throbber
Cellular responses to the induction
`of recombinant genes in
`Escherichia coli fed-batch cultures
`
`Dissertation
`
`in fulfillment of the requirements for
`the degree of
`
`doctor rerum naturalium (Dr. rer. nat.)
`
`submitted to the
`
`Martin-Luther-Universität Halle-Wittenberg
`Faculty of Mathematics and Natural Sciences
`Department of Biochemistry and Biotechnology
`
`by
`
`Hongying LIN
`
`
`
`
`
`
`
`
`
`February 2000
`
`BEQ 1021
`Page 1
`
`

`
`Referees:
`
`1.
`
`2.
`
`3.
`
`Prof. Dr. Rainer Rudolph
`Institut für Biotechnologie
`Martin-Luther-Universität Halle-Wittenberg, Germany
`
`Prof. Dr. Sven-Olof Enfors
`Department of Biotechnology
`Royal Institute of Technology, Sweden
`
`Prof. Dr. Michael Hecker
`Institut für Mikrobiologie und Molekularbiologie
`Ernst-Moritz-Arndt-Universität Greifswald, Germany
`
`Halle (Saale), 28.02.2000
`
`BEQ 1021
`Page 2
`
`

`
`Lin, Hongying (1999). Cellular responses to the induction of recombinant genes in Escherichia coli fed-batch
`cultures. Department of Biochemistry and Biotechnology, Martin-Luther-Universität Halle-Wittenberg, Halle
`(Saale), Germany
`
`Abstract
`This thesis concerns the investigation of cell growth, plasmid stability and amplification, recombinant protein
`overproduction, cellular metabolism, and several stress responses after induction in glucose limited fed-batch
`recombinant cultures. The extensive study was specifically focused on one process for production of a yeast
`a-glucosidase in E. coli RB791 by derepression of the Ptac promoter with IPTG. This investigation was also
`compared to other model systems, including CRIMI (creatinine imino hydrolase) in a small scale cultivation and
`ZZ protein (a modified domain B of staphylococcal protein A) in a large-scale process.
`Induction of a-glucosidase formation led to an inhibition of cell growth and glucose uptake. The growth
`inhibition was connected to a decrease of the colony forming ability of the cells, which declined to approximately
`5 % within 4 h after induction in the strain with coexpression of argU-tRNA. The non-culturable cells were shown
`to have not lost all metabolic activities, and even succeed to maintain some glucose uptake and respiratory
`ability. The ability of these cells for replication is apparently not only impaired by competition of the synthesis of
`the recombinant product to the formation of cellular house-keeping proteins, but specifically by continued
`damage of the chromosomal DNA or loss of superhelicity. The cells are unable to induce the SOS response, as
`the product formation occupies a large part of the protein synthesis machinery, and consequently the cells loose
`their ability to recover irrevocably. This model of the inability of cells to have not the opportunity to respond to
`DNA damage is new in view of recombinant protein production.
`Furthermore, up-growth of plasmid-free cells was observed in the a-glucosidase process. The maximal glucose
`uptake capacity decreased to only about 25 % of the q smax of the batch phase. Reduction of q smax may be a serious
`problem in recombinant fed-batch processes, because it results in overfeeding of substrate which in a turn
`supports the up-growth of plasmid-free cells and therefore lowers the productivity.
`After induction, the recombinant plasmid pKK177glucC was amplified by a factor of three to five. The plasmid
`copy number increased from about 100 to 300-400 per cell within a period of six hours in glucose-limited fed-batch
`cultivations. In contrast, no amplification occurred if product formation was not induced. Cultures with the same
`E. coli strain, but other recombinant ampicilline based plasmids, were also overgrown by plasmid-free cells, when
`the growth was inhibited by overexpression of the recombinant genes, but showed no up-growth of plasmid-free
`cells and no plasmid amplification when product formation did not inhibit growth.
`Glucose limited fed-batch cultivations of Escherichia coli cells are characterized by a transient increase of the
`stringent response regulator ppGpp (guanosine-3’,5’-bisphosphate), a higher concentration of the general stress
`response regulator s S and an accumulation of extracellular cAMP during the shift from unlimited to limited
`growth. The influence of the overexpression of recombinant genes on the concentration of these stress regulators
`was compared in different expression systems. It has been shown that the response can be different in
`dependence on the recombinant gene. In case of the a-glucosidase process, no general stress response was
`induced, and the concentration of the three regulators (ppGpp, s S and cAMP) decreased to very low levels. In
`contrast, induction of the recombinant CRIMI caused a strong increase of s S and continuous accumulation of
`cAMP in the cultivation medium. Although the different products were accumulated to similar levels in these
`various systems, significant differences were also detected in connection to the influence of the recombinant
`production on the cellular growth and cell survival. The results suggest that induction strength on the
`transcriptional level and the strength of the ribosome binding site, but specifically the gene codon usage of a
`recombinant gene influence the behavior of stress signals.
`The small scale process of a-glucosidase was also investigated by a down-scale procedure, where glucose
`oscillations were created by an on/off feeding mode in either short cycles (1 min) or long cycles (4 min). The
`influence of repeated short-term glucose starvation on the cell death rate, product stability, and up-growth of
`plasmid-free cells was concluded from investigation of a number of general and specific process parameters.
`Although the glucose uptake capacity was inhibited in all cultures performed, the up-growth of plasmid-free cells
`in the culture was strongly inhibited by fast oscillations. In connection to product formation the initial
`a-glucosidase accumulation was the same in all cultures, but the stability of the product was significantly lower in
`the cultivation with long cycles, possibly because of a higher stress level.
`Finally, a study of cell growth kinetics and physiology during large-scale (12 m3 / 30 m3) fermentation of E. coli
`W3110 including a recombinant ZZ protein process was performed within a EU network project. The data
`obtained from the large-scale processes demonstrate the existence of gradients for glucose and oxygen and show
`the effect of mixing on cell growth and product formation.
`Keywords: E. coli, recombinant protein, cell segregation, cell viability, plasmid stability, plasmid amplification, glucose
`uptake, stress response, cAMP, ppGpp, sigma S, energy charge, nucleotide, glucose oscillations, fed-batch
`fermentation, scale-down, large-scale, a-glucosidase, creatinine imino hydrolase, ZZ
`
`BEQ 1021
`Page 3
`
`

`
`Lin, Hongying (1999). Zelluläre Reaktionen auf die Induktion rekombinanter Gene in Fed-
`batch Prozessen mit Escherichia coli. Institut für Biotechnologie der Martin-Luther-Universität
`Halle-Wittenberg, Deutschland
`
`Zusammenfassung
`
`Ziel dieser Arbeit ist die Untersuchung zellulärer Reaktionen auf die Induktion rekombinanter Gene in
`
`Fed-batch Prozessen mit Escherichia coli, wobei auch Einflüsse der Maßstab-vergrößerung
`
`biotechnologischer Prozesse mit rekombinanten Mikroorganismen auf die Produktivität und die
`
`Zellphysiologie berücksichtigt werden. Als Modellsystem wurde im Rahmen dieser Arbeit ein
`rekombinanter Fed-Batch-Prozeß zur Produktion von a
`wurde in Bezug auf Wachstum, Zellsegregation, Plasmidstabilität, und Produktbildung charakterisiert.
`
`-Glucosidase ausgewählt. Dieser Prozeß
`
`Darüber hinaus wurden jedoch auch Veränderungen der Substrataufnahme, des Nukleotidpools, des
`
`Proteinmusters, sowie der Einfluß der Induktion auf die Expression verschiedener mRNA's
`untersucht. Die am a
`rekombinanten Prozessen verglichen (Creatinin-Iminohydrolase, ZZ-Protein), um Faktoren zu
`
`-Glucosidase-Prozeß gewonnenen Ergebnisse wurden mit zwei weiteren
`
`evaluieren, die verschiedene rekombinante Prozesse voneinander unterscheiden.
`
`Aus grundlagenorientierter Sicht hat die Arbeit folgende wichtige Nachweise geliefert:
`
`1) Nach Induktion rekombinanter a
`zellulärer Prozesse. Als Folge davon kommt es zu einer Deregulation der Plasmidreplikation, mit
`
`-Glucosidase kommt es zu einer Inhibition verschiedener
`
`der Folge einer 3-6-fachen Plasmidamplifikation. Das Phänomen der Plasmidamplifikation nach
`Induktion ist nicht auf den a
`bei denen die Produktbildung mit einer starken Inhibition des Wachstums einhergeht.
`
`-Glucosidase-Prozeß beschränkt, sondern tritt in allen Systemen auf,
`
`2) Die Entstehung nicht-teilungsfähiger Zellen nach Induktion der a -Glucosidase ist eine Folge der
`Last der Produktsynthese auf den Syntheseapparat der Zelle. Es konnte mittels
`
`Elektronenmikroskopie gezeigt werden, daß die nicht-teilungsfähigen Zellen durch eine
`
`Ausdehnung des Chromosoms gekennzeichnet sind. Diese Zellen stellen eine metabolisch
`
`absterbende Population dar, die jedoch über einen längeren Zeitraum nicht lysiert und in der über
`
`längere Zeit noch bestimmte metabolische Aktivitäten nachgewiesen werden können. In diesem
`
`Zusammenhang wird diese Population als viable but non-culturable (VBNC-Status) diskutiert.
`
`starke
`
`Induktion
`
`rekombinanter Proteine
`
`3) Die
`Glucoseaufnahmekapazität der Zellen. Diese Eigenschaft kann in Abhängigkeit von den
`
`führt
`
`zu
`
`einer
`
`Inhibition
`
`der
`
`Prozeßbedingungen problematisch in industriellen Prozessen sein, da die im Wachstumsmedium
`
`BEQ 1021
`Page 4
`
`

`
`akkumulierende nichtmetabolisierte Glucose das Überwachsen der Kultur durch plasmidfreie
`
`nichtproduzierende Zellen begünstigt. Im Rahmen der Arbeit wurde eine on-line nutzbare
`
`Methode zur schnellen Bestimmung der Glucoseaufnahmekapazität entwickelt, auf deren Basis
`
`eine optimale Regelung des Glucose-Feedings möglich ist.
`
`4) Im Rahmen der Arbeit wurden die zellulären Alarmone ppGpp, s S und cAMP in Abhängigkeit
`von der Stärke der Glucoselimitation und der Wachstumsrate gemessen. Es konnte gezeigt
`werden, daß nach Induktion der a
`-Glucosidase im Fed-Batch-Prozeß die Konzentrationen der
`Regulatoren der zellulären Adaptationssysteme an Glucoselimitation (ppGpp und s S) reduziert
`sind, im Vergleich zu Kulturen ohne Induktion. Nach Überexpression der a
`-Glucosidase kommt
`zu einem Abfall der zellulären Konzentrationen von ppGpp, s S und der extrazellulären cAMP-
`Konzentration. Untersuchungen, die in diesem Zusammenhang mit verschiedenen Mutanten
`
`durchgeführt wurden, lassen vermuten, daß das Absterben der Zellen nach Induktion mit der
`
`fehlenden Adaptation an die Streßbedingungen in Zusammenhang steht.
`
`5) Im Unterschied zum a
`Produktion von Creatinin-Iminohydrolase (CRIMI) keine Wachstumsinhibition und keine
`
`-Glucosidase-Prozeß wurde im zweiten untersuchten System zur
`
`Plasmidamplifikation nach Induktion beobachtet, obwohl das Produkt in höherer Konzentration
`(>30% vom Gesamtzellprotein) als die a
`wurde. Weiterhin kommt es nach Überexpression von CRIMI zu einem starken Anstieg der
`zellulären s S-Konzentration und zu einer kontinuierlichen Akkumulation von cAMP im
`Kulturmedium. Obwohl im Rahmen der Dissertation die molekulare Basis der unterschiedlichen
`
`-Glucosidase mit höherer spezifischer Rate gebildet
`
`Reaktion beider Systeme nicht experimentell geklärt wurde, werden im Diskussionsteil der Arbeit
`
`Hypothesen im Zusammenhang mit der Konkurrenzsituation auf Ebene von Transkription und
`
`Translation zwischen Produktsynthese einerseits und zellulären Synthesen andererseits, diskutiert.
`
`6) Mittels einer Scale-down Strategie wurden Zonen mit unterschiedlicher Konzentration von
`Glucose imitiert, die beim Up-scaling von bakteriellen Fermentationsprozessen entstehen und
`
`untersucht, in wieweit sich Oszillationen der Kohlenstoffquelle auf die mikrobielle Physiologie und
`
`die Produktbildung auswirken. Die Ergebnisse belegen, daß oszillierender Glucosehunger die
`
`Produktbildung in rekombinanten Prozessen beeinflußt. Dies betrifft sowohl die Produktausbeute,
`
`als auch die Physiologie der kultivierten Zellen. Ein unerwartetes Ergebnis der Untersuchung war,
`
`daß sich oszillierender Glucosehunger wahrscheinlich vorrangig positiv auf den Prozeßverlauf
`
`auswirkt. Möglicherweise stellen regelmäßige Oszillationen ein schwaches Streßsignal dar, das
`
`BEQ 1021
`Page 5
`
`

`
`eine entsprechende Adaptation der Zellen auslöst und sie resistenter macht gegen den starken
`
`Streß, den die Produktion des rekombinanten Produktes darstellt.
`
`7) Im Rahmen dieser Arbeit wurden Prozeßfaktoren evaluiert, die die Maßstabsvergrößerung
`rekombinanter biotechnologischer Prozesse beeinflussen. Diese Studien wurden im Rahmen des
`
`Europrojektes “Bioprocess Scale-up Strategy — based on Intergration of Microbial
`
`Physiology and Fluid Dynamics” durchgeführt, das neben der biologischen Charakterisierung
`
`auch die Entwicklung entsprechender Simulationsprogramme auf der Grundlage von
`
`Kompartimenten und Fluid Dynamics in oszillierenden Umgebungen, sowie die Large-Scale-
`
`Verifizierung im nicht rekombinanten Wildtyp E. coli W3110 und in einem rekombinanten Prozeß
`
`(ZZT2-Protein) beinhaltet. Es konnte durch umfassende Analysen gezeigt werden, daß die
`
`Vermischung im Großreaktor, insbesondere auftretende Glucose- und Sauerstoff-Gradienten die
`
`Zellphysiologie und Produktbildung beeinflussen.
`
`BEQ 1021
`Page 6
`
`

`
`CONTENTS
`
`1
`
`INTRODUCTION .............................................................................................................. 1
`
`1.1
`
`1.2
`
`1.3
`
`1.4
`
`Principle aspects of recombinant gene expression in E. coli......................................2
`
`Fed-batch as the cultivation strategy...........................................................................4
`
`The scale of production.................................................................................................6
`
`Objectives......................................................................................................................9
`
`2 MATERIALS AND METHODS.....................................................................................11
`
`2.1
`2.1.1
`2.1.2
`
`Strains and Plasmids ...................................................................................................11
`Strains.....................................................................................................................11
`Plasmids..................................................................................................................11
`
`2.2
`2.2.1
`2.2.2
`2.2.3
`2.2.4
`
`Cultivation media and conditions................................................................................12
`Cultivation medium..................................................................................................12
`Shake flask cultivation.............................................................................................13
`Laboratory scale cultivation.....................................................................................13
`Industrial scale cultivation.........................................................................................14
`
`Analytical methods ......................................................................................................15
`2.3
`Cell concentration....................................................................................................15
`2.3.1
`Analysis of medium compounds...............................................................................16
`2.3.2
`2.3.2.1 Glucose concentration..........................................................................................16
`2.3.2.2 Acetate concentration...........................................................................................16
`2.3.2.3 Ammonia concentration........................................................................................17
`2.3.3
`Enzyme assays ........................................................................................................17
`2.3.3.1
`a-glucosidase activity ...........................................................................................17
`2.3.3.2
`Creatinine imino hydrolase activity........................................................................17
`2.3.4
`Preparation and quantification of DNA and RNA.....................................................18
`2.3.4.1 DNA agarose gel electrophoresis .........................................................................18
`2.3.4.2
`Plasmid purification and quantification...................................................................19
`2.3.4.3
`Cell transformation...............................................................................................19
`2.3.4.4 mRNA analysis ....................................................................................................20
`2.3.5
`Protein preparation and quantification.......................................................................21
`2.3.5.1
`Cell disruption in a cell mill....................................................................................21
`2.3.5.2
`Preparation of inclusion bodies (IB’s) ...................................................................21
`2.3.5.3 Quantification of protein on SDS-gels ...................................................................21
`2.3.5.4
`Protein quantification according to Bradford..........................................................22
`2.3.6
`Protein analysis by immunoblot ................................................................................23
`2.3.6.1 Analysis of s S concentration..................................................................................23
`2.3.6.2 Analysis of H-NS concentration...........................................................................23
`2.3.6.3 Analysis of LexA concentration............................................................................24
`2.3.6.4 Analysis of ribosomal protein S8 concentration.....................................................24
`2.3.7
`Determination of nucleotide concentration by HPLC.................................................24
`
`BEQ 1021
`Page 7
`
`

`
`2.3.7.1 HPLC configuration.............................................................................................24
`2.3.7.2 Nucleotide (AXP) analysis ...................................................................................24
`2.3.7.3
`ppGpp analysis ....................................................................................................25
`2.3.7.4
`cAMP analysis.....................................................................................................26
`2.3.8
`Flow cytometry.......................................................................................................26
`2.3.9
`Rate determination of replication, transcription, and translation..................................26
`2.3.10
`Transmission electron microscopy of cell samples.....................................................27
`
`2.4
`2.4.1
`2.4.2
`2.4.3
`2.4.4
`
`On-line measurements and calculation......................................................................27
`On-line measurements .............................................................................................27
`Kinetic parameters ..................................................................................................28
`Glucose uptake capacity..........................................................................................28
`Respiration data ......................................................................................................28
`
`3 RESULTS........................................................................................................................30
`
`3.1
`3.1.1
`3.1.2
`
`Cell growth and segregation in recombinant bioprocesses.......................................30
`Cell growth in recombinant E. coli fed-batch cultivations..........................................30
`Cell segregation and plasmid stability after IPTG induction........................................34
`
`3.2
`3.2.1
`3.2.2
`3.2.3
`3.2.4
`3.2.5
`3.2.6
`
`Cellular responses after strong induction of recombinant aa-glucosidase ................39
`Activity of replication, transcription and translation....................................................39
`Plasmid amplification after induction.........................................................................41
`Influence of a-glucosidase production on the chromosomal DNA supercoiling...........43
`Analysis of DNA binding protein (H-NS) and LexA protein after induction...............45
`The energy situation following induction of a-glucosid ase ..........................................47
`Inhibition of glucose uptake rate after overexpression of recombinant genes ..............49
`
`3.3
`3.3.1
`3.3.2
`3.3.3
`3.3.4
`
`Stress responses after induction of recombinant gene expression...........................52
`Level of the stringent response regulator ppGpp.......................................................52
`The s S- related general stress response.....................................................................54
`Comparison of mRNA levels of genes controlled by different s factors......................58
`Level of cAMP in fed-batch fermentations of E. coli ................................................61
`
`3.4
`3.4.1
`3.4.2
`3.4.3
`
`Cell segregation and stress responses in large-scale cultivations ...........................64
`Large-scale cultivations of E. coli W3110................................................................64
`Large-scale cultivations of recombinant E. coli W3110 pRIT44T2...........................69
`Cell lysis and cAMP level in large-scale processes ...................................................72
`
`3.5
`
`3.5.1
`3.5.2
`3.5.3
`
`Influence of glucose oscillations on the aa-glucosidase process by using a scale-
`down technique ............................................................................................................75
`Effect of glucose oscillations on cell growth and a-glucosidase formation...................75
`Effect of controlled glucose oscillations on cell segregation and maintenance..............77
`Effect of controlled glucose oscillations on cell lysis and cellular responses.................81
`
`4 DISCUSSION ..................................................................................................................85
`
`4.1
`
`4.2
`
`Influence of recombinant gene overexpression on cell growth.................................85
`
`Cell segregation after induction.................................................................................89
`
`BEQ 1021
`Page 8
`
`

`
`4.2.1
`4.2.2
`
`Cell segregation into viable but non-culturable cells...................................................89
`Cell segregation into plasmid-free cells .....................................................................91
`
`4.3
`
`Plasmid content after induction..................................................................................94
`
`4.4
`4.4.1
`4.4.2
`
`Stress responses during fed-batch cultures of recombinant E. coli .........................94
`Stress responses to glucose limitation/starvation........................................................95
`Stress responses after the induction of recombinant genes.........................................98
`
`4.5
`
`4.6
`
`Cell physiology in large-scale bioprocesses ............................................................101
`
`Influence of substrate oscillations ............................................................................102
`
`5 CONCLUSION ..............................................................................................................104
`
`6 ACKNOWLEDGEMENTS ..........................................................................................105
`
`7 REFERENCES.............................................................................................................107
`
`BEQ 1021
`Page 9
`
`

`
`Abbreviations
`
`ADP
`AMP
`ATP
`BSA
`cAMP
`CRIMI
`CRP
`EC
`HPLC
`IAA
`IPTG
`kbp
`OD500
`ONPG
`NADHP
`PAGE
`PFR
`p-NPG
`ppGpp
`RBS
`RNAP
`SDS
`STR
`VBNC
`ZZ
`
`Nomenclature
`
`CCO2in
`CCO2out
`CER
`cfu
`CO2in
`CO2out
`DCW
`DOT
`Fs
`H
`kD
`m
`OUR
`P
`Q
`qCO2
`qO2
`qp
`qS
`R
`RQ
`S
`t
`T
`V
`X
`Yx/s
`

`
`3´,5´-adenosine diphosphate
`3´,5´-adenosine monophosphate
`3´,5´-adenosine triphosphate
`bovine serum albumin
`cyclic 3´,5´-adenosine monophosphate
`creatinine imino hydrolase (EC 3.5.4.21, 45 kDa)
`cAMP receptor protein, also called CAP (catabolite activator protein)
`energy charge
`high performance liquid chromatography
`b-indole acrylic acid
`isopropyl-b-D-thiogalactopyranoside
`kilo base pairs
`optical cell density at 500 nm
`o-nitrophenyl- b-D-galactopyranoside
`nicotinamide-adenine dinucleutide
`polyacrylamid gel electrophoresis
`plug flow reactor
`p-nitrophenyl-a-D-glucopyranoside
`guanosine 5´-diphosphate 3´-diphosphate
`ribosome binding site, also called Shine-Dalgarno-Sequence
`RNA polymerase
`sodium dodecyl sulfate
`stirred-tank reactor
`viable but non-culturable cell population (also as VNC)
`a modified domain B of staphylococcal protein A (17.7 kDa)
`
`carbon dioxide concentration in outlet gas
`carbon dioxide concentration in inlet gas
`volumetric carbon dioxide evaluation rate [mmol L-1h-1]
`colony forming units [mL-1]
`oxygen concentration in inlet gas (in %)
`oxygen concentration in outlet gas
`dry cell weight [g L-1]
`dissolved oxygen tension [%]
`substrate feed rate [g h -1]
`Henry constant
`specific death rate [h -1]
`maintenance coefficient [g substrate g -1 biomass h-1]
`volumetric oxygen uptake rate [mmol L-1 h-1]
`product concentration [g L-1]
`outlet gas flow rate [L h-1]
`specific carbon dioxide evaluation rate [mmol g -1 biomass h-1]
`specific oxygen uptake rate [mmol g -1h-1]
`specific product formation rate [g product g -1h-1]
`specific substrate consumption rate [g substrate g -1 biomass h-1]
`standard gas constant; = 22.4 [L mol-1]
`respiratory quotient [mol CO2 mol-1 O2]
`substrate concentration [g L-1]
`cultivation time [h]
`temperature [°C]
`culture volume [L]
`cell mass; dry cell weight [g L-1]
`yield coefficient for biomass per substrate [g biomass g -1 biomass]
`
`specific growth rate [h -1]
`
`BEQ 1021
`Page 10
`
`

`
`INTRODUCTION
`
`1 Introduction
`
`1
`
`The recent progress of genetic engineering allows the enrichment of high value therapeutics and other
`
`recombinant proteins in bacteria up to very high levels of the cell protein. However, for successful
`
`production of a protein the thoughtful integration of information from bacterial genetics, physiology,
`
`nucleic acid and protein chemistry, and biochemical engineering is required (Georgiou, 1996).
`
`An effective industrial process is characterized by high product concentrations at a high cell mass
`
`(Riesenberg & Guttke, 1999). By the common way high cell densities are obtained with a fed-batch
`
`procedure. During the feed phase one defined medium component is continuously added to the
`
`fermenter in a growth-limiting amount in order to control the growth conditions, such as overflow
`
`metabolism, accumulation of toxic compounds and oxygen availability (Yamané and Shimizu, 1984).
`
`As the growth rate in a fed-batch culture is generally lower than the maximum growth rate of the
`
`organism, a cell which is cultivated under fed-batch conditions to high cell densities has a very
`
`different physiological and metabolic status than a cell which is grown at low density in nutrient broth
`
`in shake flasks. This difference surely influences synthesis rates, protein stability, and protein folding,
`
`and therefore it can be suggested that the process also has a major influence on the down stream
`
`purification process.
`
`A further important parameter in the industrial production is the scale of process. Large conventional
`
`bioreactors are commonly inhomogenous systems with respect to nutrient concentrations, gas
`
`distribution, and pH profile, mainly due to mixing and mass transfer limitations caused by a realistic
`
`power input. Recent studies indicated that microorganisms react to gradients in the reactor by a
`
`short-term response which finally can influence the process (Larsson & Enfors, 1988; Neubauer et
`
`al., 1995a,b; Larsson et al., 1996; Bylund et al., 1998; Xu et al., 1999). However, the overall effect
`
`of such inhomogeneity on the process performance is still not well investigated.
`
`The aim of this thesis was to study extensively the effects of recombinant protein production on the
`
`host cell physiology in context to the cultivation method and the production scale for one model
`protein, a heterologous a -glucosidase from Saccharomyces cerevisiae. Thereby, we concentrated
`
`on specific parameters, such as cell growth, viability, plasmid stability, product formation, and some
`
`connected cellular responses. In the case of scale effects the study was focused on the question how
`
`repeated short term glucose starvation influences the production.
`
`BEQ 1021
`Page 11
`
`

`
`INTRODUCTION
`
`2
`
`The comprehensive study on this specific model protein, a -glucosidase, was for some specific
`
`questions extended to processes with two other model proteins. Although the investigations with
`both other proteins are comparable to the a -glucosidase process only in a limited number of
`
`parameters, the study with the three different proteins was important for the critical discussion of the
`
`influence which is caused by the specific product characteristics.
`
`1.1 Principle aspects of recombinant gene expression in E. coli
`The overexpression of heterologous genes is influenced by several factors like plasmid stability,
`
`plasmid copy number, strength of promoter, stability of mRNA, availability of ribosomes,
`
`transcription and translation efficiency, post-translational modification, the stability and solubility of
`
`the recombinant protein itself, as well as host cell and culture conditions (Sawers & Jarsch, 1996).
`
`Recombinant processes aiming for a high amount of heterologous protein are often based on the use
`
`of strong expression systems which are regulated at the level of transcription (Swartz, 1996; Vicente
`et al., 1999). Therefore, strong inducible promoter are used, such as Plac, l PL, and l PR, or the
`promoter of the T7 RNA polymerase (Remaut et al.,1981; DeBoer et al., 1983; Studier and
`
`Moffatt, 1986). Such systems are commonly used for transient production of the recombinant
`
`protein, which is induced after a growth phase during which product formation is low. In many cases,
`
`after performing the inducing signal the specific production rate increases to a maximum only within a
`
`short time and product synthesis continues for one to four hours. Although in most cases it is
`
`sufficient to increase the product to a high part of the cell protein, mistranslation, aborted translation,
`
`product modification, product aggregation and degradation are consequences, which could be
`
`suggested to negatively influence the down-stream purification process. Whereas optimization is
`
`mostly performed by random screening procedures, a more comprehensive knowledge about the
`
`cellular processes and regulations in inducible recombinant systems is necessary for a knowledge
`
`based optimization.
`
`Several cellular processes have been investigated in different expression systems in connection to the
`
`question how they are influenced following induction. So high synthesis of heterologous proteins often
`
`effects the central carbon metabolism, which sometimes results in an elevated accumulation of
`
`acetate (Shimizu et al., 1988; Seeger et al., 1995). Also the respiratory activity has been described
`
`to increase after IPTG addition (Bhattacharya & Dubey, 1997), however, the interconnection
`
`between the change of the carbon metabolism and respiration has not been analyzed in detail yet.
`
`BEQ 1021
`Page 12
`
`

`
`INTRODUCTION
`
`3
`
`Although one should assume a drastic change of the protein synthesis pattern after induction when
`
`the synthesis of the recombinant product occupies most of the total protein generating system, only a
`
`few articles were looking on this fact (Bailey, 1993) and a comprehensive analysis is yet missing.
`
`However, it is obvious that transcription as well as translation of the product compete with the
`
`synthesis of house-keeping proteins and decrease their synthesis within minutes after induction (Vind
`
`et al., 1993; Rinas, 1996; Dong et al., 1995). Interestingly, all three groups, although using different
`
`systems and procedures for production of their recombinant product, found a strong reduction of the
`
`synthesis rate and the concentration of ribosomal proteins.
`
`Aside from this reduction of house-keeping proteins, recombinant protein production often also
`
`causes a heat shock like response which is possibly triggered by incorrectly folded intermediates of
`
`the product (Goff & Goldberg, 1985, 1987; Kosinski & Bailey, 1991; Kosinski et al., 1992b).
`
`Possibly the appearance of incorrectly folded intermediates is the cause that

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket