throbber
Iowa State University
`Digital Repository @ Iowa State University
`
`Retrospective Theses and Dissertations
`
`1994
`
`The effect of liquid inundation, vapor shear, and
`non-condensible gases on the condensation of
`refrigerants HFC-134a and HCFC-123
`Lance Edward Rewerts
`Iowa State University
`
`Follow this and additional works at: http://lib.dr.iastate.edu/rtd
`Part of the Mechanical Engineering Commons
`
`Recommended Citation
`Rewerts Lance Edward "The effect of l qu d nundat on vapor shear and non condens ble gases on the condensat on of refr gerants
`HFC 134a and HCFC 123 " (1994). Retrospective Theses and Dissertations. Paper 11311.
`
`Th s D sse a o s b oug o you o ee a d ope access by D g a Repos o y @ Iowa S a e U ve s y. I as bee accep ed o c us o
`Re ospec ve Theses a d D sse a o s by a au o zed ad
`s a o o D g a Repos o y @ Iowa S a e U ve s y. Fo o e
`o
`a o , p ease
`co ac
`e uku@ as a e.edu.
`
`Page 1 of 226
`
`Samsung Exhibit 1022
`Samsung Electronics Co., Ltd. v. Daniel L. Flamm
`
`

`
`
`
`
`INFORMATION TO USERS
`
`
`
`
`
`
`
`
`
`
`
`This manuscript has been reproduced from the microfilm master. UMI
`
`
`
`
`
`
`
`
`
`
`
`
`films the text directly from the original or copy submitted. Thus, some
`
`
`
`
`
`
`
`
`
`
`
`thesis and dissertation copies are in typewriter face, while others may
`
`
`
`
`
`
`
`be from any type of computer printer.
`
`
`
`
`
`
`
`
`
`
`
`
`
`The quality of this reproduction is dependent upon the quality of the
`
`
`
`
`
`
`
`
`
`
`copy submitted. Broken or indistinct print, colored or poor quality
`
`
`
`
`
`
`
`illustrations and photographs, print bleedthrough, substandard margins,
`
`
`
`
`
`
`
`and improper alignment can adversely affect reproduction.
`
`
`
`
`
`
`
`
`
`
`
`
`
`In the unlikely. event that the author did not send UMI a complete
`
`
`
`
`
`
`
`
`
`
`
`manuscript and there are missing pages, these will be noted. Also, if
`
`
`
`
`
`
`
`
`
`
`unauthorized copyright material had to be removed, a note will indicate
`the deletion.
`
`
`
`
`
`
`
`
`
`
`
`
`Oversize materials (e.g., maps, drawings, charts) are reproduced by
`
`
`
`
`
`
`
`
`
`
`sectioning the original, beginning at the upper left-hand comer and
`
`
`
`
`
`
`
`
`
`
`
`
`continuing from left to right in equal sections with small overlaps. Each
`
`
`
`
`
`
`
`
`
`
`
`original is also photographed in one exposure and is included in
`
`
`
`
`
`
`
`
`reduced form at the back of the book.
`
`
`
`
`
`
`
`
`
`
`Photographs included in the original manuscript have been reproduced
`
`
`
`
`
`
`
`
`
`
`
`
`xerographically in this copy. Higher quality 6" x 9" black and white
`
`
`
`
`
`
`
`
`
`photographic prints are available for any photographs or illustrations
`
`
`
`
`
`
`
`
`
`
`
`appearing in this copy for an additional charge. Contact UMI directly
`to order.
`
`
`
`UMI
`
`A Bell 8. Howell Information Company
`
`
`
`
`
`
`300 North Zeeb Road. Ann Arbor. MI 48106-1346 USA
`
`
`
`
`
`
`
`
`
`3132761-4700
`800.’521-0600
`
`
`
`Page 2 of 226
`
`

`
`Page 3 of 226
`
`

`
`Order Number 9518434
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`The effect of liquid inundation, vapor shear, and non-condensible
`
`
`
`
`
`
`
`
`gases on the condensation of refrigerants HFC-134a and
`HCFC-123
`
`
`
`
`
`Rewerts, Lance Edward, Ph.D.
`
`
`
`Iowa State University, 1994
`
`
`
`
`
`
`
`
`U-M-I
`300 N. Zecb Rd.
`
`Ann Arbor, MI 48106
`
`
`
`
`
`
`Page 4 of 226
`
`

`
`Page 5 of 226
`
`

`
`
`
`
`
`

`
`
`
`TABLE OF CONTENTS
`
`
`
`
`
`ACKNOWLEDGEMENTS
`
`NOMENCLATURE .
`
`
`.
`
`.
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`CHAPTER 1.
`
`
`
`INTRODUCTION
`
`
`
`
`Scope of Research Project
`
`
`
`.
`
`.
`
`.
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`
`
`.
`
`. xxiii
`
`
`
`
`
`2
`
`
`
`4
`
`.
`
`.
`
`.
`
`.
`
`
`
`
`Organization of Report .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`CHAPTER 2. LITERATURE REVIEW
`
`
`
`
`
`
`Introduction
`
`
`
`
`
`
`Single Tube Condensation .
`
`.
`
`.
`
`.
`
`.
`
`Smooth tubes
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`
`
`
`
`
`
`
`
`
`
`Finned tubes .
`
`
`
`
`
`Liquid Inundation .
`
`Smooth tubes
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Finned and enhanced tubes .
`
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`
`
`
`
`
`
`
`
`13
`
`17
`
`
`Vapor Shear
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Smooth tubes
`
`
`
`
`Finned and enhanced tubes .
`
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`
`
`
`
`Combined Inundation and Vapor Shear
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Condensation with Non-condensible Gases
`
`
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 20
`
`. 22
`
`
`
`
`
`
`
`
`
`
`
`Page 7 of 226
`
`

`
`CHAPTER 3. EXPERIMENTAL APPARATUS
`
`
`
`
`
`
`
`Test Section
`
`
`
`
`Tube Bundles
`
`
`
`
`
`
`
`
`Non—condensible gas bundle configuration .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`
`
`
`
`
`
`
`Liquid inundation and vapor shear bundle configuration .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 35
`
`. 35
`
`. 37
`
`
`
`
`
`
`
`
`
`
`
`
`
`Refrigerant Loop .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 39
`
`
`Glycol Chiller
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`
`
`
`Data Acquisition System .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 40
`
`. 43
`
`CHAPTER 4. EXPERIMENTAL PROCEDURES .
`
`
`
`
`
`Water-side Heat Transfer Coefficient .
`
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 43
`
`. 47
`
`
`
`Rig Operation .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`
`
`Non—condensible gases .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 49
`
`. 52
`
`
`
`
`
`Liquid inundation with HFC-134a .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`
`
`
`
`
`
`Vapor shear and liquid inundation with HCFC-123
`
`
`
`Data Reduction
`
`
`
`
`
`
`
`
`
`
`
`Uncertainty of the Shell-side Heat Transfer Coefficients .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Data Presentation
`
`
`
`
`
`
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`61
`
`
`
`
`
`61
`
`
`
`
`Non-condensible gas results .
`
`
`
`Liquid inundation .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 62
`
`
`
`
`
`
`
`
`Combined vapor shear and liquid inundation results .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 63
`
`
`
`CHAPTER 5. THE EFFECT OF NON-CONDENSIBLE GASES ON THE CON-
`
`
`
`
`
`
`
`
`
`
`DENSATION OF HCFC-123
`
`
`
`
`
`
`
`
`
`Results of the 26-fpi Geometry
`
`
`
`
`
`Bundle performance .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 65
`
`
`
`
`
`
`
`Page 8 of 226
`
`

`
`
`
`Row-by-row performance .
`
`
`
`
`
`
`Results for the 40-fpi Geometry .
`
`.
`
`.
`
`.
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`
`
`
`
`. 67
`
`. 68
`
`. 68
`
`
`
`Bundle performance .
`
`
`
`Row-by-row performance .
`
`
`
`
`
`
`Results for the Tu-Cii Geometry .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`
`
`
`
`. 73
`
`. 76
`
`
`
`. 76
`
`
`
`Bundle performance .
`
`.
`
`.
`
`
`
`Row-by-row performance .
`
`
`
`
`
`
`Results for the G-SC Geometry .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 77
`
`. 82
`
`. 82
`
`
`
`
`
`
`
`
`
`Bundle performance .
`
`.
`
`.
`
`.
`
`
`
`Row-by-row performance .
`
`.
`
`.
`
`
`
`
`
`Comparisons Between Test Bundles .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`
`
`
`
`. 84
`
`.
`
`85
`
`
`
`. 90
`
`
`Summary .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`CHAPTER 6. HFC-l34AlNUNDATl0N RESULTS .
`
`
`
`
`
`
`
`
`
`
`
`Results forthe 26-fpi Geometry .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 93
`
`. 94
`
`. 100
`
`
`
`
`
`
`
`
`
`
`
`
`Results for the 40-fpi Geometry .
`
`
`
`
`
`
`Results for the Tu-Cii Geometry .
`
`
`
`
`
`
`Results for the G-SC Geometry .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`
`
`
`
`Comparisons Between Tube Geometries .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`
`
`
`
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`. 105
`
`. 109
`
`. 112
`
`.
`
`1 16
`
`
`Summary .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`
`
`CHAPTER 7. HCFC-123 INUNDATION AND VAPOR SHEAR RESULTS .
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`Results for the 26-fpi Geometry .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`1 l8
`
`
`. 120
`
`
`
`. 120
`
`
`
`
`Simulated bundle profile .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`
`
`
`
`
`Performance as a function of Reynolds number
`
`
`
`
`
`
`Test bundle row performance
`
`
`
`.
`
`.
`
`.
`
`
`
`
`
`
`Performance as a function of Tsw .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 122
`
`. 123
`
`. 125
`
`
`
`
`
`
`
`
`
`Page 9 of 226
`
`

`
`
`
`
`
`
`Results for the 40-fpi Geometry .
`
`
`
`
`Simulated bundle profile .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`
`
`
`
`
`
`Performance as a function of Reynolds number
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`
`
`
`
`
`
`. 126
`
`. 126
`
`. 128
`
`. I29
`
`Performance as a function of Tgw .
`
`
`
`
`
`
`
`
`Test bundle performance .
`
`.
`
`
`
`
`
`
`Results for the Tu-Cii Geometry .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`
`
`
`
`
`
`. 129
`
`. I30
`
`. 130
`
`
`
`
`Simulated bundle performance .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`
`
`
`
`
`
`Performance as a function of Reynolds number
`
`
`
`
`Test bundle performance .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`
`
`
`
`
`
`. 133
`
`. 134
`
`. 136
`
`Performance as a function of T3“,
`
`
`
`
`
`
`
`
`
`
`
`
`Results for the G-SC Geometry .
`
`.
`
`.
`
`
`
`
`Simulated bundle performance .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`
`
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. I37
`
`. 137
`
`. 138
`
`
`
`
`
`
`Performance as a function of Reynolds number
`
`
`
`
`
`
`Test bundle performance .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Performance as a function of Tsw .
`
`
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`
`
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 139
`
`. I40
`
`. I42
`
`
`
`
`
`Comparisons Between Tube Geometries .
`
`
`Summary .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 145
`
`. 147
`
`CHAPTER 8. CONCLUSIONS .
`
`
`
`
`
`
`SummaryofHFC-134a Data .
`
`.
`
`
`
`
`
`Summary of HCFC-123 Data .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. I47
`
`. 148
`
`
`
`
`
`. 148
`
`
`
`
`Non—condensible gas tests .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`
`
`
`
`
`Liquid inundation and vapor shear tests
`
`
`
`BIBLIOGRAPHY .
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`
`
`
`
`. I49
`
`. l5l
`
`
`
`
`
`
`
`
`
`
`APPENDIX A. DERIVATION OF UNCERTAINTY ANALYSIS EQUATIONS .
`
`
`. 155
`
`
`
`APPENDIX B. TABULATED HCFC-123 NON-CONDENSIBLE GAS DATA .
`
`
`
`
`
`
`
`
`. 161
`
`
`
`Page 10 of 226
`
`

`
`
`
`APPENDIX C. TABULATED HFC-134a INUNDATION DATA .
`
`
`
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 178
`
`
`
`APPENDIX D. TABULATED HCFC-123 SHEAR AND INUNDATION DATA .
`
`
`
`
`
`
`
`
`
`. 187
`
`
`
`Page 11 of 226
`
`

`
`
`
`LIST OF TABLES
`
`
`
`
`
`Table 2.1:
`
`
`
`
`
`
`
`
`
`
`
`
`
`Coefficients and exponents for Equation 2.21 found by Webb (1990)
`
`
`
`
`
`
`
`
`
`using CFC-llon five in-line tubes .
`
`Table 3.1:
`
`
`
`
`
`
`
`Tube geometry specifications .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`15
`
`
`
`32
`
`
`
`33
`
`Table 3.2:
`
`
`
`
`Table 3.3:
`
`
`
`
`Table 4.1:
`
`
`
`
`Table 4.2:
`
`
`
`
`
`
`
`Tube internal enhancement specifications
`
`
`
`
`
`
`
`Uncertainties in the measured parameters
`
`
`
`
`
`
`
`
`
`STC for the four tube geometries .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`
`
`. 4]
`
`
`
`. 47
`
`. 50
`
`
`
`
`
`
`
`
`
`
`
`
`Volumes of N2 injected into test section.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Table 4.3:
`
`
`
`
`
`
`
`
`
`
`
`
`Test section conditions for a 30-row bundle simulation; refrigerant
`
`
`
`
`
`
`
`
`
`
`flow rate, water flow rate, water temperature held constant .
`
`Table 6.1:
`
`
`
`
`
`
`
`
`
`
`Coefficients and exponents for Equation 6.2 .
`
`Table 7.1:
`
`
`
`
`
`
`
`
`
`
`Coeflicients and exponents for Equation 7.2 .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 54
`
`
`
`.
`
`1 15
`
`
`
`. 145
`
`
`
`Table B.l:
`
`
`
`
`
`
`
`
`
`
`
`
`Refrigerant-side data for the 26-fpi geometry with non-condensible
`
`
`
`
`
`
`
`
`gas contamination in HCFC-123 condensation .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. I62
`
`
`
`Table B.2:
`
`
`
`
`
`
`
`
`
`
`
`
`Water-side data for the 26-fpi geometry with non-condensible gas
`
`
`
`contamination in HCFC-123 condensation .
`
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. I63
`
`Table B.3:
`
`
`
`
`
`
`
`
`
`
`
`
`
`Row data for the 26-fpi geometry with non-condensible gas contam-
`
`ination in HCFC-123 condensation .
`
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. I64
`
`
`
`
`
`Page 12 of 226
`
`

`
`
`
`Table B.4:
`
`
`
`
`
`
`
`
`
`
`
`
`
`Shell-side heat transfer coefficients and uncertainties for the 26-fpi
`
`
`
`
`
`
`
`geometry with non-condensible gas contamination in HCFC-I23
`
`
`
`condensation .
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 165
`
`
`
`Table B.5:
`
`
`
`
`
`
`
`
`
`
`
`Refrigerant-side data for the 40-fpi geometry with non-condensible
`
`
`
`
`
`
`
`
`gas contamination in HCFC-I23 condensation .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. I66
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`Water-side data for the 40-fpi geometry with non-condensible gas
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 167
`
`contamination in HCFC-I23 condensation .
`
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`Row data for the 40-fpi geometry with non-condensible gas contam-
`
`ination in HCFC-I23 condensation .
`
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 168
`
`Table B.8:
`
`
`
`
`
`
`
`
`
`
`
`
`Shell-side heat transfer coefficients and uncertainties for the 40-fpi
`
`
`
`
`
`
`
`
`
`geometry with non-condensible gas contamination in HCFC-I23
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 169
`
`
`
`
`
`condensation .
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`Refrigerant-side data for the Tu-Cii geometry with non-condensible
`
`
`
`
`
`
`
`
`gas contamination in HCFC-I23 condensation .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 170
`
`
`
`Table B.l0:
`
`
`
`
`
`
`
`
`
`
`
`
`
`Water-side data for the Tu-Cii geometry with non-condensible gas
`
`
`
`contamination in HCFC-I23 condensation .
`
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 171
`
`Table B.1 1:
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`Row data for the Tu-Cii geometry with non-condensible gas con-
`
`tamination in HCFC-I23 condensation .
`
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. I72
`
`
`
`
`
`Table B. 12:
`
`
`
`
`
`Shell-side heat transfer coefficients and uncertainties for the Tu-Cii
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`geometry with non-condensible gas contamination in HCFC-I23
`
`
`
`. 173
`
`condensation .
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`
`
`Table B.l3:
`
`
`
`
`
`
`
`
`
`
`
`
`
`Refrigerant-side data for the G-SC geometry with non-condensible
`
`
`
`
`
`
`gas contamination in HCFC-I23 condensation .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 174
`
`
`
`Table B.l4:
`
`
`
`
`
`
`
`
`
`
`
`
`
`Water-side data for the G-SC geometry with non-condensible gas
`
`contamination in HCFC-I23 condensation .
`
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. I75
`
`
`
`Page 13 of 226
`
`

`
`
`
`Table B.l5:
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`Row data for the G-SC geometry with non-condensible gas contam-
`
`ination in HCFC-123 condensation .
`
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. I76
`
`
`
`Table B.l6:
`
`
`
`
`Shell-side heat transfer coefficients and uncertainties for the G-SC
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`geometry with non-condensible gas contamination in HCFC-123
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 177
`
`condensation .
`
`
`.
`
`
`
`Table C. 1:
`
`
`
`Table C.2:
`
`
`
`
`Table C.3:
`
`
`
`
`Table C.4:
`
`
`
`
`Table C.5:
`
`
`
`
`Table C.6:
`
`
`
`
`
`
`
`
`
`
`
`
`
`Refrigerant-side data for the 26-fpi geometry in HFC-134a inundation l 79
`
`
`
`
`
`
`
`
`
`
`Water-side data for the 26-fpi geometry in HFC-134a inundation .
`
`
`
`. l79
`
`
`
`
`
`
`
`
`
`
`Row data for the 26-fpi geometry in HFC-134a inundation
`
`.
`
`.
`
`.
`
`.
`
`. I80
`
`
`
`
`
`
`
`
`
`
`
`
`Shell-side heat transfer coefiicients and uncertainties for the 26-fpi
`
`
`
`
`
`geometry in HFC-134a inundation .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 180
`
`
`
`
`
`
`
`
`
`
`
`
`Refrigerant-side data for the 40-fpi geometry in HFC-134a inundationl8l
`
`
`
`
`
`
`
`
`
`
`
`
`Water-side data for the 40-fpi geometry in HFC-l34a inundation .
`
`. l8l
`
`
`
`.
`
`.
`
`.
`
`. 182
`
`Table C.7:
`
`
`
`
`Table C.8:
`
`
`
`
`Table C.9:
`
`
`
`
`Table C. 10:
`
`
`
`
`
`Table C.1 I:
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`Row data for the 40-fpi geometry in HFC-134a inundation
`
`.
`
`
`
`
`
`
`
`
`
`
`
`
`Shell-side heat transfer coefficients and uncertainties for the 40-fpi
`
`
`
`
`
`geometry in HFC-134a inundation .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 182
`
`
`
`
`
`
`
`
`
`
`
`
`Refrigerant—side data for the Tu-Cii geometry in HFC-134a inundation I83
`
`
`
`
`
`
`
`
`
`
`
`
`Water—side data for the Tu-Cii geometry in HFC-134a inundation .
`
`. 183
`
`
`
`
`
`
`
`
`
`
`
`
`Row data for the Tu-Cii geometry in HFC-134a inundation .
`
`.
`
`.
`
`.
`
`. 184
`
`
`
`Table C.l2:
`
`
`
`
`
`Shell-side heat transfer coefficients and uncertainties for the Tu-Cii
`
`
`
`
`
`
`
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 184
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`geometry in HFC-134a inundation .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`
`
`
`
`
`
`
`
`
`
`
`Refrigerant-side data for the G-SC geometry in HFC-134a inundation 185
`
`
`
`
`
`
`
`
`
`
`
`Water—side data for the G-SC geometry in HFC-134a inundation .
`
`
`.
`. I85
`
`
`
`
`
`
`
`
`
`
`
`
`Row data for the G-SC geometry in HFC-l34a inundation .
`
`.
`
`.
`
`.
`
`.
`
`. 186
`
`
`
`Shell-side heat transfer coefficients and uncertainties for the G-SC
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`geometry in HFC-l34a inundation .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. I86
`
`
`
`Page 14 of 226
`
`

`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`Table D.5:
`
`
`
`
`Table D6:
`
`
`
`
`Table D7:
`
`
`
`
`Table D.8:
`
`
`
`
`
`
`
`
`
`
`
`
`
`Refrigerant-side data for the 26-fpi geometry in HCFC-123 inundation 188
`
`
`
`
`
`
`
`
`
`
`
`
`Water-side data for the 26-fpi geometry in HCFC-123 inundation .
`
`
`. 188
`
`
`
`
`
`
`
`
`
`
`
`
`Row data for the 26-fpi geometry in HCFC-I23 inundation .
`
`.
`
`.
`
`.
`
`. 189
`
`
`
`
`
`
`
`
`
`
`
`Shell-side heat transfer coefiicients and uncertainties for the 26-fpi
`
`
`
`
`
`
`
`geometry in HCFC-123 inundation .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. I89
`
`
`
`
`
`
`
`
`
`
`
`
`Refrigerant-side data for the 40-fpi geometry in HCFC— l 23 inundation 190
`
`
`
`
`
`
`
`
`
`
`
`
`Water‘-side data for the 40-fpi geometry in I-ICFC-123 inundation .
`
`
`. 190
`
`
`
`
`
`
`
`
`
`
`
`
`Row data for the 40-fpi geometry in HCFC-I23 inundation .
`
`.
`
`.
`
`.
`
`. l9l
`
`
`
`
`
`
`
`
`
`
`
`
`Shell-side heat transfer coefficients and uncertainties for the 40-fpi
`
`
`
`
`
`geometry in HCFC—l23 inundation .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. l9l
`
`
`
`
`
`Table D.9:
`
`
`
`
`Table D.l0:
`
`
`
`
`Table D.l 1:
`
`
`
`
`
`
`
`
`
`
`
`
`
`Refrigerant-side data for the Tu—Cii geometry in HCFC-123 inundation 192
`
`
`
`
`
`Water-side data for the Tu—Cii geometry in HCFC—l23 inundation .
`. 192
`
`
`
`
`
`
`
`
`
`
`
`
`Row data for the Tu—Cii geometry in HCFC— I23 inundation .
`
`.
`
`.
`
`.
`
`. 193
`
`
`
`Table D.l2:
`
`
`
`
`
`Shell-side heat transfer coefiicients and uncertainties for the Tu—Cii
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`geometry in HCFC-123 inundation .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. I93
`
`
`
`
`
`
`
`
`
`
`
`
`Refrigerant-side data for the G-SC geometry in HCFC-123 inundation l94
`
`
`
`
`
`
`
`
`
`
`
`
`Water-side data for the G-SC geometry in HCFC-123 inundation .
`
`
`
`. 194
`
`
`
`
`
`
`
`
`
`
`
`Row data for the G-SC geometry in HCFC-123 inundation
`
`
`
`.
`
`.
`
`.
`
`.
`
`. 195
`
`
`
`Shell-side heat transfer coefficients and uncertainties for the G-SC
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`geometry in HCFC-123 inundation .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 195
`
`
`
`Page 15 of 226
`
`

`
`
`
`LIST OF FIGURES
`
`
`
`
`
`
`Figure 2.1:
`
`
`
`
`
`
`
`
`
`
`
`Schematic of condensation and condensate flooding of a finned tube
`
`
`
`
`
`(Mano, 1991) .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`8
`
`
`
`
`Figure 2.2:
`
`
`
`
`
`
`
`
`Schematic of different condensate flow patterns.
`
`
`
`
`
`(a) Nusselt con-
`
`
`
`
`
`
`
`
`
`
`densation, (b) staggered bundle flow, (c) turbulent dripping, (d) hor-
`
`
`
`
`
`
`
`
`izontal vapor flow with shear. (Marto, 1991) .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`l 1
`
`
`
`
`Figure 2.3:
`
`
`
`
`
`
`
`
`
`
`
`Schematic ofcondensation in the presence ofnon-condensible gases.
`
`
`
`
`
`
`
`
`
`
`Boundary layer temperature and pressure distributions. (Webb and
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 26
`
`
`
`Wanniarachchi (1980)) .
`
`.
`
`.
`
`
`Figure 3.1:
`
`
`
`
`
`
`
`
`Schematic of experimental test facility .
`
`
`Figure 3.2:
`
`
`
`Schematic of bundle tube sheet .
`
`
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`
`Figure 3.3:
`
`
`
`
`
`
`
`
`
`
`
`Cross section of test bundle with inundation apparatus .
`
`.
`
`.
`
`.
`
`
`Figure 4.1:
`
`
`
`
`
`
`
`
`
`
`
`Water-side STC data for the 26-fpi and 40-fpi geometries
`
`
`
`.
`
`.
`
`.
`
`.
`
`
`Figure 4.2:
`
`
`
`
`
`
`
`
`
`
`
`
`Water-side STC data for the Tu-Cii and G-SC geometries .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 30
`
`. 34
`
`. 36
`
`. 48
`
`. 48
`
`
`Figure 5.1:
`
`
`
`
`
`
`
`
`
`
`
`
`Average shell-side bundle heat transfer coefficient vs. LMTD for the
`
`
`
`
`
`
`
`
`
`
`26-fpi bundle at various nitrogen concentrations during condensation
`
`
`
`with HCFC-123
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`Page 16 of 226
`
`

`
`
`
`
`Figure 5.2:
`
`
`
`
`
`
`
`
`
`
`
`
`Average shell-side bundle heat transfer coefficient vs. heat flux for
`
`
`
`
`
`
`
`
`
`
`
`the 26-fpi bundle at various nitrogen concentrations in condensation
`
`
`
`with HCFC-123
`
`
`
`
`
`
`Figure 5.3:
`
`
`
`
`
`
`
`
`
`
`
`
`
`Average shell-side row heat transfer coeflicient vs. row number for
`
`
`
`
`
`
`
`
`
`the 26-fpi bundle at various nitrogen concentrations during conden-
`
`sation with HCFC-123; average bundle heat flux = 20,200 W/m2
`
`
`
`
`
`
`
`
`
`
`
`
`(6400 Btu/h/ftz)
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 69
`
`
`
`
`Figure 5.4:
`
`
`
`
`
`
`
`
`
`
`
`
`
`Average shell-side row heat transfer coefficient vs. row number for
`
`
`
`
`
`
`
`
`
`the 26-fpi bundle at various nitrogen concentrations during conden-
`
`sation with HCFC-123; average bundle heat flux = 25,000 W/m2
`
`
`
`
`
`
`
`
`
`
`
`
`(7920 Btu/h/R2)
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 69
`
`
`
`
`Figure 5.5:
`
`
`
`
`
`
`
`
`
`
`
`
`Average shell-side row heat transfer coeflicient vs. row number for
`
`
`
`
`
`
`
`
`
`
`
`the 26-fpi bundle at various nitrogen concentrations during conden-
`
`sation with HCFC-123; average bundle heat flux = 29,300 W/m2
`
`
`
`
`
`
`
`
`
`
`
`
`(9290 Btu/h/ftz)
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 70
`
`
`
`
`Figure 5.6:
`
`
`
`
`
`
`
`
`
`
`
`
`
`Average shell-side row heat transfer coeflicient vs. row number for
`
`
`
`
`
`
`
`
`
`the 26-fpi bundle at various nitrogen concentrations during conden-
`
`sation with HCFC-123; average bundle heat flux = 33,900 W/m2
`
`
`
`
`
`
`
`
`
`
`
`
`(10,740 Btu/h/ftz)
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 70
`
`
`
`
`Figure 5.7:
`
`
`
`
`
`
`
`
`
`
`
`
`Average shell-side bundle heat transfer coefficient vs. LMTD for the
`
`
`
`
`
`
`
`
`
`
`40-fpi bundle at various nitrogen concentrations during condensation
`
`
`
`with HCFC-123
`
`
`
`
`
`Figure 5.8:
`
`
`
`
`
`
`
`
`
`
`
`
`Average shell-side bundle heat transfer coefficient vs. heat flux for
`
`
`
`
`
`
`
`
`
`
`
`the 40-fpi bundle at various nitrogen concentrations in condensation
`
`
`
`with HCFC- 123
`
`
`
`
`
`
`
`
`Page 17 of 226
`
`

`
`
`
`
`Figure 5.9:
`
`
`
`
`
`
`
`
`
`
`
`
`
`Average shell-side row heat transfer coefficient vs. row number for
`
`
`
`
`
`
`
`
`
`the 40-fpi bundle at various nitrogen concentrations during conden-
`
`sation with HCFC-123; average bundle heat flux = 20,200 W/m2
`
`
`
`
`
`
`
`
`
`
`
`
`(6400 Btu/h/ftz)
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`74
`
`
`
`
`Figure 5.10:
`
`
`
`
`
`
`
`
`
`
`
`
`
`Average shell-side row heat transfer coeflicient vs. row number for
`
`
`
`
`
`
`
`
`
`the 40-fpi bundle at various nitrogen concentrations during conden-
`
`sation with HCFC-123; average bundle heat flux = 25,000 W/m2
`
`
`
`
`
`
`
`
`
`
`
`
`(7920 Btu/h/ft2)
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`74
`
`
`
`
`Figure 5.11:
`
`
`
`
`
`
`
`
`
`
`
`
`
`Average shell-side row heat transfer coefficient vs. row number for
`
`
`
`
`
`
`
`
`
`the 40-fpi bundle at various nitrogen concentrations during conden-
`
`sation with HCFC-123; average bundle heat flux = 29,300 W/m2
`
`
`
`
`
`
`
`
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`75
`
`(9290 Btu/h/ft2)
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`
`
`
`Figure 5.12:
`
`
`
`
`
`
`
`
`
`
`
`
`
`Average shell-side row heat transfer coefficient vs. row number for
`
`
`
`
`
`
`
`
`
`the 40-fpi bundle at various nitrogen concentrations during conden-
`
`sation with HCFC-123; average bundle heat flux = 33.900 W/m2
`
`
`
`
`
`
`
`
`
`
`
`
`(10,740 Btu/h/ftz)
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`75
`
`
`
`
`Figure 5.13:
`
`
`
`
`
`
`
`
`
`
`
`Average shell-side bundle heat transfer coefficient vs. LMTD for the
`
`
`
`
`
`
`
`
`
`
`Tu-Cii bundle at various nitrogen concentrations during condensa-
`
`tion with HCFC-123
`
`
`
`
`
`
`
`
`Figure 5.14:
`
`
`
`
`
`
`
`
`
`
`
`
`
`Average shell-side bundle heat transfer coefficient vs. heat flux for
`
`
`
`
`
`
`
`
`
`the Tu-Cii bundle at various nitrogen concentrations during conden-
`
`sation with HCFC-123 .
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`78
`
`
`
`Page 18 of 226
`
`

`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`Figure 5.15: Average shell-side row heat transfer coefficient vs. row number for
`
`
`
`
`
`
`
`
`
`the Tu-Cii bundle at various nitrogen concentrations during conden-
`
`sation with I-ICFC-123; average bundle heat flux = 20,200 W/m2
`
`
`
`
`
`
`
`
`
`
`
`
`(6400 Btu/h/ftz)
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`,
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`30
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`Figure 5.16: Average shell-side row heat transfer coefficient vs. row number for
`
`
`
`
`
`
`
`
`
`the Tu-Cii bundle at various nitrogen concentrations during conden-
`
`sation with HCFC-123; average bundle heat flux = 25,000 W/m2
`
`
`
`
`
`
`
`
`
`
`
`
`(7920 Btu/h/ftz)
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`so
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`Figure 5.17: Average shell-side row heat transfer coefficient vs. row number for
`
`
`
`
`
`
`
`
`
`the Tu-Cii bundle at various nitrogen concentrations during conden-
`
`sation with HCFC-123; average bundle heat flux = 29,300 W/m2
`
`
`
`
`
`
`
`
`
`
`
`81
`
`(9290 Btu/h/R2)
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`Figure 5.18: Average shell-side row heat transfer coefficient vs. row number for
`
`
`
`
`
`
`
`
`
`the Tu-Cii bundle at various nitrogen concentrations during conden-
`
`sation with HCFC-123; average bundle heat flux = 33,900 W/m2
`
`
`
`
`
`
`
`
`
`
`
`(10740 Btu/h/ftz)
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 8|
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`Figure 5.19: Average shell-side bundle heat transfer coefficient vs. LMTD for the
`
`
`
`
`
`
`
`
`
`
`
`G-SC bundle at various nitrogen concentrations during condensation
`
`with HCFC-123
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`Figure 5.20: Average shell-side bundle heat transfer coeflicient vs. heat flux for the
`
`
`
`
`
`
`
`
`
`
`
`G-SC bundle at various nitrogen concentrations during condensation
`
`with HCFC-123
`
`
`
`
`
`
`
`
`Page 19 of 226
`
`

`
`
`
`
`Figure 5.21:
`
`
`
`
`
`
`
`
`
`
`
`
`
`Average shell—side row heat transfer coefficient vs. row number for
`
`
`
`
`
`
`
`
`
`the G-SC bundle at various nitrogen concentrations during conden-
`
`sation with HCFC-l23; average bundle heat flux = 20,200 W/m2
`
`
`
`
`
`
`
`
`
`
`
`(6400 Btu/h/ft2)
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`86
`
`
`
`
`Figure 5.22:
`
`
`
`
`
`
`
`
`
`
`
`
`
`Average shell-side row heat transfer coefficient vs. row number for
`
`
`
`
`
`
`
`
`
`the G-SC bundle at various nitrogen concentrations during conden-
`
`sation with HCFC-123; average bundle heat flux = 25,000 W/m2
`
`
`
`
`
`
`
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`86
`
`(7920 Btu/h/ftz)
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`
`
`
`Figure 5.23:
`
`
`
`
`
`
`
`
`
`
`
`
`
`Average shell-side row heat transfer coefficient vs. row number for
`
`
`
`
`
`
`
`
`
`the G-SC bundle at various nitrogen concentrations during conden-
`
`sation with HCFC-123; average bundle heat flux = 29,300 W/m2
`
`
`
`
`
`
`
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`87
`
`(9290 Btu/h/ftz)
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`
`
`
`Figure 5.24:
`
`
`
`
`
`
`
`
`
`
`
`
`Average shell-side row heat transfer coefficient vs. row number for
`
`
`
`
`
`
`
`
`
`
`
`the G-SC bundle at various nitrogen concentrations during conden-
`
`sation with HCFC-l23; average bundle heat flux = 33,900 W/m2
`
`
`
`
`
`
`
`
`
`
`
`(10 740 Btu/h/ftz)
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`87
`
`
`
`
`Figure 5.25:
`
`
`
`
`
`
`
`
`
`
`
`
`
`Average shell-side bundle heat transfer coefficient vs. heat flux for
`
`
`
`
`
`
`
`
`
`
`the four test bundles at various nitrogen concentrations during con-
`
`.
`
`.
`
`.
`
`89
`
`densation with HCFC-l23 .
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`
`
`
`Figure 5.26:
`
`
`
`
`
`
`
`
`
`
`
`
`Average shell-side bundle heat transfer coefficient vs. LMTD for the
`
`
`
`
`
`
`
`
`
`
`
`four test bundles at various nitrogen concentrations during conden-
`
`sation with HCFC-123 .
`
`
`
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`89
`
`
`
`Page 20 of 226
`
`

`
`
`
`
`Figure 5.27:
`
`
`
`
`
`
`
`
`
`
`
`
`
`Average shell-side row heat transfer coefficient vs. row number for
`
`
`
`
`
`
`
`
`
`
`the fo

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket