throbber
United States Patent
`
`[191
`
`Araghi et al.
`
`[11]
`
`[45]
`
`Patent Number:
`
`Date of Patent:
`
`4,698,131
`
`Oct. 6, 1987
`
`[54]
`
`[75]
`
`REPLACEABLE IMAGE SENSOR ARRAY
`
`Inventors:
`
`Mehdi N. Araghi, Webster; Jagdish
`C. Tandon, Fairport, both of N.Y.
`
`[73]
`
`Assignee:
`
`Xerox Corporation, Stamford, Conn.
`
`[21]
`
`[22]
`
`[51]
`[52]
`
`[58]
`
`[56]
`
`Appl. No.: 808,799
`
`Filed:
`
`Dec. 13, 1985
`
`Int. Cl.‘ ..................... .. H01L 21/306; B44C 1/22
`U.S. Cl. .................................. .. 156/647; 156/633;
`156/659.1; 156/662; 357/32; 357/55; 357/60
`Field of Search ............. .. 156/629, 630, 633, 647,
`156/659.1, 662; 357/32, 55, 60, 75
`References Cited
`
`U.S. PATENT DOCUMENTS
`
`4,182,025
`4,467,342
`4,604,161
`
`1/1980 Wickenden ..................... .. 29/577 R
`8/1984 Tower .. .. . ... .. .
`.. .. .... 357/30
`
`8/1986 Araghi ................................ 156/633
`
`FOREIGN PATENT DOCUMENTS
`
`Italy .
`640821 of 1962
`52-43370
`5/1977 Japan ................................. .. 156/647
`
`Primary Examiner—Peter Hruskoci
`Attorney, Agent, or Firm—Frederick E. McMullen
`
`[57]
`
`ABSTRACI‘
`
`An image sensor array and method of fabrication which
`facilitates replacement of a defective one in a series of
`arrays butted together to form a longer scanning array
`in which a (110) silicon wafer having a row of photo-
`sites has separation lines etched thereon by orientation
`dependent etching along the (111) planes, with the sepa-
`ration lines for the opposite ends of the array each con-
`sisting of first and second partial boundary lines longitu-
`dinally offset from one another connected by a third
`boundary line so that the ends of the array have a has a
`generally L-shaped offset permitting bi-directional sep-
`.arating and aligned inserting movement when replacing
`a defective array.
`In a second embodiment, the arrays are formed on (100)
`silicon with alternating ‘nail’ head and ‘mesa’ head
`shapes to facilitate removal and replacement of a defec-
`tive array.
`‘
`
`4 Claims, 3 Drawing Figures
`
`
`
`Apple 1026
`
`U.S. Pat. 9,189,437
`
`Apple 1026
`U.S. Pat. 9,189,437
`
`

`
`U. S. Patent Oct. 6,1987
`
`Sheet1of3
`
`4,698,131
`
`

`
`U. S. Patent Oct. 6,1987
`
`Sheet2 of3
`
`4,698,131
`
`

`
`U. S. Patent Oct. 6,1987
`
`Sheet3 of3
`
`4,698,131
`
`/
`
`S~
`
`CE
`
`\-
`
`

`
`1
`
`REPLACEABLE IMAGE SENSOR ARRAY
`
`4,698,131
`
`The invention relates to image sensor arrays and
`method of fabrication and more particularly,
`to an
`image sensor array fabricated to permit the array to be
`abutted with other like arrays to form a longer scanning
`array such that each of the smaller arrays has two de-
`grees of freedom of movement to facilitate removal and
`aligned replacement of a smaller array without damage
`to neighboring arrays or distortion or loss of image at
`the array junctions.
`Image sensor arrays for scanning document images,
`such as Charge Coupled Devices (CCD’s), typically
`have a row or linear array of photosites together with
`suitable supporting circuitry integrated onto a substrate
`or chip. Usually, an array of this type scans an image
`line by line across the document width while the docu-
`ment is moved in synchronism therewith in a direction
`paralleling the document length.
`The image resolution of an array of this type is pro-
`portional to the ratio of the length of scan and the num-
`ber of array photosites. Because of the difficulty in
`economically designing and fabricating arrays with a
`large number of photosites on one chip, image resolu-
`tion for the typical commercial array available today is
`relatively low. And while resolution may be improved
`electronically by interpolating extra image signals or
`pixels, or by using several sensor arrays and electrically
`interlacing the arrays with one another so as to switch
`in succession from one array to the next as scanning
`across the line progresses, electronic manipulations of
`this type is costly. Further, single or multiple array
`combinations of the type described usually require a
`more complex and expensive optical system to assure
`that the array or arrays accurately scan the image line
`without loss or distortion.
`A single array equal in size to the width of the docu-
`ment to be scanned yet with a very large packing of
`photosites to assure the high resolution, often referred
`to as a full width or contact type array, is needed, but
`not available currently in the art. One concept that has
`been suggested is to form a longer array by butting
`several small arrays together. Since photosites can be
`closely packed on smaller arrays without substantial
`and costly reduction in yield rates, a longer array hav-
`ing the large number of photosites needed to achieve
`high resolution can be achieved in this fashion. At the
`same time, optical requirements are greatly simplified.
`However,
`the difficulty in later repairing composite
`arrays of this type and particularly the difficulty in
`removing and replacing a defective one of the smaller
`arrays without damaging the array photosites, or mis-
`aligning the arrays, or creating distortion and loss of
`image at the junctions between the arrays has hereto-
`fore necessitated in the event of a failure of one array
`that the entire full length array be replaced at substan-
`tial cost.
`
`The present invention seeks to address and rectify the
`above by providing a sensor array of the type which is
`assembled with other arrays to form a full width scan-
`ning array which can be removed and replaced without
`damaging neighboring arrays and without affecting
`image quality, the sensor array comprising a chip fabri-
`cated in accordance with the following steps: forming
`at least one row of photosites on a relatively large (110)
`silicon wafer; orientation dependent etching edge sepa-
`ration lines in the wafer delineating the top and bottom
`
`10
`
`15
`
`20
`
`25
`
`30
`
`35
`
`40
`
`45
`
`50
`
`55
`
`60
`
`65
`
`2
`edges of the chip; orientation dependent etching separa-
`tion lines along the (1 l 1) plane of the wafer to delineate
`chip ends having a generally L-shaped offset therein;
`and separating the chip from the wafer along the separa-
`tion lines to produce a generally rectangular-shaped
`chip, each end of the chip having a generally L-shaped
`offset for interlocking abutment and alignment with the
`complementary offset ends of other like arrays.
`The invention further provides a replaceable array
`for use in combination with other arrays butted together
`end to end to form a longer scanning array comprising:
`a generally rectangular chip of (110) silicon having a
`predetermined width; at least" one row of photosites
`extending longitudinally of the chip from one end of the
`chip to the other to provide on abutment of the chip
`with another like chip an uninterrupted row of photo-
`sites, each end of the array being defined by first and
`second end segments extending along the chip (1 1 1)
`plane, the combined length of the first and second end
`segments being equal to the chip width with the first
`and second end segments being offset longitudinally
`from one another, a third end segment extending along
`the chip (1 l 1) plane connecting the first and second end
`segments together whereby the first, second, and third
`end segments cooperate to form the array end, the third
`end segment being abuttable with the third end segment
`of a neighboring array to align the chip with the chip of
`a neighboring array when replacing a defective array.
`IN THE DRAWINGS
`
`FIG. 1 is an isometric view of a plurality of small
`sensor arrays fabricated on (110) silicon in accordance
`with the invention and abutted together to form a full
`width scanning array, the small arrays having alternat-
`ing complementary T and inverted T shapes designed to
`facilitate removal and replacement of a defective one of
`the small arrays;
`FIG. 2 is an isometric view showing forming of the
`array chips on a larger silicon wafer; and
`FIG. 3 is an isometric view of an alternate embodi-
`ment in which the small sensor arrays are fabricated on
`(100) silicon to provide complementary ‘nail’ head and
`‘mesa’ head shapes facilitating removal and replacement
`of a defective one of the arrays.
`Referring to FIG. 1 of the drawings, there is shown a
`long scanning array 4 composed of a plurality of small
`sensor arrays 5a, 5b, .
`.
`. Sn butted together end to end
`on a base or substrate 7. Substrate 7 which may be
`silicon, ceramic, or other suitable material, is generally
`rectangular in shape with a planar surface 8 supporting
`the arrays 5a, Sb, Sc, .
`.
`. Sn. A suitable adhesive such as
`an epoxy or solder is normally used to attach the arrays
`Sa, Sb, Sc,
`.
`.
`. Sn to the surface 8 of substrate 7 in desired
`position.
`. 5n, which may for exam-
`.
`The small arrays 5a, 5b, .
`ple comprise Charge Coupled Device or CCD or
`NMOS type arrays, are fabricated in accordance with
`the teachings of the invention for easy repairability of
`the long scanning array 4 as will appear more fully
`hereinbelow. As will be understood by those skilled in
`the art, scanning array 4 is typically used to read or scan
`a document original line by line and convert the docu-
`ment image to electrical signals or pixels. Preferably,
`scanning array 4 is a full length or contact type array
`having an overall length equal to or slightly greater
`than the width of the largest document. Scanning array
`4 has a row of 14 photosites 12 extending from one end
`to the other.
`
`

`
`3
`. Sn has a crystal-
`.
`.
`Each of the sensor arrays 5a, Sb,
`line silicon substrate or chip 10 with a row, i.e., array 14’
`of photosites 12 thereon. Typically, chips 10 are rela-
`tively thin with ends 16 and top and bottom edges 18, 19
`respectively. The axis of the row 14’ of photosites is
`parallel to the longitudinal axis of chip 10, with the
`photosite row extending between the chip ends 16. To
`form scanning array 4, the arrays Sa, Sb,
`.
`.
`. Sn, are
`butted together end to end in aligned relation to form a
`continuous and uninterrupted row 14 of photosites.
`While arrays 511, 5b,
`.
`.
`. Sn and hence scanning array
`4 are shown as having a single row or array 14’ of
`photosites 12, plural photosite rows or arrays may be
`contemplated. Additionally, other supporting circuits
`such as shift register 17 are preferably formed on chip
`10 together with photosites 12. Suitable external con-
`nectors (not shown) are provided for electrically cou-
`pling the sensor arrays Sa, Sb,
`.
`.
`. Sn to related external
`circuitry.
`Referring to FIG. 2, chips 10 are fabricated from a
`larger wafer 9 of (110) silicon of the type commonly
`employed to make integrated circuits using orientation
`dependent etching to precisely delineate the chip ends
`16 and the top and bottom edges 18, 19 respectively.
`Chips are then separated from the larger silicon wafer
`along the etched lines. Preferably, photosites 12 are
`formed prior to etching and separation of the chip from
`the silicon wafer.
`As will be understood by those skilled in the art, (110)
`silicon has four (111) planes that intersect the (110)
`plane of the top and bottom surfaces 30, 31 of chip 10 at
`90°. However, the (111) planes are not normal to each
`other but instead intersect at an acute angle of 75.53".
`Therefore, ends 16 of chip 10 are not perpendicular to
`the top and bottom edges 18, 19 of chip 10 but instead
`are at an acute angle of 75.53° with respect thereto so
`that chips 10 are parallelogram-shaped. Photosites 12,
`which may for example be anisotropically etched and
`which have boundaries paralleling the ends 16 and the
`edges 18, 19 of the chip 10, are similarly parallelogram-
`shaped.
`During fabrication of arrays S, the chip ends are de-
`fined by etching at the point where separation is de-
`sired. In order not to impair or damage the photosites at
`the chip ends 16, the separation etch is made along a line
`running between or coincident with the boundary of the
`photosites where separation is to take place. The separa-
`tion points for top and bottom edges 18, 19 may be
`similarly defined by etching. Thereafter,
`the chip is
`suitably separated along the etched lines. While photo-
`sites 12 are preferably formed prior to etching of chip
`10, it will be understood that the photosites may be
`formed after chip 10 have been separated from the
`larger (110) silicon wafer.
`Following assembly of the required number of small
`arrays Sa, Sb, Sc,
`.
`.
`. Sn with one another, and prior to
`use, scanning array 4 is normally tested. I-Ieretofore, in
`the event a failure of one of the arrays Sa, Sb,
`.
`.
`. Sn is
`detected, the entire scanning array 4 would normally be
`scrapped. Similarly, where one of the small arrays fails
`during use, the entire scanning array 4 would normally
`be discarded and a new array substituted. This is due to
`the difficulty in extracting the failed array and replacing
`it with a new array without damaging either the neigh-
`boring arrays or the new array and in effecting the
`critical alignments necessary to provide a scanning
`array devoid of distortion.
`
`5
`
`10
`
`15
`
`20
`
`25
`
`30
`
`35
`
`45
`
`50
`
`55
`
`60
`
`65
`
`4,698,131
`
`4
`The present invention permits a failed one of the
`small arrays Sa, Sb,
`.
`.
`. Sn to be removed and replaced
`without necessitating replacement of the larger scan-
`ning array 4. For this purpose, the ends 16 of the array
`chips are formed with complementary interlocking
`boundary shapes designed to permit a damaged array to
`be removed and replaced with a new array without
`affecting or upsetting critical alignments between the
`arrays. In particular, the ends 16 of each chip 10 have a
`generally L-shaped offset or dog-leg formed therein
`which interlocks with the complementary shaped end
`of an adjoining chip, the complementary shaped ends
`permitting bi-directional movement of the array being
`withdrawn and of the replacement array being installed.
`At the same time, the L-shaped offset configuration
`enables the replacement array to be accurately located
`and aligned with the neighboring array or arrays.
`. 5n,
`During fabrication of small arrays Sa, Sb, Sc,
`.
`.
`the chip ends 16 are defined by a series of connecting
`etched lines. For this, an etch is made along the (ill)
`plane at the desired separation point between photosites
`to a distance d to provide a first partial end boundary
`line 37. Preferably, distance d is of sufficient length to
`encompass, in addition to the row 14 of photosites 12,
`all of substantially all of the active circuits such as shift
`register 17 on chip 10. An etchis also made along the
`(111) plane at a point offset by a distance 5 from the line
`37, the length of the etch being equal to the distance C1’
`to form a second partial end boundary line 38. The sum
`of the distances d and d’ are equal to the total distance
`t between sides 18,19 of the chip 10. An etch is also
`made along the (111) plane parallel to the longitudinal
`axis of the chip joining the boundary lines 37,38 and
`forming a third end boundary line 39 to complete the
`definition of the chip end. the length of the third bound-
`ary line is equal to the distance s. As a result, boundary
`lines 37, 38,39 cooperate to define chip ends with a
`L-shaped offset or dog-leg therein.
`When the etches, which may be made simultaneously
`or in any desired sequence as will be understood, are
`complete, the chips are separated from the wafer along
`the lines 37, 38, 39 to provide chips which are either in
`the shape of a T or of an inverted T. This permits inter-
`locking of the small arrays Sn, Sb,
`.
`.
`. Sn with one an-
`other when forming scanning array 4 while providing
`the bi-directional movement that enables later removal
`and replacement of one or more of the small arrays Sa,
`Sb,
`.
`.
`. Sn in the larger scanning array 4. In the example
`depicted in FIG. 1, arrays Sa, Sc, have a generally T-
`shape with a relatively larger area 42 adjoining the
`normally unused top edge 18 while arrays Sb, Sd which
`have the shape of an inverted T with a relatively smaller
`area 42’ adjoining the unused top edge 18.
`When a defective array as for example array 5c is
`detected, local heating is applied to the array to free the
`defective array from surface 8 of substrate 7 and from
`neighboring arrays Sb and 5d. With the array Sc re-
`leased, the array may be extracted by both a lifting and
`sliding motion relative to substrate 7 and the adjoining
`arrays Sb and 5d as shown by the solid line arrows in
`FIG. 1. It is understood that where an array having an
`inverted T-shape is replaced such as array Sb, the direc-
`tion of movement along the plane of the scanning array
`4 is reversed as shown by the dotted line arrows.
`Replacing the array is the reverse of the above, the
`replacement array Sc being inserted in the space vacated
`by the defective array, with the L-shaped offset in the
`ends of the replacement array interlocking with the
`
`

`
`5
`complementary ends of the neighboring arrays 5b and
`5d. In addition, the portion of ends 16 delineated by
`boundary line 38 serves to locate and align the row 14’
`of photosites 12 of the replacement array 5c with the
`rows 14’ of photosites 12 of neighboring arrays 5b and 5
`5d on either side to again form a continuous and uninter-
`rupted scanning array 4.
`freedom of
`The aforedescribed two dimensional
`movement allows multi-directional movement of an
`array during removal or reinsertion, i.e., from lateral 10
`movement in a plane paralleling the surface of substrate
`7 to upward lifting movement, and various combina-
`tions of lateral and lifting movement.
`While the widths w, w’ across the base portion of
`alternate chips 5a, 5b, .
`.
`. Sn is illustrated as being differ- 15
`ent with resulting difference in the number of photosites
`in every other array,
`it will be understood that the
`width w, w’ may be made equal to one another. In that
`case, the number of photosites 12 on each chip will be
`equal to one another.
`‘
`In the embodiment shown in FIG. 3, where like num-
`bers refer to like parts, scanning array 4 comprises a
`combination of smaller arrays 50a, 50b, 50c,
`.
`.
`. 50n
`formed on (100) silicon. As will be understood by those
`skilled in the art, (100) silicon has four (111) planes 25
`which intersect the (110) surface at an acute angle of
`75.53‘. Arrays 50a, 50b, 50c,
`.
`.
`. 50n may be fabricated
`in the manner taught by copending U.S. application Ser.
`No. 729,705, filed May 2, 1985, entitled “Method of
`Fabricating Image Sensor Arrays” in the name of 30
`Mehdi N. Araghi.
`To permit replacement of a defective array, the chip
`shapes for the small arrays 50a, 50b, 50c,
`.
`.
`. 50n alter-
`nate between a ‘nail’ head shape 60 and a ‘mesa’ head
`shape 62. As a result, the sloping end borders 61 of the 35
`‘nail’ head chips, which alternate with the ‘mesa’ head
`chips, border on the mating sloping end borders 63 of
`the ‘mesa’ head chips on assembly of the desired number
`of small arrays 50:1, 50b, 50c,
`.
`.
`. 50n with one another
`on substrate 7 to form a scanning array 4 of desired
`length. When it is desired to replace one of the small
`arrays having a ‘nail’ head shape 60, as for example,
`array 50b, local heating is applied to free the defective
`array 50b from the surface 8 of substrate 7 and the ad-
`joining arrays 50a and 50c. Once set free, the defective
`array 50b may be simultaneously lifted and slide either
`forward or backward to remove the array.
`To replace the defective array with a new array, an
`alignment tool 65 having a planar array aligning surface
`66 is positioned so that aligning surface 66 abuts against
`the remaining arrays 50a, 50c, .
`.
`. 50n of scanning array
`4. the new array 50b is then inserted, and by a combina-
`tion sliding and downward motion, the new array is
`fitted into place between the neighboring arrays 50:: and
`50c. The edge of the replacement array is abutted
`against the aligning surface 66 of tool 65 to align the
`row 14' of photosites 12 of the replacement array with
`the rows 14’ of photosites 12 of the neighboring arrays
`50a, 50c. Following alignment, the replacement array
`50b is secured in place by a suitable adhesive.
`In the case where an array having a ‘mesa’ head shape
`62 is defective and requires replacement, such as array
`50c, the ‘nail’ head shaped array on one side, i.e., either
`array 50b or SM is first removed in the manner de-
`scribed above in order to free the ‘mesa’ head shaped
`array for removal. Following this, the defective ‘mesa’
`head array 50c is removed in the manner described and
`a replacement array having a ‘mesa’ head shape -62
`
`6
`placed on the surface 8 of substrate 7 in abutting end to
`end relation with the neighboring ‘nail’ head array on
`substrate 7. The previously removed ‘nail’ head array is
`then replaced and both the new ‘mesa’ head array and
`the ‘nail’ head array aligned against the aligning surface
`66 of tool 65 to align the rows 14’ of photosites 12 with
`the rows of photosites of the arrays already in position
`on substrate 7. Once the new ‘mesa’ head array together
`with the previously removed ‘nail’ head array are in
`position, the arrays are locked in place by a suitable
`adhesive.
`While the invention has been described with refer-
`ence to the structure disclosed, it is not confirmed to the
`details set forth, but is intended to cover such modifica-
`tions or changes as may come within the scope of the
`following claims.
`We claim:
`
`1. A method of fabricating a sensor array on a chip
`for assembly with other like arrays in abutting end to
`end relationship to form a longer composite array and
`which is capable of being removed and replaced with-
`out damaging the other arrays or causing loss of image
`quality, comprising the steps of:
`(a) forming at least one row of photosites on a rela-
`tively large (110) silicon wafer;
`(b) orientating dependent etching edge separation
`lines along the (l 1 1) plane of said wafer to delineate
`the top and bottom edges of said chip;
`(c) orientating dependent etching end separation lines
`along the (l 1 1) plane of said wafer to delineate chip
`ends having a generally L-shaped offset therein by
`etching a first separation line between two adjacent
`photosites in said photosite row extending from
`one edge of- said chip toward the chip interior, a
`second separation line longitudinally offset from
`the first separation line and extending from a point
`spaced opposite the terminus of said first separation
`line to the other edge of said chip, and a third sepa-
`ration line connecting the termini of the first and
`second separation lines, said first, second and third
`lines cooperating to form end separation lines with
`said generally L-shaped offset; and
`(d) separating said chip from said wafer along said
`separation lines to provide a generally rectangular
`shaped chip, each end of said chip having a gener-
`ally L-shaped offset for interlocking abutment and
`alignment with complementary offset ends of other
`like arrays.
`2. The method according to claim 1 including the step
`of:
`
`offsetting said second separation line outwardly of
`said first separation line whereby on separation of
`said chip from said wafer, a generally T‘-shaped
`chip is formed.
`3. The method according to claim 1 including the step '
`of:
`
`offsetting said second separation line inwardly of said
`first separation line whereby on separation of said
`chip from said wafer, a generally inverted T-
`shaped chip is formed.
`4. A method of fabricating a sensor array on a chip
`for assembly with other like arrays in abutting end to
`end relationship to form a longer composite array and
`which is capable of being removed and replaced with-
`out damaging the other arrays or causing loss of image
`quality, comprising the steps of:
`(a) orientating dependent etching edge separation
`lines along the (111) plane of a relatively larger
`
`4,698,131
`
`20
`
`40
`
`45
`
`50
`
`55
`
`60
`
`65
`
`

`
`7
`(110) silicon wafer to delineate the top and bottom
`edges of said chip;
`(b) orientating dependent etching end separation lines
`along the (1 1 1) plane of said wafer to delineate chip
`ends having a generally L-shaped offset therein by
`etching a first separation line extending from one
`edge of said chip toward the chip interior, a second
`separation line longitudinally offset from the first
`separation line and extending from a point spaced.
`opposite the terminus of said first separation line to
`the other edge of said chip, and a third separation
`line connecting the termini of the first and second
`
`8
`separation lines, said first, second and third lines
`cooperating to form end separation lines with said
`‘generally L-shaped offset; and
`(c) separating said chip from said wafer along said
`separation lines to provide a generally rectangular
`shaped chip, each end of said chip having a gener-
`ally L-shaped offset for interlocking abutment and
`alignment with the complementary offset ends of
`other like arrays; and
`(d) forming at least one row of photosites on said
`silicon wafer.
`Q!
`II!
`III
`II
`It
`
`4,698,131 —
`
`10
`
`15
`
`20
`
`25
`
`30
`
`35
`
`45
`
`50
`
`55
`
`60
`
`65

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket