throbber
4/3/2017
`
`Bandgap voltage reference
`
`Bandgap voltage reference ­ Wikipedia
`
`From Wikipedia, the free encyclopedia
`
`A bandgap voltage reference is a temperature independent voltage reference circuit widely used in integrated
`circuits. It produces a fixed (constant) voltage regardless of power supply variations, temperature changes and
`circuit loading from a device. It commonly has an output voltage around 1.25 V (close to the theoretical 1.22 eV
`bandgap of silicon at 0 K). This circuit concept was first published by David Hilbiber in 1964.[1] Bob Widlar,[2]
`Paul Brokaw[3] and others[4] followed up with other commercially successful versions.
`
`Contents
`
`1 Operation
`2 Patents
`3 See also
`4 References
`5 External links
`
`Operation
`
`The voltage difference between two p­n junctions (e.g. diodes), operated at
`different current densities, is used to generate a proportional to absolute
`temperature (PTAT) current in a first resistor. This current is used to
`generate a voltage in a second resistor. This voltage in turn is added to the
`voltage of one of the junctions (or a third one, in some implementations).
`The voltage across a diode operated at constant current, or here with a
`PTAT current, is complementary to absolute temperature, with
`approximately −2 mV/K. If the ratio between the first and second resistor is
`chosen properly, the first order effects of the temperature dependency of the
`diode and the PTAT current will cancel out. The resulting voltage is about
`1.2–1.3 V, depending on the particular technology and circuit design, and is
`close to the theoretical 1.22 eV bandgap of silicon at 0 K. The remaining
`voltage change over the operating temperature of typical integrated circuits
`is on the order of a few millivolts. This temperature dependency has a
`typical parabolic residual behavior since the linear (first order) effects are
`chosen to cancel.
`
`Circuit of a Brokaw bandgap
`reference
`
`Because the output voltage is by definition fixed around 1.25 V for typical bandgap reference circuits, the
`minimum operating voltage is about 1.4 V, as in a CMOS circuit at least one drain­source voltage of a FET (field
`effect transistor) has to be added. Therefore, recent work concentrates on finding alternative solutions, in which for
`example currents are summed instead of voltages, resulting in a lower theoretical limit for the operating voltage
`(Banba, 1999).
`
`Note that sometimes confusion arises when using the abbreviation CTAT, where the "C" is incorrectly taken to
`mean "constant" rather than "complementary". To avoid this confusion, although not in widespread use, the term
`constant with temperature (CWT) is sometimes used.
`
`https://en.wikipedia.org/wiki/Bandgap_voltage_reference
`
`1/3
`
`IPR2017-00382
`Nvidia v. Polaris
`Polaris Ex. 2004
`
`

`

`Bandgap voltage reference ­ Wikipedia
`4/3/2017
`When summing a PTAT (Proportional to Absolute Temperature) and a
`CTAT (Complementary to Absolute Temperature) current, only the linear
`terms of current are compensated, while the higher­order terms are limiting
`the TD (Temperature Drift) of the BGR at around 20ppm/oC, over a
`temperature range of 100 oC. For this reason, in 2001, Malcovati [5]
`designed a circuit topology that can compensate high­order non­linearities,
`thus achieving an improved TD. This design used an improved version of
`Banba [4] topology and an analysis of base­emitter temperature effects that
`was performed by Tsividis in 1980.[6] In 2012, Andreou [7] [8] has further
`improved the high­order non­linear compensation by using a second opamp
`along with an additional resistor leg at the point where the two currents are
`summed up. This method enhanced further the curvature correction and
`achieved superior TD performance over a wider temperature range. In
`addition it achieved improved line regulation and lower noise.
`
`Characteristic and balance point of T1
`and T2
`
`The other critical issue in design of bandgap references is power efficiency and size of circuit. As a bandgap
`reference is generally based on BJT devices and resistors, the total size of circuit could be large and therefore
`expensive for IC design. Moreover, this type of circuit might consume a lot of power to reach to the desired noise
`and precision specification.[9]
`
`Despite these limitations, the bandgap voltage reference is widely used in voltage regulators, covering the majority
`of 78xx, 79xx devices along with the LM317, LM337 and TL431 devices. Temperature coefficients as low as 1.5 ­
`2.0 PPM/°C can be obtained with bandgap references (LT6657 from Linear Technology and ADR4550 from
`Analog Devices). Bandgaps are also suited for low­power applications (1 µA cathode current with the Maxim
`Integrated MAX6009 shunt voltage reference).
`Patents
`
`1966, US Patent 3271660, Reference voltage source, David Hilbiber.[10]
`1971, US Patent 3617859, Electrical regulator apparatus including a zero temperature coefficient voltage
`reference circuit, Robert Dobkin and Robert Widlar.[11]
`1981, US Patent 4249122, Temperature compensated bandgap IC voltage references, Robert Widlar.[12]
`1984, US Patent 4447784, Temperature compensated bandgap voltage reference circuit, Robert Dobkin.[13]
`See also
`
`Brokaw bandgap reference
`LM317
`Silicon bandgap temperature sensor
`References
`
`1. Hilbiber, D.F. (1964), "A new semiconductor voltage
`standard", 1964 International Solid­State Circuits
`Conference: Digest of Technical Papers, 2: 32–33,
`doi:10.1109/ISSCC.1964.1157541
`2. Widlar, Robert J. (February 1971), "New Developments
`in IC Voltage Regulators", IEEE Journal of Solid­State
`Circuits, 6 (1): 2–7, doi:10.1109/JSSC.1971.1050151
`
`3. Brokaw, Paul (December 1974), "A simple three­
`terminal IC bandgap reference", IEEE Journal of Solid­
`State Circuits, 9 (6): 388–393,
`doi:10.1109/JSSC.1974.1050532
`
`https://en.wikipedia.org/wiki/Bandgap_voltage_reference
`
`2/3
`
`IPR2017-00382
`Nvidia v. Polaris
`Polaris Ex. 2004
`
`

`

`Bandgap voltage reference ­ Wikipedia
`4/3/2017
`4. Banba, H.; Shiga, H.; Umezawa, A.; Miyaba, T.;
`9. A. Tajalli, et al. ,"Design and optimization of a high
`Tanzawa, T.; Atsumi, S.; Sakui, K. (May 1999), "A
`PSRR CMOS bandgap voltage reference," IEEE
`CMOS bandgap reference circuit with sub­1­V
`ISCAS 2004 DOI: 10.1109/ISCAS.2004.1328127 [1] (h
`operation", IEEE Journal of Solid­State Circuits, 34
`ttp://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=13
`(5): 670–674, doi:10.1109/4.760378
`28127&url=http%3A%2F%2Fieeexplore.ieee.org%2Fx
`5. P. Malcovati, F. Maloberti, C. Fiocchi, and M. Pruzzi,
`pls%2Fabs_all.jsp%3Farnumber%3D1328127)
`10. US Patent 3271660 ­ Reference voltage source, David F
`“Curvature­compensated bicmos bandgap with 1­V
`supply voltage,” IEEE J. Solid­State Circuits, vol. 36,
`Hilbiber; United States Patent and Trademark Office;
`no. 7, pp. 1076–1081, Jul. 2001.
`September 6, 1966. (https://www.google.com/patents/U
`6. Y. P. Tsividis, “Accurate analysis of temperature effects
`S3271660)
`11. US Patent 3617859 ­ Electrical regulator apparatus
`in Ic­Vbe characteristics with application to bandgap
`including a zero temperature coefficient voltage
`reference sources,” IEEE J. Solid­State Circuits, vol.
`reference circuit; Robert C Dobkin and Robert J
`15, no. 6, pp. 1076 – 1084, Dec. 1980.
`7. C. M. Andreou, S. Koudounas, and J. Georgiou, “A
`Widlar; United States Patent and Trademark Office;
`November 2, 1971. (https://www.google.com/patents/U
`Novel Wide­Temperature­Range, 3.9ppm/oC CMOS
`S3617859)
`Bandgap Reference Circuit,” IEEE Journal of Solid­
`12. US Patent 4249122 ­ Temperature compensated
`State Circuits, vol.47, no. 2, pp. 574–581, Jan. 2012,
`bandgap IC voltage references; Robert J Widlar; United
`doi:10.1109/JSSC.2011.2173267 (http://ieeexplore.ieee.
`States Patent and Trademark Office; February 3, 1981.
`org/xpl/login.jsp?tp=&arnumber=6078439&url=http%3
`(https://www.google.com/patents/US4249122)
`A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%
`13. US Patent 4447784 ­ Temperature compensated
`3Farnumber%3D6078439)
`bandgap voltage reference circuit; Robert C Dobkin;
`8. S. Koudounas, C. M. Andreou and J. Georgiou, ”A
`United States Patent and Trademark Office; May 8,
`Novel CMOS Bandgap Reference Circuit with
`1984. (https://www.google.com/patents/US4447784)
`Improved High­Order Temperature Compensation,”
`IEEE International Symposium on Circuits and
`Systems (ISCAS), Paris, France,2010 pp. 4073­4076,
`doi:10.1109/ISCAS.2010.5537621 (http://ieeexplore.iee
`e.org/xpl/login.jsp?tp=&arnumber=5537621&url=http%
`3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.js
`p%3Farnumber%3D5537621)
`External links
`
`The Design of Band­Gap Reference Circuits: Trials and Tribulations (http://www.ti.com/ww/en/bobpease/as
`sets/www­national­com_rap.pdf) p.286 – Robert Pease, National Semiconductor
`Features and Limitations of CMOS Voltage References (http://ecad.tu­sofia.bg/et/1999/Statii%20ET99­I/Fea
`tures%20and%20Limitations%20of%20CMOS%20Voltage%20References.pdf)
`ECE 327: LM317 Bandgap Voltage Reference Example (http://www.tedpavlic.com/teaching/osu/ece327/lab
`3_vreg/lab3_vreg_lm317_example.pdf) – Brief explanation of the temperature­independent bandgap
`reference circuit within the LM317.
`
`Retrieved from "https://en.wikipedia.org/w/index.php?title=Bandgap_voltage_reference&oldid=757334118"
`
`Categories:  Electronic circuits Analog circuits
`
`This page was last modified on 30 December 2016, at 02:48.
`Text is available under the Creative Commons Attribution­ShareAlike License; additional terms may apply.
`By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark
`of the Wikimedia Foundation, Inc., a non­profit organization.
`
`https://en.wikipedia.org/wiki/Bandgap_voltage_reference
`
`3/3
`
`IPR2017-00382
`Nvidia v. Polaris
`Polaris Ex. 2004
`
`

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket