throbber
llllllllillllllllIlllllllllllllllllllllllllllllllllllllllllllllllllllllllll
`USOO5553794A
`[11] Patent Number:
`
`5 553 794
`9
`9
`
`[45] Date of Patent:
`
`Sep. 10, 1996
`
`11/1985 Boudreaux ................................ .. 417/8
`4/1988 Parkinson . .. ....
`... . . .. .. 137/2
`Grace et
`......... ..
`X
`4/1990 Van Luik, Jr. et al.
`.... .. 241/36
`9/1991 Mitsch ................................. 241/4604
`
`
`
`4,551,068
`4,739,786
`
`4,919,343
`5,044,566
`
`primary Emm,',,e,_Tim0thy V_ E16},
`Attorney, Agent, or Firm——Head Johnson & Kachigian
`[Sn
`ABSTRACT
`.
`.
`.
`A
`» sewage grinder pump system for use in moving sewage,
`having a vertically oriented cylindrical pump motor housing,
`a bottom plate aflixed to and closing the pump motor
`housing, a motor supported by the bottom plate within the
`pump motor homing; the motor having a shaft extending
`through an Openmg 111 the b°“°m Plates 3 grinder Pump
`supported [0 a lower 611d Of the bottom plate and COIl1’l6Ct€d
`to the motor shaft, a closure member affixed to the pump
`motor housing top end and having a level detector receiving
`potrlioigntirogiilfing a liquidtlexiiel detector olpenintgdtlllereiiii
`ex ern
`y o
`e pump mo or ousmg, an e onga e
`1qu1
`level detector having an upper end received within the liquid
`1"V"~1 de‘e°‘°’ °P"~“i“g= and 3 °iT°“i‘ °°““e°““g the liquid
`level detector to control the motor to thereby drive the
`grinder pump in response to detected liquid level.
`
`7 Claims, 2 Drawing Sheets
`
`Ulllted States Patent
`
`[19]
`
`Oliver et al.
`
`[54] SEWAGE HANDLING SYSTEM
`
`Inventors: Darrel S_ Oliver’ Tulsa,
`Deborah C_ Wynn, Enicofi City’ Md’
`
`[73] Assignee: Tarby Inc, Claremore, Okla.
`
`[21] App]. No.: 361,292
`[22] Filed:
`Dec. 22, 1994
`[51]
`Int. Cl.5 ........................... B02C 25/00; G01F 23/00;
`F16K 21/18
`[52] U.S. c1. ........................ .. 241/36; 73/304 R; 137/386;
`137/395; 307/118; 361/178; 417/36; 241/46.01
`[58] Field of Search ............................ .. 73/304 R, 304 C;
`137/363, 386’ 392, 395, 544’ 565; 241/36,
`4601, 4602; 307/118; 361/178; 417/36
`
`[55]
`
`References Cited
`U-S- PATENT DOCUMENTS
`5/1967 Rembold ................................... 241/36
`_.___ 241/35
`5/1972 Grace __‘___.___
`
`.....
`. .... 241/36
`12/1974 Grace et al.
`9/1975 Fairell, Jr. et al.
`........ 241/46.02
`3/1977 Grace et al.
`.............................. 241/36
`
`3 313 248
`3:667:692
`3,357,517
`3,904,131
`4,014,475
`
`}/102
`93 O 38
`
`100
`
`«S46
`
`34
`
`7
`*
`
`!
`
`E
`
`‘K
`
`:
`
`3
`
`!
`
`,
`i
`;
`
`1
`Q
`
`l
`3
`
`0
`
`90
`
`,
`
`W
`92
`
`55 68
`95
`
`'
`
`44
`
`40
`
`‘1
`1,
`2
`3
`
`1
`
`5
`1
`i
`
`3‘
`;
`
`lg
`
`ii
`
`‘
`1
`
`1
`I
`
`56
`52
`
`72
`70$
`94
`
`74
`76
`84
`
`.
`
`’ 1
`I
`
`1
`1
`
`/V ‘
`
`30
`
`82
`
`so
`
`‘
`.
`
`_
`
`I
`1
`1
`1
`
`60
`
`1
`‘
`1 53
`X104
`
`f
`'
`
`,
`
`64
`
`32
`
`3
`/ If 33
`54
`50
`
`46
`
`./
`48
`
`106
`
`42
`104
`36
`
`Franklin Electric Co., Inc.
`Exhibit 1034
`
`Franklin Electric Co., Inc.
`Exhibit 1034
`
`

`
`U.S. Patent
`
`Sep. 10, 1996
`
`Sheet 1 of 2
`
`5,553,794
`
`16
`
`12
`
`14
`
`~
`
`¢ \
` ‘Q2§
`
`
` ‘.§.'1(’L,§.C§(
`
`
`
`II—I
`
`

`
`U.S. Patent
`
`Sep. 10, 1996
`
`Sheet 2 of 2
`
`
`
`WI/m/-__..
`
`0/0
`
`/4.01N9.,M
`
`n
`
`0tallm.iImrWmm
`&§§§G§\§\\§\\\\§§\\ouuI....
`
`W2!l246M807W947mom87
`
`w.
`
`..u4..A\mmIn...
`
`06
`
`
`
`3nm.m__@__%..|.....lv%%«O-4
`\\‘&Tnh:uWohuuuuuflflhihiu
`
`N-
`
`Q
`
`3
`
`.:|n:.F.ru.un‘nu.
`
`
`
`n.4/1!!!’
`
`{Q
`V-‘.
`.41
`
`V...‘
`.=r:.'=E.
`"--—=.~
`
`\\§\"1
`
`'3?
`5/
`I:
`5!
`N,
`$71
`
`
`

`
`1
`SEWAGE HANDLING SYSTEM
`
`CROSS-REFERENCE TO RELATED
`APPLICATIONS
`
`5,553,794
`
`2
`
`previously issued United States Patents which are incorpo-
`rated herein by reference.
`
`
` U.S. Pat. No. INVENTOR TITLE
`
`
`This application is not related to any pending patent
`applications.
`
`CROSS-REFERENCE TO MICROFICHE
`APPENDIX
`
`This application is not related to any microfiche appendix.
`
`BACKGROUND OF THE INVENTION
`
`Most sewage systems work on the gravity system. That is,
`sewage generated in a building, home, commercial structure
`or otherwise, flows by gravity from a sewage drain extend-
`ing from a building to a sewage drain collection system, into
`sewage mains which ultimately connect to a sewage treat-
`ment plant. At the sewage treatment plant the sewage is
`treated so that environmentally acceptable elfluents can be
`released. This basic concept, of course, requires the sewage
`treatment plant to be at a lower level than all of the buildings
`in which sewage is generated. While this can be accom-
`plished in many instances, frequently there arises the need
`for a sewage treatment system which is located in such a
`way that total gravity drainage cannot be employed. For
`instance, if a home is constructed in an area wherein a hill
`or a valley lies between it and a gravity sewage draining
`system then some method must be provided for conveying
`the sewage under pressure to the point where it can be
`connected with a gravity drainage system.
`To accomplish this purpose, pressure sewage systems are
`provided for collecting sewage drained from a home or other
`type of building, or toilet facilities, to a collection point
`where the sewage is pumped, under pressure, through a line
`that ultimately connects with a gravity sewage drainage
`system or to a sewage treatment facility. By providing a
`collection system including a grinder pump, the sewage may
`not only be moved under pressure but a grinder pump makes
`it possible to use substantially smaller diameter sewage
`transport pipes extending between the sewage collection site
`and the sewage gravity flow system than can normally be
`employed where gravity alone is relied upon for moving
`sewage. Thus, the use of sewage handling systems including
`grinder pumps are well-known.
`One problem in the known sewer handling systems that
`employ a grinder pump is that of providing a control system
`for turning the pump on and off in response to the quantity
`of sewage that has collected. Control systems typically
`function based on the level of sewage in a collection vessel.
`The level can be detected by a float actuated switch, how-
`ever, the environment in which such switches function has
`made the standard liquid level detector switches unreliable.
`Another problem with known types of liquid level switches
`is that they must operate in a harsh environment for a very
`extended length of time. Due to the environment, it is a
`highly disagreeable job to enter into the area where liquid
`level switches are located to do maintenance and repair. For
`this reason, it has long been an object in the use of sewage
`grinder pumps in sewage handling systems to provide liquid
`level detector systems that are highly dependable and sub-
`stantially maintenance free. For background information
`relating to pressure sewage systems and to sewage grinder
`pump systems, reference may be had to the following
`
`15
`
`20
`
`25
`
`30
`
`35
`
`45
`
`50
`
`55
`
`65
`
`3,667,692
`3,857,517
`
`3,904,131
`4,014,475
`
`Grace
`Grace et al
`
`Farrell et al
`Grace et al
`
`Pump Storage Grinder
`Anti-Siphon and Pump Priming
`For Sewage Grinder Pump
`Pressure Sewer System
`Combined Manway and
`Collection Tank For Sewage
`Grinder
`Liquid Level Monitoring
`Assemblies
`Anti-Flooding Sewage Grinder
`Pump Liquid Level Control
`System In Separately Mounted
`Canister
`Sewage Pump With Self-
`Mitsch
`5,044,566
`Adjusting Cutters
`
`4,739,786
`
`Parkinson
`
`4,919,343
`
`Van Luik et al
`
`SUMMARY OF THE INVENTION
`
`The disclosed invention herein provides an improved
`sewage handling system. The system includes a sewage
`collection tank with sidewalls, enclosed bottom and an open
`top, the sidewall has a sewage inlet opening that is con-
`nected to a home, a building or any other type of structure
`having one or more toilets therein that produce sewage. By
`means of a gravity fluid drainage system extending from the
`home or other building, sewage is drained through the
`sewage inlet opening into the collection tank.
`The tank has a top plate with a central opening there-
`through. An electric motor driven sewage grinder pump is
`supported by a pump housing, the pump housing being
`dimensioned to removably pass through the top plate central
`opening. The pump has a discharge outlet.
`A pump housing flange is amxed to an upper end of the
`pump housing. The flange has a diameter greater than the top
`plate central opening so that the pump housing is removably
`supported within the sewage collection tank. A discharge
`conduit
`is connected to the pump discharge outlet and
`extends upwardly through an opening in the pump housing
`flange.
`An upright manway housing is provided having a lower
`open end, an open top and a sidewall. The lower end of the
`manway housing is afiixed and sealed to the top plate. Piping
`within the manway housing connects the discharge outlet
`with a housing sidewall outlet opening. A removable top
`cover closes and seals the manway housing open top.
`Electrical conductors extend through the manway housing
`sidewall and into the pump housing. The conductors have
`connection with the sewage grinder pump through a control
`circuit.
`
`A liquid level detector is supported by the pump housing
`and extends downwardly and parallel to the sewage grinder
`pump, the level detector extends within the lower sewage
`collection tank. The liquid level detector serves to detect and
`provide circuit actuation at three liquid levels. The first level
`is a liquid lower level at which the sewage grinder pump is
`turned oif. The second level is an intermediate level at which
`the sewage grinder pump is turned on. The third level is a
`high level that is reached only when the sewage grinder
`pump has failed to pump sewage from the collection tank
`upon the sewage reaching the intermediate level.
`A warning signal conductor extends through the manway
`housing sidewall and into the pump housing and connects to
`a circuit that is responsive to the liquid level detector for
`
`

`
`5,553,794
`
`3
`providing a warning signal when the liquid level in the
`sewage collection tank reaches the high level as detected by
`the third position of the liquid level detector.
`The improved sewage handling system provides a unique
`and improved way of supporting a liquid level detector and
`a sewage grinder pump housing in a unitary arrangement
`with an integral flange so that the major components of the
`sewage system can be suspended from a single structure.
`The flange is preferably formed of plastic to thereby resist
`corrosion in the harsh environment in which the system is
`employed.
`A better and more complete understanding of the inven-
`tion will be obtained from the following detailed description
`of the preferred embodiments and the claims,
`taken in
`conjunction with the attached drawings.
`
`BRIEF DESCRIPTION OF THE DRAWINGS
`
`FIG. 1 is an elevational cross-sectional view of the
`improved sewage handling system showing an upper man-
`way housing with a manway cover and a lower sewage
`collection tank having within it a sewage grinder pump and
`a liquid level control.
`FIG. 2 is an enlarged cross-sectional view of the sewage
`grinder pump as supported in the pump housing that is
`suspended within the sewage collection tank and showing a
`closure member for closing the pump motor housing. The
`closure member includes an integral flange and downwardly
`extending integral
`tubular extensions. The first
`tubular
`extension receives a motor housing that contains the sewage
`grinder pump motor with the sewage grinder pump sup-
`ported at the motor housing lower end. The other closure
`member tubular extension receives a liquid level detector
`that is supported adjacent to and paralleled to the motor
`housing.
`
`DESCRIPTION OF THE PREFERRED
`EMBODIMENTS
`
`Referring now to the drawings and first to FIG. 1, a
`preferred embodiment of the improved sewage handling
`system of this invention is illustrated. The system includes
`a manway housing 10 that has an upper open end 12
`positioned at ground level 14. The upper open end 12 is
`closed by manway cover 16.
`
`The lower end 18 of manway housing 10 is supported by
`a plate 20 and below it is a sewage collection tank 22. The
`upper open top 24 of sewage collection tank 22 attaches to
`plate 20. The bottom 26 of sewage collection tank 22 is
`closed, and the bottom portion is preferably tapered at 28.
`Positioned within the interior of sewage collection tank 22
`is a grinder pump housing and grinder pump assembly,
`generally indicated by the numeral 30, that is illustrated in
`greater detail in the eross—sectional view of FIG. 2, to which
`reference will now be made.
`
`The grinder pump assembly 30 includes a pump housing
`32 having an open top end 34, the pump housing lower end
`36 being closed by bottom plate 38 that has an opening 40
`therethrough. Positioned within housing 32 is a pump motor
`42 having a shaft 44 that extends through opening 40.
`Aflixed to the lower end of bottom plate 38 is a grinder pump
`46. The pump has a lower grinding head 48 and, above that,
`a positive displacement progressing cavity pump 50. Above
`the progressing cavity pump is a discharge cavity 52 having
`an outlet opening 54. Within discharge cavity 52 a spring
`actuated seal system 56 is positioned about shaft 44 to
`
`4
`
`prevent sewage from entering the interior of pump housing
`32 through opening 40.
`To support the pump housing 32 with its enclosed pump
`motor 42 and attached grinder pump 46 within sewage
`collection tank 22, a closure member 58 is employed. The
`closure member 58, which preferably is cast, of plastic
`material, has an integral radially extending flange 60 that,
`when the unit is installed, rests on the top of plate 20 as
`shown in FIG. 1. The entire grinder pump assembly 30 is
`removable through an opening 62 in plate 20. As further
`seen in FIG. 2, closure member 58 includes a downwardly
`extending tubular portion 64 that telescopically receives
`upper end 34 of pump housing 32. An integral septum 66
`formed as a part of closure member 58 functions to close
`upper end 34 of pump housing 32. Pump housing 32 may be
`secured to downwardly extending tubular portion 64 by
`threaded attachment or by sealably bonding housing 32 to
`tubular portion 64 so as to create an air tight environment for
`pump motor 42. In order to test the integrity of the watertight
`seals after assembly, an air valve 68 is placed into septum
`66. Air valve 68 is of the type employed for pressuring
`tube-less tires so that a source of air pressure may be applied
`through the valve to form positive air pressure within the
`interior of pump housing 32.
`An important aspect of closure member 58 is the provi-
`sion of an integral liquid level switch detector portion 70
`providing an opening 72 having a lower end 74. Supported
`within opening 72 is the upper end 76 of an elongated liquid
`level detector 78. Detector 78 has provisions for providing
`electrical signals in response to three fluid levels. The first is
`a lower band 80. A signal is generated when the level falls
`below lower band 80. This signal is used in a circuit to turn
`pump motor 42 off, if the motor is running to pump fluid
`from collection tank 22. A second level detector band 82 is
`spaced above lower band 80. An electrical signal generated
`by the switch when liquid level reaches band 82 functions to
`turn motor 42 on to thereby energize pump 46 to reduce the
`level of fluid within sewage collection tank 22. A third
`detector band 84 spaced above second detector band 82
`provides an electrical signal used for indicating an emer~
`gency condition. That
`is, when the liquid level within
`sewage collection tank 22 reaches the level of third band 84,
`a warning or danger signal is provided since the fact that the
`level has reached that which is detected by the third detector
`band 84 indicates that the system has not functioned to
`maintain the proper maximum level within collection tank
`22. Therefore,
`some problem exists which must be
`addressed, otherwise sewage will continue to collect until
`collection tank 22 is completely filled, at which time it will
`back up in the sewage collection lines leading to the tank
`and, ultimately, into toilet facilities from which the sewage
`is originated.
`Detector bands 80,82 and 84 of level detector 78 can
`function in a variety of ways to indicate fluid level. A
`common means employed for detecting fluid level
`is if
`bands 80, 82 and 84 are conductive so that conductance of
`a circuit increases when the fluid level contacts the bands.
`Bands 80, 82 and 84 may function to detect liquid level by
`change in capacitance that occurs in the presence of the
`liquid to provide signal information to circuitry for control
`of the operation of motor pump 42 and for providing a
`warning signal.
`The location of septum 66 within closure member 58,
`which is spaced well below flange 60, provides an internal
`space 86 in which a control circuit 88 is positioned. The
`control circuit has conductors 90 extending to detachable
`connector 92 which in turn connects with conductors 94 and
`96 extending to level detector 78 and motor 42 respectively.
`
`5
`
`10
`
`20
`
`25
`
`30
`
`35
`
`40
`
`45
`
`50
`
`55
`
`60
`
`65
`
`

`
`5
`
`6
`
`5,553,794
`
`A cover plate 98 removably closes the upper end of
`closure member 58, the cover plate having a seal conductor
`passageway 100 therein whereby a cable 102 passes. Cable
`102 serves to supply electrical energy for circuit 88 by which
`motor 42 is operated as well as to carry a conductor for
`providing an emergency signal. An emergency signal can be
`generated in a remote location, such as within a house from
`which sewage is taken to drain into sewage collection tank
`22. The signal device (not shown) may be a noise generator,
`such as a bell or horn or a light.
`As seen both in FIGS. 1 and 2, there is a sewage outlet
`conduit 104 that extends through an opening in flange 60,
`conduit 104 being connected at its lower end to pump outlet
`opening 54. A check valve 106 is provided within conduit
`104 to resist the flow of sewage back through the pump and
`into sewage collection tank 22 when motor 42 is not
`energized. As seen in FIG. 1, within manway housing 10, a
`manual control valve 108 is provided in line 104 so that
`when it is necessary to remove the grinder pump assembly
`30, valve 108 can be closed to prevent sewage from backing
`up through the line.
`A connection 110 is attached to the end of conduit 104 to
`receive a sewage conduit (not shown) by which sewage
`under pressure is carried away from the system. Such
`sewage conduit typically traverses a distance necessary so
`that the outer end thereof is connected to a gravity sewage
`collection system or other sewage disposal system.
`As shown in FIG. 1, sewage collection tank 22 has a
`sewage inlet 112. A sewage drain pipe (not shown) extend-
`ing from a home, office, shop or other type of building
`having one or more toilet facilities connects by gravity flow
`to sewage inlet 112 where sewage is delivered into the
`interior of sewage collection tank 10.
`Positioned within the interior of manway housing 10 is
`junction box 114 by which flexible conductor 102 is con-
`nected to conduits 116 and 118. Conduit 116 connects to a
`power source whereby electrical energy is supplied to pump
`motor 42 and circuitry 88. Conduit 118 contains conductors
`for carrying an emergency indicating signal when the fluid
`level within sewage collection tank 22 reaches third band 84
`of level detector 78 to provide a warning signal.
`The sewage collection system herein provides a unique,
`economical and highly effective way of mounting a pump
`motor housing 32 in conjunction with a vertical liquid level
`detector 78, both supported by an integral closing member
`58 in an arrangement wherein these components are sup-
`ported in contiguous side—by-side relationship for easy
`assembly and for removal for repair or maintenance. The
`improved combination of a liquid level detector and motor
`housing all mounted and extending from the same integral
`closure member 58 assures simplicity of installation and
`reduces the possibility of failure of the system. The system
`of this disclosure is particularly advantageous when com-
`pared with systems that employ float actuated liquid detec-
`tors with their attendant mechanical operating features that
`are subject to wear and failure.
`The claims and the specification describe the invention
`presented and the terms that are employed in the claims draw
`their meaning from the use of such terms in the specification.
`The same terms employed in the prior art may be broader in
`meaning than specifically employed herein. Whenever there
`is a question between the broader definition of such terms
`used in the prior art and the more specific use of the terms
`herein, the more specific meaning is meant.
`While the invention has been described with a certain
`
`degree of particularity, it is manifest that many changes may
`
`10
`
`20
`
`25
`
`30
`
`35
`
`40
`
`45
`
`50
`
`60
`
`65
`
`be made in the details of construction and the arrangement
`of components without departing from the spirit and scope
`of this disclosure. It is understood that the invention is not
`limited to the embodiments set forth herein for purposes of
`exemplification, but is to be limited only by the scope of the
`attached claim or claims, including the full range of equiva-
`lency to which each element thereof is entitled.
`What is claimed is:
`
`1. An improved sewage handling system comprising:
`a sewage collection tank having a sidewall, a closed
`bottom and an open top, the sidewall having a sewage
`inlet opening therein;
`a top plate closing said collection tank open top and
`having a central opening therethrough;
`an electric motor driven pump supported by a pump
`housing,
`the pump housing being dimensioned to
`removably pass through said top plate central opening,
`the pump having a discharge outlet;
`a pump housing flange afiixed to an upper end of said
`pump housing having a diameter greater than said top
`plate central opening whereby said pump housing is
`removably supported within said sewage collection
`tank;
`
`a discharge conduit connected to said pump discharge
`outlet and extending upwardly through an opening in
`said pump housing flange;
`an upright manway housing having a lower open end, an
`open top and a sidewall, the lower end being sealably
`affixed to said top plate, the sidewall having an outlet
`opening therein;
`
`piping within said manway housing removably connect-
`ing said discharge conduit with said sidewall outlet
`opening;
`
`atop cover removably and sealably closing said manway
`housing open top;
`electrical conductors extending sealably through said
`manway housing sidewall and into said pump housing
`having connection with said pump through a control
`circuit;
`
`a liquid level detector supported by said pump housing
`and extending downwardly and parallel to said pump
`within said lower sewage collection tank, the liquid
`level detector having means to detect and provide
`circuit actuation at three liquid levels, the first level
`being a liquid lower level at which said pump is turned
`off, the second being an intermediate level at which
`said pump is turned on, and the third being a high level
`that is reached only when said pump has failed to pump
`sewage from collection tank upon the sewage level
`reaching said intermediate level; and
`
`a warning signal conductor extending sealably through
`said manway housing sidewall and into said pump
`housing and connected to said liquid level detector for
`providing a warning signal when the liquid level in said
`sewage collection tank reaches said high level.
`2. A sewage pump system for use in moving sewage,
`comprising:
`
`a vertically oriented cylindrical pump motor housing
`having a sidewall and open top and bottom end;
`a bottom plate afiixed to and closing said pump motor
`housing bottom end and having an opening there-
`through;
`
`a motor supported by said bottom plate within said pump
`motor housing, the motor having a shaft extending
`through said bottom plate opening;
`
`

`
`7
`
`8
`
`5,553,794
`
`a pump supported to a lower end of said bottom plate and
`connected to said motor shaft, said grinder pump hav-
`ing an intake and an outlet opening, the outlet opening
`being connected to a conduit for the passage of sewage
`therethrough;
`a closure member afiixed to said pump motor housing top
`end, the closure member having a level detector receiv-
`ing portion providing a liquid level detector opening
`therein externally of said pump motor housing;
`an elongated liquid level detector having an upper and a
`lower end, the upper end being received within said
`liquid level detector opening, the liquid level detector
`having means to detect the level of liquid exterior of
`said pump motor housing; and
`circuit means connecting with said liquid level detector to
`control said motor to thereby drive said pump in
`response to detected liquid level.
`3. A sewage pump system according to claim 2 where said
`closure member has an upper end and a lower end and
`includes a tubular extension on the lower end telescopically
`engaging said pump motor housing top end.
`
`l0
`
`l5
`
`20
`
`4. A sewage pump system according to claim 3 wherein
`said closure member has a tubular upper portion separated
`from said lower end tubular extension by a septum, the
`septum forming a top closure of said motor housing.
`5. A sewage pump system according to claim 4 wherein
`said circuit means is contained, at least in part, within said
`closure member tubular upper portion.
`6. A sewage pump system according to claim 2 wherein
`said tubular level detector comprises:
`an elongated vertical body having an upper end and a
`lower end, and having a first level detecting band
`positioned on said body adjacent said bottom end for
`indicating a lower liquid level and a second level
`detecting band on said body spaced above said first
`band for indicating an upper fluid level.
`7. A sewage system according to claim 6 including a third
`level detecting band on said body spaced above said second
`band for indicating an emergency fluid level.
`
`*
`
`*
`
`*
`
`*
`
`*

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket