung mit einer als
`Hohlrad wirksamen Nabenscheibe und einem P1aneten-
`rad, wobei in der abtriebsseitigen Schwungmasse eine
`Aussparung zur Aufnahme einer Ausgleichsschwung
`masse kreisformigen Querschnitts vorgesehen ist;
`Fig. 2 wie Fig.1, aber mit einer Ausgleichsschwung-
`masse mit im wesentlichen halbkreisformigen Quer-
`schnitts;
`Fig. 3 wie Fig. 1, aber mit einer in Radialrichtung be-
`grenzten Aussparung;
`Fig. 4 wie Fig. 1, aber mit Aufnahme der Ausgleichs-
`schwungrnasse in der Nabenscheibe;
`Fig. 5 einen Torsionsschwingungsdampfer mit nur ei-
`ner Schwungmasse mit einem Gehause zur Aufnahme
`der Ausgleichsschwungmasse.
`Der in Fig. 1 gezeigte Torsionsschwingungsdampfer
`weist ein antriebsseitiges Ubertragungselement 1 auf,
`das mit einer Schwungmasse 2 mit einem nach radial
`auBen laufenden Primarflansch 3 ausgebildet ist, der im
`Umfangsbereich einen Axialrand 4 aufweist, auf wel-
`chen ein mit einem nicht gezeigten Anlasserritzel in
`Eingriff stehender Zahnkranz 5 aufgesetzt ist Der Axi-
`alrand 4 tréigt eine Dichtplatte 6, die nach radial innen
`ragt. Diese begrenzt zusammen mit dem Axialrand 4
`und dem Primarflansch 3 einen Fettraum 8, in den im
`radial aufieren Bereich in Umfangsrichtung verlaufende
`elastische Elemente 10 einer Déimpfungseinrichtung 11
`angeordnet sind. Die elastischen Elemente 10 sind eine-
`rends durch Ansteuerelemente 12 am Primarflansch 3
`beaufschlagbar, wéihrend sie sich anderenends an nach
`radial auBen ragenden Fingern 14 einer Nabenscheibe
`15 abstiitzen, die als Hohlrad 17 eines Planetengetriebes
`wirksam ist und an ihrem radial inneren Ende eine Se-
`kundarnabe 16 zur Aufnahme einer Lagerung 18 auf-
`weist. Die letztg

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket