throbber
% Divsalar_K1000_N5000_Q5_Simulate.m
`% Simulate transmission and decoding of a regular RA code.
`% Copyright Brendan J Frey, January 14, 2018.
`% Software written and debugged from 8.00pm to 10.45pm on January
`14, 2018.
`% Parameters
`K=1000; % Number of information bits
`EbNo=[-.8:.1:.8]; % List of Gaussian noise levels (dB)
`B=10000; % Number of blocks per noise level
`I=100; % Number of iterations for decoding
`q=5; % Number of times to repeat information bits
`Pi=repmat([1:K],[q,1]); % Mapping from repeated bits to
`information bits
`Pi=Pi(:);
`rng(0); % Seed random number generator
`% Compute other parameters, allocate memory
`N=length(Pi); % Number of transmitted bits
`R=K/N; % Rate
`P=randperm(N); % Random permuter
`s=(2*R*10.^(EbNo/10)).^-.5; % Standard deviation of Gaussian
`noise
`Lf=zeros(1,N+1); % Forward messages (log-ratios)
`Lb=zeros(1,N); % Backward messages (log-ratios)
`Lx=zeros(1,K); % Combined messages at information bits (log-
`ratios)
`Lxd=zeros(1,N); % Messages sent from information bits down to
`accumulator
`Lxu=zeros(1,N); % Messages sent from accumulator up to
`information bits
`ber=zeros(1,length(EbNo)); % Bit error rate
`wer=zeros(1,length(EbNo)); % Word error rate
`fer=zeros(1,length(EbNo)); % Failure to decode rate
`fprintf('Number of information bits = %d\n',K);
`fprintf('Number of transmitted bits = %d\n',N);
`fprintf('Rate = %f\n',R);
`% Simulation
`for j=1:length(s) % Loop over noise levels
` for b=1:B % Loop over transmitted blocks
` y=randn(1,N)*s(j)+1; % Generate channel output assuming +
`1 sent
` Lc=-2*y/s(j)^2; % Channel log-likelihood ratio
` Lf(1)=-1e20; % Initialize forward state of Markov chain
`to 0
` Lb(N)=Lc(N); % Initialize backward message to channel llr
` Lxd(:)=0; % Initialize messages from information bits to
` for i=1:I % Apply I iterations of decoding
` for n=1:N % Forward pass
` Lf(n+1)=Lc(n)+f(Lf(n),Lxd(n));
`
`0
`
`(cid:20)
`
`Apple v. Caltech
`IPR2017-00219
`Apple 1268
`
`1
`
`

`

` end;
` for n=N:-1:2 % Backward pass
` Lb(n-1)=Lc(n-1)+f(Lb(n),Lxd(n));
` end;
` Lx(:)=0;
` for n=1:N % Fuse messages at information bits
` Lxu(n)=f(Lf(n),Lb(n));
` Lx(Pi(P(n)))=Lx(Pi(P(n)))+Lxu(n);
` end;
` for n=1:N % Messages sent down to accumulator
` Lxd(n)=Lx(Pi(P(n)))-Lxu(n);
` end;
` end;
` xhat=1-(Lx<0); % Threhshold information bit llrs
` ber(j)=ber(j)+sum(xhat); % Update BER
` wer(j)=wer(j)+(sum(xhat)>0); % Udate WER
` fer(j)=fer(j)+(mean(xhat)>.1); % Update DER
` end;
` ber(j)=ber(j)/K/B; % Compute BER
` wer(j)=wer(j)/B; % Compute WER
` fer(j)=fer(j)/B; % Compute FER
` fprintf(' Eb/No=%f, ber=%e, wer=%e, fer=%e\n', ...
` EbNo(j),ber(j),wer(j),fer(j));
`end;
`% Message passing for XOR function (check node, accumulator)
`function c = f(a,b)
`if a>b c=a+log(1+exp(b-a));
`else c=b+log(1+exp(a-b));
`end;
`if a+b>0 c=c-(a+b+log(1+exp(-a-b)));
`else c=c-log(1+exp(a+b));
`end;
`end
`
`(cid:21)
`
`2
`
`

`

`% Divsalar_Plus_Frey_K1000_N5000_Q37_Simulate.m
`% Simulate transmission and decoding of Divsalar RA code modified
`using
`% Frey's irregular construction.
`% Copyright Brendan J Frey, January 21, 2018.
`% Software written and debugged from 4.00pm to 4.30pm on January
`21, 2018.
`% Based on Divsalar_K4096_N16384_Q4_Simulate.m.
`% Parameters
`k=[0,0,500,0,0,0,500]; % Number of information bits with each
`degree
`K=sum(k); % Number of information bits
`EbNo=[-.8:.1:.8]; % List of Gaussian noise levels (dB)
`B=10000; % Number of blocks per noise level
`I=100; % Number of iterations for decoding
`rng(0); % Seed random number generator
`% Compute other parameters
`Pi=[]; j=0; % Mapping from repeated bits to information bits
`for i=1:length(k) tmp=repmat([j+1:j+k(i)],[i,1]); Pi=[Pi;tmp(:)];
`j=j+k(i); end;
`N=length(Pi); % Number of transmitted bits
`P=randperm(N); % Random permuter mapping from transmitted to
`repeated bits
`R=K/N; % Rate
`s=(2*R*10.^(EbNo/10)).^-.5; % Standard deviation of Gaussian
`noise
`Lf=zeros(1,N+1); % Forward messages (log-ratios)
`Lb=zeros(1,N); % Backward messages (log-ratios)
`Lx=zeros(1,K); % Combined messages at information bits (log-
`ratios)
`Lxd=zeros(1,N); % Messages sent from information bits down to
`accumulator
`Lxu=zeros(1,N); % Messages sent from accumulator up to
`information bits
`ber=zeros(1,length(EbNo)); % Bit error rate
`wer=zeros(1,length(EbNo)); % Word error rate
`fer=zeros(1,length(EbNo)); % Failure to decode rate
`fprintf('Number of information bits = %d\n',K);
`fprintf('Number of transmitted bits = %d\n',N);
`fprintf('Rate = %f\n',R);
`% Simulation
`for j=1:length(s) % Loop over noise levels
` for b=1:B % Loop over transmitted blocks
` y=randn(1,N)*s(j)+1; % Generate channel output assuming +
`1 sent
` Lc=-2*y/s(j)^2; % Channel log-likelihood ratio
` Lf(1)=-1e20; % Initialize forward state of Markov chain
`to 0
` Lb(N)=Lc(N); % Initialize backward message to channel llr
`
`(cid:20)
`
`3
`
`

`

` Lxd(:)=0; % Initialize messages from information bits to
` for i=1:I % Apply I iterations of decoding
` for n=1:N % Forward pass
` Lf(n+1)=Lc(n)+f(Lf(n),Lxd(n));
` end;
` for n=N:-1:2 % Backward pass
` Lb(n-1)=Lc(n-1)+f(Lb(n),Lxd(n));
` end;
` Lx(:)=0;
` for n=1:N % % Fuse messages at information bits
` Lxu(n)=f(Lf(n),Lb(n));
` Lx(Pi(P(n)))=Lx(Pi(P(n)))+Lxu(n);
` end;
` for n=1:N % Messages sent down to accumulator
` Lxd(n)=Lx(Pi(P(n)))-Lxu(n);
` end;
` end;
` xhat=1-(Lx<0);
` ber(j)=ber(j)+sum(xhat); % Update BER
` wer(j)=wer(j)+(sum(xhat)>0); % Udate WER
` fer(j)=fer(j)+(mean(xhat)>.1); % Update DER
` end;
` ber(j)=ber(j)/K/B; % Compute BER
` wer(j)=wer(j)/B; % Compute WER
` fer(j)=fer(j)/B; % Compute FER
` fprintf(' Eb/No=%f, ber=%e, wer=%e, fer=%e\n', ...
` EbNo(j),ber(j),wer(j),fer(j));
`end;
`% Message passing for XOR function (check node, accumulator)
`function c = f(a,b)
`if a>b c=a+log(1+exp(b-a));
`else c=b+log(1+exp(a-b));
`end;
`if a+b>0 c=c-(a+b+log(1+exp(-a-b)));
`else c=c-log(1+exp(a+b));
`end;
`end
`
`0
`
`(cid:21)
`
`4
`
`

`

`Divsalar compared to Divsalar + Frey, N=5000, K=1000, R=1I5
`
`
` 10'1
`
`_
`
`
`
`
`
`Worderrorrate
`
` - + Divsalar + Frey 0:3,?
`
`Divsalar 0:5
`
`:33:
`
`
`
`
`
`
`
`Biterrorrate
`
`
`
`
`
`5
`
`

`

`% Divsalar_K4096_N16384_Q4_Simulate.m
`% Simulate transmission and decoding of a regular RA code.
`Parameters taken
`% from Divsalar: K=4096, R=1/4, 20 iterations
`% Copyright Brendan J Frey, January 14, 2018.
`% Software written and debugged from 8.00pm to 10.45pm on January
`14, 2018.
`% Parameters
`K=4096;% Number of information bits
`EbNo=[.6,.7,.8,.85]; % List of Gaussian SNR's (dB)
`B=[10000,10000,1000000,1000000]; % Number of blocks per noise
`level
`I=20; % Number of iterations for decoding
`q=4; % Number of times to repeat information bits
`Pi=repmat([1:K],[q,1]); % Mapping from repeated bits to
`information bits
`Pi=Pi(:);
`rng(1); % Seed random number generator
`% Compute other parameters, allocate memory
`N=length(Pi); % Number of transmitted bits
`R=K/N; % Rate
`P=randperm(N); % Random permuter
`s=(2*R*10.^(EbNo/10)).^-.5; % Standard deviation of Gaussian
`noise
`Lf=zeros(1,N+1); % Forward messages (log-ratios)
`Lb=zeros(1,N); % Backward messages (log-ratios)
`Lx=zeros(1,K); % Combined messages at information bits (log-
`ratios)
`Lxd=zeros(1,N); % Messages sent from information bits down to
`accumulator
`Lxu=zeros(1,N); % Messages sent from accumulator up to
`information bits
`ber=zeros(1,length(EbNo)); % Bit error rate
`wer=zeros(1,length(EbNo)); % Word error rate
`fer=zeros(1,length(EbNo)); % Failure to decode rate
`fprintf('Number of information bits = %d\n',K);
`fprintf('Number of transmitted bits = %d\n',N);
`fprintf('Rate = %f\n',R);
`% Simulation
`for j=1:length(s) % Loop over noise levels
` for b=1:B(j) % Loop over transmitted blocks
` y=randn(1,N)*s(j)+1; % Generate channel output assuming +
`1 sent
` Lc=-2*y/s(j)^2; % Channel log-likelihood ratio
` Lf(1)=-1e20; % Initialize forward state of Markov chain
`to 0
` Lb(N)=Lc(N); % Initialize backward message to channel llr
` Lxd(:)=0; % Initialize messages from information bits to
`0
`
`(cid:20)
`
`6
`
`

`

` for i=1:I % Apply I iterations of decoding
` for n=1:N % Forward pass
` Lf(n+1)=Lc(n)+f(Lf(n),Lxd(n));
` end;
` for n=N:-1:2 % Backward pass
` Lb(n-1)=Lc(n-1)+f(Lb(n),Lxd(n));
` end;
` Lx(:)=0;
` for n=1:N % Fuse messages at information bits
` Lxu(n)=f(Lf(n),Lb(n));
` Lx(Pi(P(n)))=Lx(Pi(P(n)))+Lxu(n);
` end;
` for n=1:N % Messages sent down to accumulator
` Lxd(n)=Lx(Pi(P(n)))-Lxu(n);
` end;
` end;
` xhat=1-(Lx<0); % Threhshold information bit llrs
` ber(j)=ber(j)+sum(xhat); % Update BER
` wer(j)=wer(j)+(sum(xhat)>0); % Udate WER
` fer(j)=fer(j)+(mean(xhat)>.1); % Update DER
` end;
` ber(j)=ber(j)/K/B(j); % Compute BER
` wer(j)=wer(j)/B(j); % Compute WER
` fer(j)=fer(j)/B(j); % Compute FER
` fprintf(' Eb/No=%f, ber=%e, wer=%e, fer=%e\n', ...
` EbNo(j),ber(j),wer(j),fer(j));
`end;
`% Message passing for XOR function (check node, accumulator)
`function c = f(a,b)
`if a>b c=a+log(1+exp(b-a));
`else c=b+log(1+exp(a-b));
`end;
`if a+b>0 c=c-(a+b+log(1+exp(-a-b)));
`else c=c-log(1+exp(a+b));
`end;
`end
`
`(cid:21)
`
`7
`
`

`

`
`Divsalar K=4096 N=16384 R=1f2 0:4 I=20
`
`
`
`Worderrorrate
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`0.7
`
`0.75
`
`0.
`
`8
`
`0.85
`
`beND (dB)
`
`8
`
`

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket