throbber
British Journal of Cancer (2006) 95, 581 – 586
`& 2006 Cancer Research UK All rights reserved 0007 – 0920/06 $30.00
`
`www.bjcancer.com
`
`Sorafenib in advanced melanoma: a Phase II randomised
`discontinuation trial analysis
`
`ClinicalStudies
`
`T Eisen*,1, T Ahmad1, KT Flaherty2, M Gore1, S Kaye1, R Marais1, I Gibbens1, S Hackett1, M James1,
`LM Schuchter2, KL Nathanson2, C Xia3, R Simantov3, B Schwartz3, M Poulin-Costello3, PJ O’Dwyer2
`and MJ Ratain4
`1Royal Marsden Hospital, Downs Road, Surrey SMT 5PT, UK; 2Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA 19104, USA;
`3Bayer Pharmaceuticals Corporation, West Haven, CT 06516, USA; 4Department of Medicine, University of Chicago, Chicago, IL 60637, USA
`
`The effects of sorafenib – an oral multikinase inhibitor targeting the tumour and tumour vasculature – were evaluated in patients with
`advanced melanoma enrolled in a large multidisease Phase II randomised discontinuation trial (RDT). Enrolled patients received a
`12-week run-in of sorafenib 400 mg twice daily (b.i.d.). Patients with changes in bi-dimensional tumour measurements o25% from
`baseline were then randomised to sorafenib or placebo for a further 12 weeks (ie to week 24). Patients with X25% tumour
`shrinkage after the run-in continued on open-label sorafenib, whereas those with X25% tumour growth discontinued treatment. This
`analysis focussed on secondary RDT end points: changes in bi-dimensional tumour measurements from baseline after 12 weeks and
`overall tumour responses (WHO criteria) at week 24, progression-free survival (PFS), safety and biomarkers (BRAF, KRAS and NRAS
`mutational status). Of 37 melanoma patients treated during the run-in phase, 34 were evaluable for response: one had X25%
`tumour shrinkage and remained on open-label sorafenib; six (16%) had o25% tumour growth and were randomised (placebo, n¼ 3;
`sorafenib, n¼ 3); and 27 had X25% tumour growth and discontinued. All three randomised sorafenib patients progressed by week
`24; one remained on sorafenib for symptomatic relief. All three placebo patients progressed by week-24 and were re-started on
`sorafenib; one experienced disease re-stabilisation. Overall, the confirmed best responses for each of the 37 melanoma patients who
`received sorafenib were 19% stable disease (SD) (ie n¼ 1 open-label; n¼ 6 randomised), 62% (n¼ 23) progressive disease (PD) and
`19% (n¼ 7) unevaluable. The overall median PFS was 11 weeks. The six randomised patients with SD had overall PFS values ranging
`from 16 to 34 weeks. The most common drug-related adverse events were dermatological (eg rash/desquamation, 51%; hand-foot
`skin reaction, 35%). There was no relationship between V600E BRAF status and disease stability. DNA was extracted from the
`biopsies of 17/22 patients. Six had V600E-positive tumours (n¼ 4 had PD; n¼ 1 had SD; n¼ 1 unevaluable for response), and 11 had
`tumours containing wild-type BRAF (n¼ 9 PD; n¼ 1 SD; n¼ 1 unevaluable for response). In conclusion, sorafenib is well tolerated
`but has little or no antitumour activity in advanced melanoma patients as a single agent at the dose evaluated (400 mg b.i.d.). Ongoing
`trials in advanced melanoma are evaluating sorafenib combination therapies.
`British Journal of Cancer (2006) 95, 581 – 586. doi:10.1038/sj.bjc.6603291 www.bjcancer.com
`Published online 1 August 2006
`& 2006 Cancer Research UK
`
`Keywords: Sorafenib; multikinase inhibitor; advanced melanoma; V600E BRAF; randomised discontinuation trial
`
`

`
`The incidence of malignant melanoma is rising, and the current
`treatment options for patients with metastatic disease are limited
`and noncurative in the majority of cases (Alexandrescu et al, 2005;
`Danson and Lorigan, 2005). According to the American Joint
`Committee on Cancer, patients with advanced metastatic melano-
`ma (stage IV) have a 5-year survival rate of only 2% (Balch et al,
`2001).
`Increased signalling through the RAF/MEK/ERK pathway, as
`a result of autocrine stimulation by basic fibroblast growth
`factor and hepatocyte growth factor, is implicated in melano-
`cytic tumorigenesis (tumour growth,
`invasion and metastasis)
`(Satyamoorthy et al, 2003). Furthermore, the activity of ERK,
`which is downstream of RAF, has been shown to increase from
`
`*Correspondence: Dr T Eisen, Urology, Skin and Lung Units, The Royal
`Marsden Hospital, Sycamore House, Downs Road, Sutton, Surrey SMT
`5PT, UK. E-mail: tim.eisen@icr.ac.uk
`Received 10 April 2006; revised 27 June 2006; accepted 27 June 2006;
`published online 1 August 2006
`
`early- to advanced-stage melanoma (Satyamoorthy et al, 2003).
`This increased ERK activity may be the consequence of activating
`BRAF mutations, which are present in up to 80% of human
`melanomas (Davies et al, 2002; Chang et al, 2004; Garnett and
`Marais, 2004). The most prevalent oncogenic BRAF mutation is the
`V600E BRAF mutation (previous terminology, V599E), which is
`present in 63% of melanomas (Brose et al, 2002). The increased
`apoptosis, observed in human melanoma cell lines when BRAF
`expression is downregulated using RNA interference, supports a
`role for oncogenic BRAF-driven MEK/ERK overactivation in
`maintaining the transformed phenotype of malignant melanoma
`cells (Hingorani et al, 2003; Karasarides et al, 2004). This
`observation also suggests that BRAF is a rational target for the
`design of targeted agents to treat melanoma.
`The orally administered targeted-agent sorafenib (Nexavars,
`Bayer Pharmaceuticals Corporation, West Haven, CT, USA) was
`originally developed as an inhibitor of the RAF serine/threonine
`kinases (RAF-1, wild-type BRAF, V600E BRAF) (Wilhelm et al,
`2004). However, results of in vitro studies have since shown that
`
`NOVARTIS EXHIBIT 2101
`Par v. Novartis, IPR 2016-01479
`Page 1 of 6
`
`

`

`sorafenib monotherapy in a cohort of patients with progressive
`advanced (ie unresectable or metastatic) melanoma, who partici-
`pated in this Phase II RDT.
`
`Efficacy and safety assessments
`
`As described previously (Ratain et al, 2006), the primary end point
`was the percentage of patients remaining progression free at 12
`weeks postrandomisation. Secondary endpoints included PFS after
`randomisation, overall PFS,
`tumour response rate and safety
`(Ratain et al, 2006). This analysis will focus on the changes from
`baseline in bidimensional tumour measurements after the run-in
`phase, tumour responses for the entire treatment period, PFS and
`safety findings for a cohort of patients with advanced melanoma.
`Tumour response was assessed at 12 weeks, and every 6 weeks
`thereafter, using standard bidimensional measurements in accor-
`dance with WHO guidelines for partial response (PR), stable
`disease (SD) and PD. Objective responses (ie minor response and
`PR only) were confirmed at least 4 weeks after the original
`documentation.
`Safety was assessed for the entire treatment period (run-in plus
`randomisation). All patients who received at least one dose of
`study drug were evaluable for safety. Safety assessments were
`performed every 3 weeks during the run-in and randomised
`phases, and every 4 weeks thereafter. Toxicities were graded
`according to the National Cancer Institute Common Toxicity
`Criteria version 2.0 (NCI-CTC v2.0), and relationship to study drug
`was recorded.
`
`Biomarkers: BRAF and RAS oncogenes
`
`DNA extracted from the tumour biopsies of patients was screened
`for the presence of oncogenic BRAF and RAS mutations. Owing to
`the majority of oncogenic BRAF mutations in melanoma patients
`are likely to occur within the kinase domain (eg the prevalent
`V600E BRAF mutation), exon 15 was analysed first. Exon 11 of
`BRAF was also screened for the presence of common mutations in
`the glycine-rich loop. In addition, exons 2 and 3 of NRAS
`(University of Pennsylvania and Royal Marsden Hospital Melano-
`ma Unit) and KRAS (Royal Marsden Hospital Melanoma Unit)
`were screened for common oncogenic mutations. Fresh tumour
`samples, obtained from patients at The Royal Marsden Hospital
`Melanoma Unit and the University of Pennsylvania, were snap-
`frozen and stored at 801C until use. Genomic DNA from snap-
`frozen samples, or from paraffin-embedded blocks, was then
`extracted by lysing tumour samples with proteinase K and tissue
`lysis buffer, and treatment with RNAse to eliminate residual RNA.
`The extracted genomic DNA was then purified on a silica-gel
`membrane column. BRAF and RAS exons of interest were then
`amplified by the polymerase chain reaction (PCR) using the
`following primers, under optimised conditions:
`
`Forward
`
`Reverse
`
`BRAF exon 15: TCATAATGCTTGCTCTGATAGGA GGCCAAAAATTTAATCAGTGGA
`BRAF exon 11: TCCCTCTCAGGCATAAGGTAA
`CGAACAGTGAATATTTCCTTTGAT
`NRAS exon 2: GAACCAAATGGAAGGTCACA
`TGGGTAAAGATGATCCGACA
`NRAS exon 3: GGTGAAACCTGTTTGTTGGA
`AACCTAAAACCAACTCTTTCCCA
`KRAS exon 2: GTGTGACATGTTCTAATATAGTC GAATGGTCCTGCACCAGTAA
`KRAS exon 3:
`TCAAGTCCTTTGCCCATTTT
`TGCATGGCATTAGCAAAGAC
`
`Polymerase chain reaction products were then purified by
`agarose gel electrophoresis, and automated dideoxy DNA sequen-
`cing was performed using the primers that were used for the
`amplification step and Big-Dye Terminator RR mix. DNA
`sequences were analysed using the Sequencher 4.2.1 programme.
`
`Phase II sorafenib analysis in melanoma patients
`T Eisen et al
`
`sorafenib is a potent multikinase inhibitor, which also targets
`receptor tyrosine kinases associated with tumour angiogenesis
`(VEGFR-2, VEGFR-3, PDGFR-b) and tumour progression (c-KIT,
`FLT-3) (Wilhelm et al, 2004). Sorafenib has also been shown to
`inhibit the growth of several human tumour xenograft models by
`targeting tumour cell proliferation and/or endothelial cell-
`mediated tumour angiogenesis (Wilhelm et al, 2004).
`Sorafenib monotherapy has been shown to have a manageable
`side effect profile in Phase I/II/III studies (Strumberg et al, 2003,
`2005; Ratain et al, 2004, 2006; Awada et al, 2005; Escudier et al,
`2005). The most common toxicities associated with sorafenib are
`hand-foot skin reaction (HFS), rash and diarrhoea (Strumberg
`et al, 2003, 2005; Ratain et al, 2004, 2006; Awada et al, 2005;
`Escudier et al, 2005). However,
`these adverse events are
`predominantly mild to moderate in severity and easily manage-
`able. The efficacy of sorafenib monotherapy in patients with
`advanced,
`refractory renal cell carcinoma (RCC) was
`first
`demonstrated in a Phase II randomised discontinuation trial
`(RDT), which showed a significantly longer progression-free
`survival (PFS) relative to placebo. Sorafenib received marketing
`approval
`in the US in December 2005 for the treatment of
`advanced RCC, based on the results of the RDT as well as the
`Phase III placebo-controlled TARGETs (Treatment Approaches
`in Renal cancer Global Evaluation Trial). The Phase III trial
`demonstrated a statistically significant doubling of PFS and
`longer overall survival (hazard ratio¼ 0.72 for sorafenib over
`placebo) in patients treated with sorafenib relative to placebo
`treatment
`(Nexavar prescribing information, 2006)
`(Escudier
`et al, 2005).
`Here, we present an analysis of the efficacy and safety of
`sorafenib monotherapy in a cohort of patients with progressive
`advanced melanoma.
`
`MATERIALS AND METHODS
`
`Patients’ characteristics and study design
`
`This Phase II, placebo-controlled RDT was conducted at five
`centres in two countries (four centres in the US, one centre in the
`UK). Enrolment began on 25 September 2002. All patients
`participating in the RDT provided written,
`informed consent.
`The trial protocol received institutional ethics committee approval
`at each participating centre, and was conducted in accordance with
`Good Clinical Practice guidelines and the Declaration of Helsinki.
`The design of this RDT, including patients’ details and inclusion
`and exclusion criteria, has been described previously (Ratain et al,
`2006). Briefly, eligible patients had histologically or cytologically
`confirmed, progressive advanced unresectable, or metastatic
`cancer. Sorafenib was initially administered to all patients in a
`12-week, open-label, run-in period using continuous oral dosing at
`400 mg twice daily (b.i.d.). After the 12-week run-in period, disease
`status was assessed based on change in bidimensional tumour
`from baseline. Patients with X25% tumour
`measurements
`shrinkage continued to receive sorafenib open label until they
`experienced disease progression or unacceptable toxicity, whereas
`patients with progressive disease (PD; X25% tumour growth or
`other clinical evidence of progression) were discontinued. Those
`patients who had an unconfirmed change in tumour size of o25%
`were randomised in a double-blind fashion to receive either
`sorafenib 400 mg b.i.d., continuously, or matching placebo from
`week 12 onwards. Patients with progression of disease – defined as
`a change in bidimensional tumour measurement from randomisa-
`tion of X25%, or clinically assessed progression – at any time after
`randomisation, were unblinded. Progressors from the placebo
`group were given the opportunity to crossover to sorafenib,
`whereas those who progressed while on sorafenib were discon-
`tinued. In this analysis, we evaluated the efficacy and safety of
`
`582
`
`Clinical Studies
`
`British Journal of Cancer (2006) 95(5), 581 – 586
`
`& 2006 Cancer Research UK
`
`NOVARTIS EXHIBIT 2101
`Par v. Novartis, IPR 2016-01479
`Page 2 of 6
`
`

`

`583
`
`ClinicalStudies
`
`Phase II sorafenib analysis in melanoma patients
`T Eisen et al
`
`four patients who discontinued before the 12-week assessment all
`withdrew because of adverse events: three had dermatological
`events of grade 3 in severity (skin toxicity, n¼ 1; plantar – palmar
`erythema, n¼ 2), one had a grade 4 cerebral embolic event.
`At week 12, investigator-assessed bidimensional tumour mea-
`surements were available for 34 (92%) of the 37 patients. One
`patient (3%) achieved tumour shrinkage X25% compared with
`baseline and consequently continued with open-label sorafenib
`treatment. This patient had an overall duration of treatment of 16
`weeks, and PFS of 15 weeks. This patient had three measurable
`lung metastases. The first lung metastasis showed 75% shrinkage
`after 106 days of treatment and 84% shrinkage after 136 days. The
`second metastatic lung lesion had shrunk by 80% after 106 days of
`treatment and had disappeared by 136 days. The third lung
`metastasis had completely disappeared after 106 days’ treatment.
`Six patients (16%) had tumour measurements that remained
`within 25% of baseline levels. The first patient had SD after 89 days
`of treatment; there was no change in tumour size until PD was
`proven after 194 days of treatment. The second patient had SD
`after 79 days’ treatment; there was a 5.9% change in tumour size.
`After 115 days of treatment this patient was proven to have PD.
`However, at a confirmatory scan after 176 days this patient had SD
`again. After 428 days this patient was considered to have PD by
`clinical judgment, but a scan at 512 days revealed that the patient
`still had SD. The third patient developed SD after 85 days of
`treatment (24% change in tumour size), was considered to have PD
`after 113 days (53% tumour growth), but had re-stabilised after 184
`days’ treatment (9.9% tumour shrinkage). This patient finally
`progressed after 249 days’ treatment. The fourth patient had SD
`after 96 days’ treatment (0.6% change in tumour size) and was still
`stable after 138 days (6.4% tumour shrinkage). At 404 days this
`patient still had SD (4.6% tumour shrinkage), but then progressed
`after 453 days. The fifth patient with SD had progressed after 81
`days on treatment, while the sixth patient had SD after 84 days
`treatment (15% tumour shrinkage), and at day 124 (8.8% tumour
`growth) but had PD confirmed after two scans after 237 (2.9%
`growth) and 321 days’ (20.6% growth) treatment.
`The patients with SD at week-12 were then randomised: three
`received placebo and three received sorafenib. Twenty-seven
`patients (73%) had PD (ie tumour growth X25% or other clinical
`evidence of progression), and were discontinued.
`
`Antitumour activity: randomised phase
`
`three patients with melanoma randomised to
`Although all
`sorafenib progressed at 12 weeks postrandomisation (24 weeks
`from initiation); only two were discontinued. The third patient was
`considered by the investigator to be deriving clinical benefit and
`was, therefore, continued on sorafenib monotherapy. At 12 weeks
`postrandomisation, all three melanoma patients who received
`placebo had progressed and, therefore, were crossed over to
`sorafenib monotherapy in accordance with the study protocol.
`After crossing over,
`the three patients had further disease
`progression at 11, 15 and 22 weeks, respectively. The patient
`who progressed after 15 weeks remained on sorafenib for a total
`duration of 73 weeks because, in the opinion of the investigator,
`the patient was continuing to derive clinical benefit.
`
`Statistical analysis
`
`The PFS attributable to sorafenib was estimated by combining
`information from the various treatment groups and treatment
`periods. All patients contributed to the estimate of PFS for the first
`12 weeks of therapy. The estimate of PFS for the first 12 weeks was
`combined with an estimate of PFS after 12 weeks, the latter
`assuming a patient was alive and progression free at 12 weeks.
`Progression-free survival was estimated after 12 weeks as a
`weighted average of group-specific PFS for the two groups (ie
`open-label and randomised groups). This methodology has been
`fully described previously (Ratain et al, 2006).
`
`RESULTS
`
`In total, 502 patients with a variety of tumour types, including RCC
`and melanoma, were enrolled in this RDT; 501 of these patients
`received sorafenib. This report focusses on the 37 treated patients
`who had progressive advanced melanoma at the time of study
`enrolment. The baseline characteristics of these patients are shown
`in Table 1. Forty-one percent of these patients had an Eastern
`Cooperative Oncology Group performance status (ECOG PS) of 0,
`and 57% of patients had an ECOG PS of 1. At baseline, 70% of
`these patients had failed at least one prior systemic therapy, and
`27% had also received prior radiotherapy.
`
`Twelve-week response assessment
`
`The 12-week sorafenib run-in phase was completed by 33 (89%) of
`patients with advanced unresectable or metastatic melanoma. The
`
`Table 1 Baseline characteristics for all treated patients with advanced
`melanoma
`
`Characteristics
`
`Gender (n (%))
`Male
`Female
`Median age (years (range))
`
`ECOG PS (n (%))
`0
`1
`2
`3
`
`AJCC stage at study entry (n (%))
`III
`IV
`
`Most common sites of disease (all lesions)a (n (%))
`Lung
`Lymph node
`Liver
`Adrenal
`Median duration of diseaseb (years (range))
`
`Prior therapy (n (%))
`Systemic anticancer therapy
`Surgery
`Radiotherapy
`
`Patients (n¼ 37)
`
`23 (62)
`14 (38)
`53 (18 – 85)
`
`15 (41)
`21 (57)
`0 (0)
`1 (3)
`
`4 (11)
`21 (57)
`
`24 (65)
`20 (54)
`12 (32)
`8 (22)
`2.7 (0.2 – 12.9)
`
`26 (70)
`36 (97)
`10 (27)
`
`Number of prior systemic regimens
`None
`11 (30)
`1
`13 (35)
`2
`8 (22)
`X3
`5 (13)
`AJCC¼ American Joint Committee on Cancer; ECOG PS¼ Eastern Cooperative
`Oncology Group performance status. aAll target and nontarget lesions occurring with
`a frequency X20%. bYears from initial diagnosis to first study treatment.
`
`Antitumour activity: entire treatment period
`
`the confirmed
`the entire treatment period,
`the end of
`At
`investigator-assessed best responses (WHO criteria) to sorafenib
`were 19% SD, 62% PD and 19% unevaluable. The median PFS for
`the entire treatment period, based on investigator-assessed data,
`was 11 weeks (n¼ 32; range 9 – 12 weeks). The six randomised
`melanoma patients with SD had overall PFS durations of 16
`(n¼ 3), 18 (n¼ 1), 28 (n¼ 1) and 34 (n¼ 1) weeks. The median
`
`& 2006 Cancer Research UK
`
`British Journal of Cancer (2006) 95(5), 581 – 586
`
`NOVARTIS EXHIBIT 2101
`Par v. Novartis, IPR 2016-01479
`Page 3 of 6
`
`

`

`Phase II sorafenib analysis in melanoma patients
`T Eisen et al
`
`time to disease progression for all melanoma patients over the
`entire treatment period was 11 weeks (n¼ 30; range 9 – 13 weeks).
`
`interruptions were reported in 12 patients, of which 10 were due to
`drug-related adverse events.
`
`Biomarkers
`
`DNA was successfully extracted and screened from 17 of 22
`tumour biopsies. Six biopsies had oncogenic V600E BRAF
`mutations within exon 15, while the remaining 11 had wild-type
`BRAF. Of the six V600E BRAF-positive tumour biopsies, four were
`obtained from patients with PD, one from a patient with SD and
`one from a patient who was unevaluable for response. Only one
`wild-type BRAF-positive tumour biopsy was derived from a patient
`with SD, nine were from patients with PD, and one from an
`unevaluable patient. BRAF mutational status data for 15 patients
`who were evaluable for response are shown in Figure 1. No
`oncogenic BRAF mutations were identified in exon 11 in any of the
`tumour biopsies evaluated, and only one oncogenic NRAS (61K)
`mutation was detected. No other oncogenic NRAS or KRAS
`mutations were identified.
`
`DISCUSSION
`
`The efficacy and safety of sorafenib monotherapy were evaluated
`in patients with advanced melanoma, who participated in a large
`Phase II RDT involving patients with several advanced solid
`tumour types (Ratain et al, 2006). An analysis focussing on
`melanoma patients was performed in the light of evidence
`supporting a role for increased signalling through RAF/MEK/
`ERK in the onset and progression of melanoma (Davies et al, 2002;
`Chang et al, 2004; Garnett and Marais, 2004), and the prevalence of
`oncogenic V600E BRAF mutations in melanoma biopsies (Brose
`et al, 2002). Recent preclinical evidence, showing that blocking
`V600E BRAF expression promotes apoptosis in human melanoma
`cells, provided a rationale for targeting signalling through RAF/
`MEK/ERK in the treatment of melanoma (Hingorani et al, 2003;
`Karasarides et al, 2004). Despite this rationale, the data in this
`study at the 400 mg b.i.d. dose studied were disappointing, and are
`most consistent with a conclusion that the drug has little or no
`activity as a single agent in this disease.
`In human xenograft models, sorafenib has been shown to act on
`tumour cells to exert an antiproliferative effect, and on endothelial
`
`SD PD
`
`Wild-type BRAF
`
`Oncogenic BRAF V600E
`
`10
`
`0123456789
`
`Number of patients (n)
`
`Figure 1 BRAF mutational status of advanced melanoma patients is not
`associated with disease status (status of 15 patients evaluable for response).
`These patients were also evaluated for oncogenic BRAF mutations within
`exon 11 and oncogenic NRAS and KRAS mutations. One oncogenic NRAS
`(61K) mutation was found. No other oncogenic NRAS or KRAS mutations
`were detected. Two patients were unevaluable for response (n¼ 1 wild-
`type BRAF; n¼ 1 BRAF V600E) and are not included in the above
`histogram. DNA could not be extracted from a further five biopsies. The
`mutational status of the biopsies from five patients was, therefore, not
`determined (n¼ 3 PD; n¼ 2 SD).
`
`Safety
`
`Safety was assessed across the entire treatment period for all 37
`patients with advanced melanoma. The most common treatment-
`emergent adverse events, regardless of attribution, were fatigue
`(81%); pain (73%); gastrointestinal adverse events,
`including
`diarrhoea (51%) and constipation (46%); and dermatological
`reactions (dermatology/skin – other, 49%; alopecia, 38%; HFS,
`35%). The majority of these events were NCI-CTC v2.0 grades 1 – 2.
`For example, seven patients (18.9%) had grade 1 alopecia and a
`further seven (18.9%) had grade 2 alopecia; none had grade 3, 4 or
`5 alopecia. Grade 3/4 hypertension was observed in 14% of
`patients. Serious adverse events were reported in 51% of the
`melanoma patients, and were attributed mostly to disease
`progression rather than study drug. Hypertension was not
`reported as a serious adverse event, and none of the melanoma
`patients discontinued therapy because of hypertension. Adverse
`events of any grade attributed by the investigator to study drug (ie
`drug-related adverse events) were reported in 89% of patients
`(Table 2). The most common drug-related adverse events among
`melanoma patients were dermatological (rash/desquamation, 51%;
`HFS, 35%; and alopecia, 35%); gastrointestinal (diarrhoea, 32%;
`and stomatitis/pharyngitis, 22%); or constitutional (fatigue, 43%)
`(Table 2). The majority of drug-related adverse events were grades
`1 – 2 in severity. In total, 8% of patients experienced serious drug-
`related adverse events (all Xgrade 3). No grade 4 drug-related
`adverse events were reported. Six patients required dose reduc-
`tions because of drug-related dermatological adverse events. Dose
`
`Table 2 Incidence of drug-related adverse events reported in X10% of
`all treated patients (n¼ 37)
`
`Adverse event
`
`Any event
`
`Cardiovascular
`Hypertension
`
`Dermatology
`Rash/desquamation
`Hand-foot skin reaction
`Alopecia
`Flushing
`Other
`
`Constitutional symptoms
`Fatigue
`Weight loss
`
`Gastrointestinal
`Diarrhoea
`Anorexia
`Stomatitis/pharyngitis (oral/pharyngeal)
`Nausea
`Otherb
`Constipation
`
`Neurology
`Neuropathy – sensory
`
`All grades
`n (%)
`
`Grade 3a
`n (%)
`
`33 (89.2)
`
`12 (32.4)
`
`6 (16.2)
`
`5 (13.5)
`
`19 (51.4)
`13 (35.1)
`13 (35.1)
`4 (10.8)
`12 (32.4)
`
`16 (43.2)
`6 (16.2)
`
`12 (32.4)
`5 (13.5)
`8 (21.6)
`5 (13.5)
`5 (13.5)
`4 (10.8)
`
`2 (5.4)
`4 (10.8)
`0 (0.0)
`0 (0.0)
`0 (0.0)
`
`0 (0.0)
`0 (0.0)
`
`0 (0.0)
`0 (0.0)
`0 (0.0)
`0 (0.0)
`0 (0.0)
`0 (0.0)
`
`5 (13.5)
`
`0 (0.0)
`
`aNo grade 4 drug-related adverse events were reported. bThis included: sore gums
`(grade 1; n¼ 1), ulcers on gums (grade 2; n¼ 1), mouth soreness (grade 1; n¼ 1),
`and one patient with intermittent stomach upset (grade 1), indigestion (grade 1), and
`diarrhoea (grade 2).
`
`British Journal of Cancer (2006) 95(5), 581 – 586
`
`& 2006 Cancer Research UK
`
`584
`
`Clinical Studies
`
`NOVARTIS EXHIBIT 2101
`Par v. Novartis, IPR 2016-01479
`Page 4 of 6
`
`

`

`585
`
`ClinicalStudies
`
`Phase II sorafenib analysis in melanoma patients
`T Eisen et al
`
`inhibition of Raf kinase, a known mediator of taxane resistance
`(Britten and Klein, 2000). In another Phase I trial, the combination
`of sorafenib with dacarbazine induced a PR in three, and SD in five
`of 10 evaluable patients with advanced melanoma (Eisen et al,
`2005). Further investigations are warranted to determine whether
`sorafenib may significantly increase response to chemotherapy
`and prolong PFS in patients with advanced melanoma.
`Given the preclinical and clinical evidence supporting a role for
`oncogenic BRAF in driving melanoma progression, it is unclear
`why sorafenib 400 mg b.i.d. did not demonstrate significant
`activity as a monotherapy in advanced melanoma patients. It is
`conceivable that
`this
`lack of effect
`is due to insufficient
`concentrations of sorafenib being achieved within the plasma,
`and more importantly within the tumours of these patients. The
`IC50 of sorafenib in humans is approximately 5 mM (Clark et al,
`2005), and may not have been achieved in these melanoma
`patients. However, pharmacokinetic trials of sorafenib monother-
`apy have demonstrated steady-state concentrations consistently
`over the IC50 of 5 mM for the recommended dosage of sorafenib
`(Clark et al, 2005). Therefore, further studies are required to
`investigate this possibility. It is plausible that proliferation of
`melanoma cells could be driven by an alternative signalling
`pathway, after
`signalling through RAF/MEK/ERK has been
`blocked. A further possibility is that a feedback mechanism could
`negate the effect of sorafenib in these melanoma patients. This
`contention is supported by the recent observation that sorafenib
`administration is associated with increased RAF-1 phosphoryla-
`tion at Ser338 in human melanoma and other tumour cell types
`(Adnane et al, 2005). However,
`it remains to be determined
`whether such a feedback mechanism impairs clinical response to
`sorafenib monotherapy in melanomas with V600E BRAF muta-
`tions.
`In conclusion, sorafenib is well tolerated but has little or no
`antitumour activity in advanced melanoma patients as a single
`agent at
`the dose evaluated (400 mg b.i.d.). Ongoing trials
`in advanced melanoma are evaluating sorafenib combination
`therapies.
`
`Clark JW, Eder JP, Ryan D, Lee R, Lenz H-J (2005) The safety and
`pharmacokinetics
`of
`the multi-targeted
`tyrosine
`kinase
`inhi-
`bitor (including Raf kinase and VEGF kinase), BAY 43-9006,
`in
`patients with advanced, refractory solid tumors. Clin Cancer Res 11:
`5472 – 5480
`Danson S, Lorigan P (2005) Improving outcomes in advanced malignant
`melanoma: update on systemic therapy. Drugs 65: 733 – 743
`Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J,
`Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R,
`Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A,
`Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H,
`Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K,
`Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G,
`Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber
`BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster
`R, Stratton MR, Futreal PA (2002) Mutations of the BRAF gene in human
`cancer. Nature 417: 949 – 954
`Eisen T, Ahmad T, Marais R, Gibbens I, James M, Affolter A, Chao D,
`Bergamini L, Schwartz B, Gore ME (2005) Phase I trial of sorafenib (BAY
`43-9006) combined with dacarbazine (DTIC) in patients with metastatic
`melanoma. Eur J Cancer Suppl 3(2): 349
`Escudier B, Szczylik C, Eisen T, Stadler WM, Schwartz B, Shan M, Bukowski
`RM (2005) Randomized phase III trial of the Raf kinase and VEGFR
`inhibitor sorafenib (BAY 43-9006) in patients with advanced renal cell
`carcinoma (RCC). J Clin Oncol 23(16_suppl): LBA4510 1-6-2005
`Flaherty KT, Brose M, Schuchter L, Tuveson D, Lee R, Schwartz B, Lathia C,
`Weber B, O’Dwyer P (2004) Phase I/II trial of BAY 43-9006, carboplatin
`(C) and paclitaxel (P) demonstrates preliminary antitumor activity in the
`
`cells of the tumour vasculature to inhibit angiogenesis (Wilhelm
`et al, 2004). Sorafenib also induces apoptosis in several human
`cancer cell lines (Rahmani et al, 2005; Yu et al, 2005), including
`melanoma cells (Panka et al, 2006b). Sorafenib downregulates Mcl-
`1 protein levels in a time- and dose-dependent manner to induce
`apoptosis in renal, colon and breast tumour lines (Rahmani et al,
`2005; Yu et al, 2005). This effect involves enhanced proteasomal
`degradation of Mcl-1, which could be the consequence of RAF-1
`inhibition. Finally, sorafenib induces caspase-independent apop-
`tosis in A2058 and SKMEL5 melanoma cell lines (Panka et al,
`2006a). However, the multiple molecular targets of sorafenib, and
`its dual effects on the tumour cell and the vascular endothelium,
`make it difficult to determine the mechanism of effect of this
`multikinase inhibitor in different tumour types, particularly in the
`absence of validated biomarkers.
`In the present analysis, sorafenib monotherapy was well
`tolerated. Seven patients had PFS lasting between 16 and 34
`weeks, although it is not clear whether or not this was an effect of
`sorafenib. Restabilisation of disease was also observed in one
`patient who was crossed over to sorafenib after progressing on
`placebo during the randomised 12-week treatment phase. This
`patient received sorafenib for a total of 73 weeks. There was no
`apparent relationship between the presence of an oncogenic V600E
`BRAF mutation within exon 15 and the modest antitumour activity
`of sorafenib monotherapy. This latter observation is consistent
`with the lack of a clear relationship reported in another sorafenib
`trial (Eisen et al, 2005). Larger randomised clinical trials are
`ongoing and will more definitively explore the relationship
`between response and BRAF mutational status.
`Despite showing little activity as a monotherapy in this RDT
`cohort, recently published observations suggest that sorafenib may
`enhance the antitumour activity of carboplatin and paclitaxel
`against melanoma (Flaherty et al, 2004). In an expanded Phase I
`study predominantly in melanoma patients,
`this combination
`induced one complete response (o1%), 27 PRs (26%) and 61 SDs
`(58%) in patients with advanced melanoma (Flaherty et al, 2004).
`It is possible that
`these findings may be due to sorafenib’s
`
`REFERENCES
`
`Adnane L, Trail PA, Wilhelm S (2005) Sorafenib (BAY 43-9006) antagonizes
`Raf function not only by inhibiting Raf kinase activity but also by
`sequestering Raf protein into non-functional complexes. Presented at
`AACR-NCI-EORTC, November 2005, Philadelphia, PA
`Alexandrescu DT, Dutcher JP, Wiernik PH (2005) Metastatic melanoma: is
`biochemotherapy the future? Med Oncol 22: 101 – 111
`Awada A, Hendlisz A, Gil T, Bartholomeus S, Mano M, de Valeriola D,
`Strumberg D, Brendel E, Haase CG, Schwartz B, Piccart M (2005) Phase I
`safety and pharmacokinetics of BAY 43-9006 administered for 21 days
`on/7 days off in patients with advanced, refractory solid tumours. Br J
`Cancer 92: 1855 – 1861
`Balch CM, Soong SJ, Gershenwald JE, Thompso

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket