throbber
.
`United States Patent
`
`[191
`
`US005297092A
`[11] Patent Number:
`
`5,297,092
`
`Johnson
`
`[45] Date of Patent: Mar. 22, 1994
`
`[54] SENSE AMP FOR BIT LINE SENSING AND
`DATA LATCHING
`
`4.922.451 5/ 1990 Hayakawa -
`5,202,354 4/1993 Koike .................................. 365/203
`
`[75]
`
`Inventor:
`
`Larry D. Johnson, San Jose, Calif.
`
`FOREIGN PATENT DOCUMENTS
`
`[73] Assignee: Mips Computer Systems, Inc.,
`Sunnyvale’ Calif‘
`PP
`21 A 1_ No_, 392,913
`_
`[22] Filed:
`
`Jun. 3, 1992
`
`Int. CL5 .................... H03K 17/16- G1lC 11/409
`[51]
`[52] U.S. Cl. .................................... 365/203; 307/530;
`_
`355/190; 365/196
`[58] Field of Search ..................... .. 365/203, 190, 196;
`397/530
`
`[56]
`
`R°f°"°“°°5 Cited
`us, PATENT DOCUMENTS
`4 612 631
`9/1986 Ochii
`4:7ol:889 10/1987 Ando
`4,753,995
`7/1988 Sam .
`.
`4,771,405
`9/1988 Burch et al.
`4,804,871
`2/1989 Walters, Jr. ....................... .. 365/190
`
`2452735 3/ 1990 “Pan -
`Primary Examiner—Eugene R. LaRoche
`Assistant Examz'ner——Viet Q. Nguyen
`Attorney, Agent, or Firm—Townsend & Townsend
`Khourie and Crew
`
`57
`
`ABSTRACT
`_
`_
`1
`[
`A senseamp and latch _for sensing and latching data on
`3 plurality Of bit and Inverse bit 111185 15 Pr°Vld=d- A
`sense amp power line which connects the sense amp to
`a ground line also decouples the bit lines from the sense
`amp during the evaluation process. The circuit allows
`for automatic latching of the data which the sense amp
`evaluated without requiring the generation of other
`timing signals. Capacitive loading on each of the two
`sides of the sense amp are equal.
`
`12 Claims, 3 Drawing Sheets
`
`350
`
`PC
`
`54-O\J
`
`SAP
`
`EX. 1006.001
`
`Ex. 1006.001
`
`

`
`U.S. Patent
`
`. Mar. 22, 1994
`
`Sheet 1 of 3
`
`5,297,092
`
`FIG.
`
`1
`
`MEMORY
`MANAGE-
`MENT
`
`EX. 1006.002
`
`Ex. 1006.002
`
`

`
`U.S. Patent
`
`Mar. 22, 1994
`
`Sheet 2 of 3
`
`5,297,09i
`
` o
`
`o
`
`0
`
`U
`N)
`V1’
`
`9
`0
`
`0
`0
`
`U
`gr
`1‘)
`
`o
`0
`
`0
`0
`
`0
`
`EX. 1006.003
`
`Ex. 1006.003
`
`

`
`U.S. Patent
`
`Mar. 22, 1994
`
`Sheet 3 of 3
`
`92
`
`290
`
`./9on\./on
`
`
`
`Eu..Sm.DnaeDowm
`
`mm\./\omawn
`
`37
`
`n :2
`Sn
`
`m<m
`
`M.o_.._
`
`W/new
`
`own
`
`on.
`
`EX. 1006.004
`
`Ex. 1006.004
`
`

`
`1
`
`5,297,092
`
`SENSE AMP FOR BIT LINE SENSING AND DATA
`LATCI-IING
`
`The present invention relates to a computer memory
`sense amp and in particular to a differential sense amp
`and output latch.
`
`BACKGROUND OF THE INVENTION
`
`It is well known to use sense amplifiers for evaluating
`and outputting the binary status of bit lines from a mem-
`ory device. However, the design of such sense amps
`becomes critical in certain types of specialized memory
`such as cache memory. In memories which have a par-
`ticularly small cycle time, the creation of precise timing
`signals is difficult. In a pre-charged type sense amp, the
`sense amp typically must be powered up for evaluation
`of the bit lines and must be powered down for pre-
`charging before the next evaluation. Capturing the data
`which the sense amp has evaluated, before the next
`pre-charge time,
`is difficult. Previous designs have
`solved this problem by providing a separate clock or
`enable signal to a latch. The timing for the latch-enable
`further complicates the overall timing design for the
`memory system.
`In the context of ordinary static-type memory cir-
`cuits, U.S. Pat. No. 4,612,631 issued Sep. 16, 1986 to
`Ochii discloses a memory circuit having sense amps and
`a data holding circuit which includes cross-coupled
`NAND gates. Because these gates are coupled directly
`to the bit lines, a relatively large load is placed on the
`sense amps, slowing their evaluation. In this type of
`circuit, the bit lines must be driven ‘‘full swing” (i.e.,
`between the voltage normally taken as indicating a
`logical zero and the voltage, normally taken as indicat-
`ing a logical one which will typically be Vcc-Vss, or
`about five volts). Driving the bit lines at full swing is
`particularly power-consumptive, especially where a
`large number of lines must be driven, as well as time
`consuming. Although this approach may be acceptable
`in some contexts, when a small-cycle-time memory
`circuit is necessary, the RC delay is unacceptable.
`In the context of a dynamic random access memory,
`U.S. Pat. No. 4,758,995, issued Jul.
`l9, 1988 to Sato
`discloses first and second amplifying circuits which
`have a fully differential amplifier construction. Al-
`though the amplifier shown therein may be effective for
`some applications, when it is desired to minimize cur-
`rent consumption, for example, when a large number,
`such as 256, bit lines are to be sensed, an undesirably and
`unnecessarily large amount of power would be con-
`sumed.
`
`SUMMARY OF THE INVENTION
`
`According to the present invention, a differential
`sense amplifier is provided which is connected to an
`output latch and to the bit lines in such a way that the
`when the sense amp power is supplied, and one side of
`the amp is permitted to discharge, the bit lines are un-
`coupled from the amplifier. The circuit allows for the
`automatic latching of data when the sense amp is evalu-
`ated without requiring the generation of other timing
`signals such as a latch-enable signal. In the preferred
`embodiment of the invention, the bit line and inverted
`bit line are input to the differential sense amplifier via
`MOSFET transistors controlled by the sense amp
`power line. The sense amp power line also controls the
`
`l0
`
`15
`
`20
`
`25
`
`30
`
`35
`
`40
`
`45
`
`50
`
`55
`
`60
`
`65
`
`2
`transistor which connects the differential sense amp to
`the discharge line.
`The circuit also provides for equal capacitive loading
`of the two sides of the sense amp. The sense amp pro-
`vides gain for the evaluation of the state of the bit and
`inverted bit lines. In addition, the latch provides some
`amount of gain for the evaluation of the sense amp.
`BRIEF DESCRIPTION OF THE DRAWINGS
`
`FIG. 1 is a block diagram of a microprocessor show-
`ing one potential application of the present invention;
`FIG. 2 is a block diagram showing the relationship of
`the sense amp and latch of the present invention to
`multiplexed bit line inputs in the context of a 256-bit
`input;
`FIG. 3 is a schematic diagram showing a sense amp
`and latch according to an embodiment of the present
`invention; and
`FIG. 4A—4D are schematic timing diagrams of sig-
`nals used in the present invention.
`DETAILED DESCRIPTION OF THE
`PREFERRED EMBODIMENTS
`
`Although the present invention can be used in con-
`nection with a number of types of memory systems, it
`has particular use in the context of a cache system for
`inclusion in a microprocessor. As depicted in FIG. 1,
`one embodiment of a microprocessor is built around a
`CPU 10 which is connected to a memory management
`unit 12 providing for microprocessor I/O 14 and com-
`municates with a floating point unit 16 (FPU) and a
`translation lookaside buffer 18 (TLB) which also com-
`municates directly with the CPU l0. The TLB 18 and
`the FPU 16 are connected by an instruction bus 20 and
`a data bus 22. The instruction bus 20 communicates
`with an instruction cache 24 and the data bus 22 com-
`municates with a data cache 26. The memory manage-
`ment unit 12 communicates with a tag cache 28. The
`operation of all of these items are well known in the art.
`The instruction cache 24, data cache 26, and tag
`cache 28 are specialized memory devices which have
`short cycle times and wide inputs and outputs. For these
`reasons, it is particularly important in applications such
`as those depicted in FIG. 1 that the memories have low
`per hit power consumption and small drivers to mini-
`mize RC delay and current consumption. In the instruc-
`tion cache 24, data cache 26, and tag cache 28, as in
`other types of memory, data which is output from the
`memory cells on bit lines must be evaluated and output.
`This is typically done by a sense amplifier.
`As depicted in FIG. 2, differential sense amplifiers
`30a—d, receive signals on bit lines 32a—d and the in-
`verted signal on an inverted bit line 34a—d. In one em-
`bodiment, the level on the bit lines is about :50 mV.
`The sense amps 30a-30d evaluate the logic levels on the
`bit lines 32a-32d and inverted lines 34a—34d by amplify-
`ing the difference between the lines and outputting the
`evaluated signals to latches 36a—36d to provide output
`signals 38a—38d. The sense amps 30a—30d are pre-
`charged amps in which the pre-charge is controlled by
`a pre-charge line 35a and evaluation is initiated by a
`sense amp power signal 35b. Although only four sets of
`bit and inverted bit lines and sense amplifiers are de-
`picted in FIG. 2, in one embodiment of the present
`invention, 256 bit-lines are evaluated at once. Because
`such a large number of bit lines are evaluated at once, it
`is important to minimize current and power consump-
`tion, as described above. According to one embodiment
`
`EX. 1006.005
`
`Ex. 1006.005
`
`

`
`3
`of the invention, the bit lines 3241-324! and inverted bit
`lines 34a—34d are output by multiplexors 40a—40d which
`each select among four column bit lines 42a—42d and 4
`column bit bar lines (inverted column bit lines) 43a—43d
`under the control of column select lines 44.
`FIG. 3 depicts a sense amp 30 and latch 36 according
`to one embodiment of the present invention. The sense
`amp 30 includes two input lines 50a, 50b. Node 510
`between the series-connected MOSFETs 52a, 54a, is
`connected to the gates of transistors 52b, 54b. Node 51b
`between the series-connected MOSFETS 52b, 54b is
`connected to the gates of transistors 52a and 54a. The
`node 56 which connects transistors 54a and 54b leads to
`
`a ground line 58 controlled by a transistor 60. Input line
`50a is connected, via MOSFET 62a to bit line 32 and to
`a charge line controlled by a pre-charge control line 35a
`via transistor 64a. Input line 50b is connected, via MOS-
`FET 62b to inverted bit line 34 and a charge line con-
`trolled by pre-charge line 35a via transistor 64b. The
`gates of transistors 62a, 62b, and 60 are connected to the
`sense amp power (SAP) line 33b.
`Latch 36 includes cross-coupled NAND gates 66a,
`661) with two input lines 68a, 68a, and a single output
`line 70. The first latch input line 68a is coupled to the
`sense amp node 51a. The latch input line 68a is attached
`to the sense amp node 51b.
`FIGS. 4A—D depict the relative timing of a number
`of signals in the device shown in FIG. 3. FIGS. 4A—4D
`depict the relationship of signals according to one em-
`bodiment of the invention and the horizontal axis is not
`necessarily to scale. In the initial part of a bit line evalu-
`ation cycle, the PC lines 35a are driven low 72. This
`causes both the left and right sides of the sense amp 30
`to begin charging and equalizing. The charge on the
`two sides of the sense amp are represented in FIG. 4C
`by the voltage at nodes 51a (shown by a solid line) and
`51b (shown by a dotted line). In the example shown in
`FIG. 4, the output from the bit line being sensed is a
`logical “one”. After the pre-charge has been initiated,
`the nodes 51a and 51b become substantially pre-
`charged, as shown in FIG. 4C.
`After the bit line provides an output, the sense amp
`power line (SAP) becomes high 76, as shown in FIG.
`4B. This initiates the evaluation process. As noted
`above, when the SAP line 35b becomes high 76, transis-
`tors 62a and 62b become substantially non-conducting
`and, substantially simultaneously, transistor 60 connects
`node 56 to the ground line 58. Because transistors 62a
`and 62b are substantially non-conducting, the bit lines
`are not directly coupled to the sense amp 30 and latch
`36 during the latching process. Because sense amp 30 is
`effectively cut off‘ from the bit lines, no charging of the
`bit lines will occur. Thus, the sense amp 30 is exposed to
`a much lower capacitance than it otherwise would be,
`and thus evaluates more quickly.
`When voltage is sent down the SAP line, gain is
`obtained from the cross-coupled inverters (54a, 54b,
`52a, 521:). A relatively large amount of current is re-
`quired when the differential sense amp is beginning to
`“flip” to one or the other asymmetric configuration.
`Providing signals from the bit lines directly to the dif-
`ferential sense amp during this process, as was done in
`certain previous designs, results in unwanted RC delay.
`As can be seen, in the present invention, it is necessary
`to drive only a relatively small load during this period.
`In this way, it is possible to avoid having to drive the bit
`lines “full swing."
`
`5
`
`l0
`
`I5
`
`25
`
`35
`
`45
`
`55
`
`65
`
`5,297,092
`
`4
`As seem in FIG. 4C, node 51:: once charged, retains
`substantially the same voltage, (with perhaps a slight
`decrease due to leakage). When the difference in volt-
`age between the two nodes 51a, 51b reaches a sufficient
`value 78, for example, 100 mV, then SAP goes high,
`after which the sense amp evaluates that the bit line 32
`was in a logical “1” state. The output latch 36 then
`retains this evaluation. It is not necessary that node 51b
`be discharged “full swing". Node 51b only needs to
`decrease to a level sufficient to cause the cross-coupled
`NAND gates 66a, 66b to roll over. Thus, there is “gain”
`produced by the latch 36 coupled to the sense amp 30.
`The capacitance presented to nodes 51a, 51b by the
`latch 36 is substantially equal at the two nodes 51a, 51b.
`The provision of equal capacitance on the two sides of
`the sense amp 30 is important, particularly in cases
`where only a small difference, such as about l(X) mV is
`being sensed. For example, it is possible that a power
`surge could occur at the time when the latch 36 is re-
`sponding to voltages at the nodes 51a, 51b. If there were
`a different capacitance presented at the two nodes 51a,
`51b then, in response to the power surge, it is possible
`that node 510, might decrease by, e.g., 200 mV while
`node 51b might decrease by e.g., 100 mV, This would
`make the voltage on the two nodes 51a, 51b substan-
`tially not equal and the output 70 from the latch 36
`would not necessarily correspond to the input on the bit
`and inverse bit lines 32, 34.
`In light of the above description, a number of advan-
`tages of the present invention can be seen. The inven-
`tion permits simultaneous evaluation of a large number
`of bit lines such as 256 bit lines, while minimizing cur-
`rent consumption and RC delay. The data on the bit
`lines evaluated by the sense amp is automatically
`latched without requiring the generation of other tim-
`ing signals to effect the latching. Gain is provided for
`the sense amp and the capacitive loading on each of the
`two sides of the sense amp is equal. The bit lines are
`insulated from the sense amp during evaluation and
`latching and the bit lines do not have to be driven full
`swing. Since each of the two sides of the sense amp are
`high after pre-charging, the data is guaranteed to stay
`valid on the output of the sense amp clue to the cross
`coupled NAND gates.
`A number of variations and modifications of the pres-
`ent invention can also be used. Although the sense amp
`depicted in FIG. 3 is preferred, the present invention
`can be used in connection with a number of different
`
`pre-charged differential sense amps. Although FIG. 2
`depicts simultaneous evaluation of 256 bit lines, the
`present invention can be used with more or fewer bit
`lines and can be used by obtaining bit input from sources
`other than the multiplexors 40. Although one use for the
`invention is in the data cache, tag cache and instruction
`cache depicted in FIG. 1, the invention can be used in
`other contexts where evaluation of the binary values on
`a number of bit lines is desired.
`Although the present invention has been described by
`way of a preferred embodiment and certain variations
`and modification, other variations and modifications
`can also be used, the invention being described by the
`following claims.
`What is claimed is:
`1. In a memory device which outputs binary signals
`on a plurality of bit and inverse bit lines, a sense ampli-
`fier for determining the binary state of said bit and in-
`verse bit lines and outputting a signal indicating the
`sensed binary state, comprising:
`
`EX. 1006.006
`
`Ex. 1006.006
`
`

`
`5
`amplifier means for receiving a first, pre-charge sig-
`nal and for receiving a second signal from said bit
`line and a third signal from said inverse bit line
`which is the inverse of said second signal, said
`amplifier means including first and second means
`for retaining said pre-charge signal;
`means for
`
`selectively discharging one of said first and second
`means, depending on the binary state of said
`second and third signals and
`uncoupling said bit line and inverse bit line from
`said amplifier means;
`latching means for outputting latch output signals
`based on the state of said amplifier means, said
`latch output signals including a first signal when
`said first means is the means which is discharged
`and outputting a second signal when said second
`means is the means which is discharged, said out-
`putting occurring before said one of said first and
`second means is fully discharged, and after said bit
`and inverse bit lines are uncoupled from said ampli-
`fier means wherein said latching means is perpetu-
`ally enabled, such that either said first or second
`signals may be output without the need for first
`receiving an enablement signal.
`2. A sense amplifier, as claimed in claim 1, wherein
`said means for selectively discharging and for uncou-
`pling includes transistor means wherein said means for
`latching includes first and second input lines coupled
`between said transistor means and said amplifier means.
`3. A sense amplifier, as claimed in claim 2, wherein
`said amplifier means receives said pre-charge signal
`from first and second pre-charge lines and wherein said
`transistor means are also coupled between said amplifier
`means and said pre-charge lines.
`4. A sense amplifier for receiving signals on a bit line
`and an inverse bit line and outputting a status signal
`indicating the status of said bit and inverse bit lines,
`comprising:
`a pre-charged, differential sense amplifier having first
`and second amplifier input lines and a discharge
`line selectively coupled to ground by a first transis-
`tor;
`first and second pre-charge lines;
`said first input line selectively coupled to said bit line
`and said first pre-charge line by a second transistor;
`said second input line selectively coupled to said
`inverse bit line and said second pre-charge line by
`a third transistor;
`an output latch having first and second latch input
`lines and an output line for outputting said status
`signal, based on the state of said amplifier, said first
`latch input line coupled to said first amplifier input
`line between said second transistor and said ampli-
`fier, said second input line coupled to said second
`amplifier input line between said third transistor
`and said amplifier, wherein said output latch is
`perpetually enabled, such that said status signal
`may be output without the need for first receiving
`an enablement signal; and
`a sense amp power line configured to place said first
`transistor in a conductive state and said second and
`third transistors in a nonconductive state.
`5. A sense amplifier, as claimed in claim 4, wherein
`said first and second amplifier input lines have substan-
`tially equal capacitive loads.
`6. In a memory device which outputs binary signals
`on a plurality of bit lines, said memory device having a
`
`5
`
`l0
`
`15
`
`20
`
`25
`
`30
`
`35
`
`40
`
`45
`
`50
`
`55
`
`60
`
`65
`
`5,297,092
`
`6
`differential sense amplifier, a method for determining
`the binary state of bit and inverse bit lines and output-
`ting a signal indicating the sensed binary state, compris-
`mg:
`receiving a first, pre-charge signal;
`receiving a second signal from said bit line and a third
`signal from said inverse bit line which is the inverse
`of said second signal,
`storing said pre-charge signal in first and second stor-
`age means in said amplifier;
`selectively discharging one of said first and second
`storage means, depending on the state of said sec-
`ond and third signals and
`uncoupling said bit line and inverse bit line from said
`amplifier means;
`outputting latch output signals based on the state of
`said amplifier means, said latch output signals in-
`cluding a first signal which is output when said first
`storage means is the means which is discharged and
`a second signal which is output when said second
`storage means is the means which is discharged,
`said outputting occurring before said first and sec-
`ond storage means are fully discharged, and after
`said bit and inverse bit lines are uncoupled from
`said amplifier means.
`7. A sense amplifier, as claimed in claim 1, wherein
`said latching means includes means for effectuating gain
`when either said first or second means is discharged.
`8. A sense amplifier, as claimed in claim 1, wherein
`said latching means comprises:
`a first NAND gate having a first input coupled to said
`first means;
`a second NAND gate having a first input coupled to
`said second means;
`said first NAND gate further having a second input
`coupled to the output of said second NAND gate;
`and
`
`said second NAND gate further having a second
`input coupled to the output of said first NAND
`gate, the output of said second NAND gate output-
`ting said first and second signals.
`9. A sense amplifier, as claimed in claim 4, wherein
`said output latch is selected to provide gain between
`said first and second latch input lines and said output
`line.
`-
`
`10. A sense amplifier, as claimed in claim 4, wherein
`said output latch comprises:
`a first NAND gate having a first input coupled to said
`first latch input line and a second input coupled to
`said output line; and
`a second NAND gate having a first input coupled to
`said second latch input line and a second input
`coupled to the output of said first NAND gate, the
`output of said second NAND gate outputting said
`output line.
`11. A method as claimed in claim 6 wherein said step
`of outputting is carried out by an output latch wherein
`said output latch is perpetually enabled, such that said
`step of outputting may be accomplished without the
`need for first receiving an enablement signal.
`12. The method as claimed in claim 6 wherein said
`step of outputting is carried out by an output latch
`wherein said output latch is perpetually enabled, such
`that said step of outputting may be accomplished with-
`out the need for first receiving an enablement signal,
`said output latch further comprising a pair of cross
`coupled NAND gates.I
`8
`I
`I
`3
`
`Ex. 1006.007
`
`Ex. 1006.007

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket