throbber
BAKER HUGHES INCORPORATED
`Exhibit 1016
`
`Page 1 of 6
`
`

`
` FIG. 2
`
`m.M
`
`
`
`FIG. I
`
`U.S.Patent
`
`V’’’'’’‘’‘ 4E‘....m_.|vw2wn(0..3 E7'":-UH“..Ch.Ir“‘:_‘_II!’
`
`1\\1.1i.‘~‘_%u__§.‘iéhfix§§a§u§§»mmU§,&.F§m..«s\\§<.s§§§\§:
`
`
`Mm4035._IV.9M4Ma.23388I5C4,.,.,...m¢Qmwe4P
`
`Page 2 of 6
`
`
`
`
`
`...,.din.-2.Wt!"/4|4_II_..wv!.nvu».umu§.V‘vfln»Mnfl.vwv\§{§§E§.r
`
`
`
`
`
`
`

`
`1
`
`4,434,854
`
`PRESSURE ACTUATED VENT ASSEMBLY FOR
`SLANTED WELLBORES
`
`CROSS REFERENCE TO RELATED
`APPLICATION
`
`This application is a continuation of application Ser.
`No. 166,547 filed July 7, 1980, now, U.S. Pat. No.
`4,330,039 issued May 18, 1982.
`BACKGROUND OF THE INVENTION
`
`In the art of producing hydrocarbons from under-
`ground production zones, it is usually necessary to form
`a wellbore down through the oil bearing strata, cement
`a casing into the wellbore; and, thereafter communicate
`the hydrocarbon containing formation with the surface
`of the earth. This is generally accomplished in all sorts
`of different specific manners by perforating the casing
`and thereafter flowing the hydrocarbons up a tubing
`string. It is advantageous to isolate the lower produc-
`tion zone by the employment of a packer device inter-
`posed between the casing and the tubing string, so that
`flow from the formation can be confined to the upper
`tubing string.
`In U.S. Pat. No. 3,706,344 to Roy R. Vann, there is
`taught a permanent completion method and apparatus
`by which the above can be accomplished in an im-
`proved manner so that more economical production can
`be obtained. In U.S. Pat. Nos. 3,871,448; 3,931,855; and
`4,040,485 to Roy R Vann, et al
`there is disclosed a
`packer actuated vent assembly by which the before
`mentioned well completion techniques can be accom-
`plished. These techniques work satisfactory when car-
`ried out in vertical boreholes, but when the borehole is
`slanted, sometimes difficulty is encountered, especially
`when the slanted part of the borehole approaches the
`horizontal, as seen in the Vann U.S. Pat. No. 4,194,577;
`for example.
`There are many instances where the lower marginal
`end of a borehole approaches a horizontal plane. For
`example, when drilling multiple boreholes from a single
`platform,
`it
`is not unusual
`to form a multiplicity of
`slanted boreholes which radiate from a single platform.
`The present
`invention provides a vent assembly
`which enables the method set forth in U.S. Pat. No.
`3,706,344 to be carried out in slanted boreholes in a
`more satisfactory manner.
`SUMMARY OF THE INVENTION
`
`A pressure actuated vent assembly for connection in
`series relationship within a tubing string. A packer de-
`vice is located above the vent assembly for packing off
`the upper annulus from the lower annulus. When the
`casing is perforated and the vent assembly moved into
`the open position, fluid can flow from a production
`zone, through the casing perforations, into the lower
`borehole annulus, up the annulus into the vent assem-
`bly, and up the tubing string to the surface of the earth.
`The vent assembly includes an outer sub having an
`upper end by which it is connected into the upper tub-
`ing string.
`A hollow mandrel has one end affixed to the interior
`of the sub, and a marginal
`length of the mandrel is
`spaced from a skirt of the sub to form a downwardly
`opening, circumferentially extending annulus. The
`lower end of the mandrel is connected to the lower
`tubing string. Ports are formed through the skirt of the
`mandrel. An axial passageway extends through the vent
`
`5
`
`10
`
`15
`
`20
`
`25
`
`30
`
`35
`
`40
`
`45
`
`50
`
`55
`
`60
`
`65
`
`2
`assembly to provide unobstructed access to the lower
`tubing string.
`A sliding sleeve is received within the annulus, with
`there being a variable chamber formed between the
`sliding sleeve and the upper blind end of the down-
`wardly opening annulus.
`Ports are formed within the sliding sleeve, and when
`the sleeve is moved respective to the mandrel and sub,
`the ports of the sleeve and the mandrel come into regis-
`try with one another. Guide means cause the ports to be
`indexed in registered relationship with one another
`when the sliding sleeve is moved to the open position.
`Seal means between the mandrel, sliding sleeve, and
`skirt prevent fluid flow from the assembly when the
`sleeve is in the closed position.
`A shear pin releasably locks the sleeve in the closed
`position, while a detent and latch means capture the
`sleeve so that it is latched into the opened position.
`In carrying out the method of the present invention,
`a predetermined pressure is applied to the interior of the
`tubing string, causing a downward force to be applied
`to the sliding sleeve, until
`the shear pin is sheared
`whereupon the sleeve is forced to move into the latched
`opened position, and flow can occur through the
`aligned opened ports.
`Accordingly, a primary object of the present inven-
`tion is the provision of a pressure actuated vent assem-
`bly for use downhole in a slanted borehole for commu-
`nicating a lower borehole annulus with the interior of a
`tubing string.
`Another object of this invention is the provision of a
`pressure actuated vent assembly which forms part of a
`fluid conduit, and which includes closed flow ports
`which are moved to the opened position when a prede-
`termined elevated pressure is exerted upon the interior
`of the vent assembly.
`Still another object of this invention is the provision
`of a pressure actuated vent assembly which is held in
`the closed position until a predetermined pressure is
`exerted thereon, whereupon the ports of the vent assem-
`bly are moved into an open position.
`A still further object of this invention is the provision
`of a pressure actuated vent assembly having an annular
`piston which is forced to move when subjected to a
`predetermined pressure to thereby align spaced ports so
`that flow can occur into the assembly.
`Another and still further object of this invention is
`the provision of a pressure actuated vent assembly
`which enables an unobstructed flow path to be main-
`tained from the surface of the ground downhole to the
`bottom of a tubing string, and at the same time enables
`communication to be achieved between a lower bore-
`hole annulus and a marginal length of the tubing string
`by applying pressure internally of the tubing string so as
`to open a flow port.
`These and various other objects and advantages of
`the invention will become readily apparent to those
`skilled in the art upon reading the following detailed
`description and claims and by referring to the accompa-
`nying drawings.
`The above objects are attained in accordance with
`the present invention by the provision of a combination
`of elements which are fabricated in a manner substan-
`tially as described in the above abstract and summary.
`
`Page 3 of 6
`Page 3 of6
`
`

`
`3
`
`4,434,854
`
`BRIEF DESCRIPTION OF THE DRAWINGS
`
`FIG. 1 is a diagrammatical, hypothetical view of a
`cross-section of a borehole extending downhole into the
`earth and having apparatus made in accordance with 5
`the present invention associated therewith;
`FIG. 2 is an enlarged, longitudinal, cross-sectional
`view of part of the apparatus disclosed in FIG. 1 with
`the right side thereof showing the apparatus in one
`position and the left side thereof showing the apparatus
`in another; and,
`FIG. 3 is a cross-sectional view taken along line 3-3
`of FIG. 2.
`
`10
`
`DETAILED DESCRIPTION OF THE
`PREFERRED EMBODIMENT
`
`In FIG. 1, there is disclosed a borehole which extends
`downhole into the earth. The borehole has the usual
`wellhead 10 connected to a casing 12 or 12’. The casing
`extends downhole to a production zone 14. Tubing
`string 16 also extends from the wellhead, down through
`the casing, and includes a packer device 18 which packs
`off a marginal, annular area between the tubing and
`casing. The packer therefore divides the casing annulus
`into a lower annulus 20 and an upper annulus 22. The
`borehole can be vertical, as illustrated, or slanted, as
`seen at 12’.
`
`15
`
`20
`
`25
`
`30
`
`35
`
`40
`
`45
`
`A pressure actuated vent assembly 24, made in accor-
`dance with the present invention, is interposed in series
`relationship within the tubing string. The apparatus
`includes a vent port 26. Other apparatus, such as a per-
`forating gun 28, is included in the tubing string.
`As seen illustrated in FIGS. 2 and 3,
`the pressure
`actuated vent assembly 24 of the present invention in-
`cludes an outer sub 30 having an upper threaded surface
`32 by which the vent assembly can be connected to the
`box end of the tubing string. The sub has a downwardly
`extending outer skirt 34 which terminates at
`lower,
`circumferentially, extending edge portion 35.
`The interior of the sub includes a threaded surface 36
`formed along an upper marginal length of the interior
`thereof. A hollow mandrel 38 has a threaded surface at
`the upper marginal end thereof which threadedly en-
`gages threads 36 of the sub so that the resultant co-
`acting concentrically arranged sub and mandrel present
`a downwardly opening annular space at 42. The man-
`drel has an axial passageway 44 which permits commu-
`nication from the upper tubing string, down through
`the vent assembly, and on down through the lower
`tubing string so that communication between apparatus
`28 of FIG. 1 and the surface of the ground can be ef-
`fected. The inside diameter 46 of the sub is therefore
`spaced from the outside diameter 48 of the mandrel to
`form a downwardly opening chamber 50 therebetween.
`A sliding sleeve 52 has an uppermost end 54 spaced 55
`from end wall 56 of chamber 50. The lower end 58 of
`the sliding sleeve can be appreciated toward a circum-
`ferentially extending shoulder 60 formed on the exterior
`of the mandrel. The cylindrical wall 46 of the sub in-
`creases at the circumferentially extending shoulder 62 60
`to form a larger i.d. cylindrical wall 64 on the interior of
`the skirt member.
`The sliding sleeve has a relative small o.d. length 66
`which is enlarged to form a relatively large o.d. length
`at 67. Annular grooves 68 and 69 are formed within the 65
`exterior surface 66 of the sleeve. Shoulder 72 is formed
`between surfaces 66 and 67, and abuttingly engages
`interior shoulder 62 of the sub. Accordingly, there are
`
`50
`
`4
`two expansion chambers, that is, upper chamber 50 and
`lower chamber 70, as will be discussed more fully later
`on in this disclosure.
`The mandrel has a plurality of radially spaced ports
`74 which come into registry with ports 26 of the sliding
`sleeve when the sleeve is in its downwardmost position.
`O-rings 76-82 seal the intervening surface between the
`mandrel and the sliding sleeve, and between the sliding
`sleeve and the skirt member, so that when the sleeve is
`in the uppermost or closed position, fluid flow through
`the co-acting elements of the tool is confined to the axial
`passageway.
`A shear pin 83 is force fitted into the sleeve and re-
`ceived within a small drilled hole 84 formed within a
`sidewall of the mandrel. An index pin 85 is received in
`fixed relationship within drilled hole 86 of the sleeve,
`and moves within the vertical aligned groove 87. This
`arrangement of the co-acting parts maintains the ports
`74 of the mandrel in aligned relationship respective to
`the ports 26 of the sleeve so that when the sleeve moves
`in a downward direction, the ports are brought into
`registry respectively to one another.
`Flow port 88 is formed through the sidewall of the
`mandrel and communicates chamber 70 with the axial
`passageway 44. A spring loaded latch assembly 90 is
`comprised of a removal plug 92 which compresses the
`illustrated spring against a piston 94, so that the piston is
`urged against the sidewall 66 of the mandrel, so that the
`piston is received within the annular groove 68 when
`the sleeve is reciprocated in a downward or opened
`direction. This action locks the ports into the opened
`position as the ports move into registry with one an-
`other. Passageway 96 communicates the expansion
`chamber 70 with the axial passageway 44.
`Those skilled in the art, having digested the foregoing
`disclosure material of this specification, will probably
`realize that the sliding sleeve is captured between the
`mandrel and sub, and acts as a piston; and, when pres-
`sure is effected within the axial passageway, the pres-
`sure differential forces the piston to move downwardly
`against shoulder 60.
`In operation, the vent assembly is connected into the
`tubing string of the permanent completion apparatus in
`the manner of FIG. 1. As noted in FIGS. _2 and 3, it is
`possible to circulate or drop a tool 97 of various config-
`urations down through the tubing string, whereupon
`the tool
`travels through the upper
`tubing string,
`through the axial passageway 44 of the vent assembly,
`and down to a jet perforating gun 28, for example,
`thereby detonating the gun firing head 98 and complet-
`ing the well.
`Assuming the well to be slanted as set forth in patent
`application Ser. No. 132,765, prior to circulating a bar
`97 downhole, the internal pressure of the tubing is ele-
`vated by employing a suitable power pump which is
`monitored with a chart type pressure recorder. The
`tubing preferably is liquid filled, and liquid is pumped
`into the upper tubing string in order to elevate the inter-
`nal tubing pressure, although nitrogen or other inert
`gases can be employed for this pressure elevation,
`if
`desired.
`As the bottomhole tubing pressure reaches a value of
`approximately two thousand psi above the annulus pres-
`sure, with the annulus pressure being measured at a
`location below the packer, the pin 83 will shear, and the
`sleeve 52 will slam down and lock, thereby opening the
`vents as ports 26 and 74 move into aligned relationship
`respective to one another.
`
`Page 4 of 6
`Page 4 of6
`
`

`
`4,434,854
`
`5
`The slope of the pressure curve will change as the
`tubing and the casing fluid pressures equalize. Pumping
`into the upper tubing string is continued to cause the
`tubing pressure to further increase. The pressure is next
`bled off, and increased again to the same previous vol-
`ume of liquid ‘or gas. The relative configuration of the
`two recorded curves indicate whether or not the vent
`
`assembly has been actuated to the opened position,
`thereby indicating that the well completion technique
`can be continued safely.
`The annular area at 42, that is, the cross-sectional area
`of the annulus defined by the cylinder walls 46 and 48,
`multiplied by the pressure effected through ports 88 and
`96, determine the downward force exerted upon the
`sliding sleeve. The shear pin must be sized according to
`this calculated force.
`As the pin shears, the sleeve is rapidly forced down-
`wardly until edge portion 58 thereof abuttingly engages
`the shoulder 60 of the mandrel. During this time, the
`guide pin 86 rides within the vertical groove 87, thereby
`aligning port 74 with port 26. The circumferentially
`extending groove 68 moves into aligned relationship
`with respect to the spring loaded plug or lock 96 which
`is received therewithin so that the sleeve is positively
`locked into the opened position.
`Initially, just as the pin shears, there is pressure ef-
`fected within both chambers 50 and 70, as seen as 50'
`and 70’ on the right half of FIG. 2. After the pin shears
`and the sleeve travels a short distance, the passageway
`'96 is closed as it passes the lower end of groove 87. This
`effectively reduces the cross-sectional area of the sleeve
`which is subjected to the internal tubing pressure. Ac-
`cordingly, the sleeve commences opening under a large
`force and then issubjected to a reduced force during the
`final part of its downward stroke. This reduction in
`force is adequate to ensure full stroke of the sleeve,
`while the sleeve is protected from damage which may
`result from excessive impact against the shoulder 60.
`Hence, the opening stroke of the sleeve is carried out in
`two steps; a large opening force to assure that the pin
`shears, and a reduced force to assure full travel of the
`sleeve. The groove 87 serves as a guide means for guide
`pin 86 as well as a passageway for flow from 44, 88, 87,
`96, and into annular chamber 70. Flow from 44 through
`84 and into chamber 50 occurs about the upper marginal
`end of the sleeve, the tolerance between the coacting
`sliding surfaces being of a value which enables a small
`flow to occur into chamber 50.
`the
`Accordingly, upon initial opening movement,
`entire cross-sectional area of the sleeve is subjected to
`the pressure at 44, and thereafter, only the upper re-
`duced diameter cross-sectional area of the sleeve is
`subjected to the pressure effected at 44.
`It will now be evident to those skilled in the art that
`pressure is effected at 50° by flow which occurs
`through the passageway at 84 and 88, while the cham-
`ber 70' is communicated with the pressure source at 44
`by means of passageways 88 and 96.
`The present invention can be used in borehole opera-
`tions which are severely slanted as contrasted to bore-
`holes which are vertically disposed.
`What is claimed is:
`1. A vent assembly in combination with a packer and
`perforating gun suspended on a tubing string into a
`cased borehole with an open axial passageway extend-
`ing from the perforating gun to the surface for the low-
`ering of a bar to detonate the perforating gun and for
`
`6
`the flow of production fluids through the vent assembly
`to the surface, comprising:
`a tubular body series connected in the tubing string
`and having a portion of the axial passageway ex-
`tending therethrough;
`a sleeve disposed on said body forming an annular
`chamber;
`piston means received within said annular chamber;
`ports through said body and piston means,
`said piston means being movable between an open
`position where said ports allow fluid flow between
`said axial passageway and borehole and a closed
`position where fluid flow is prevented;
`guide means disposed on said piston means for bring-
`ing said ports into registry in said open position;
`and
`means communicating one portion of said piston
`means with said axial passageway and another por-
`tion of said piston means with the borehole
`whereby a sufficient pressure differential between
`said axial passageway and borehole will cause said
`piston means to move from said closed position to
`said open position.
`2. The circulation valve of claim 1 and further includ-
`ing latch means for engaging said piston means when
`said piston means moves to said open position so that
`said piston means is latched in the open position.
`3. A vent assembly for opening a tubing string to the
`flow of fluids to the surface upon the application of
`tubing pressure predeterminely greater than the annulus
`well pressure, comprising:
`a tubular body series connected in the tubing string
`and having an axial passageway therethrough;
`means forming an annular chamber in said tubular
`body;
`means forming a first port through said tubular body;
`piston means reciprocatingly received within said
`annular chamber and having means forming a sec-
`ond port
`through said piston means in indexed
`relationship relative to said first port in the open
`position;
`means communicating one portion of said piston
`means with said axial passageway and means com-
`municating another portion of said piston means
`with the borehole annulus;
`means releasably affixing said piston relative to said
`body whereby when the tubing pressure becomes
`predeterminely greater than the annulus pressure,
`said releasable means releases said piston and said
`piston means moves into the open position where
`said first and second ports are in an indexed rela-
`tionship and fluids may flow from the formation to
`the surface; and
`latch means for latching said piston in the open posi-
`tion.
`4. A pressure actuated vent assembly for connection
`in series relationship within a tubing string comprising:
`a mandrel having an axial passage formed therein;
`a circumferentially extending skirt affixed to said
`mandrel, a marginal length of said mandrel being
`spaced from said skirt to form a circumferentially
`extending annulus;
`a sliding sleeve reciprocatingly received within said
`annulus; means forming a port through said man-
`drel, means forming a port through said sleeve in
`indexed relationship relative to said mandrel port,
`and seal means by which fluid flow is prevented
`from flowing between said sleeve and mandrel;
`
`5
`
`10
`
`15
`
`20
`
`25
`
`30
`
`35
`
`45
`
`50
`
`55
`
`65
`
`Page 5 of 6
`Page 5 of6
`
`

`
`4,434,854
`
`7
`means communicating the upper end of the sleeve
`with said axial passageway so that when pressure is
`effected within said axial passageway, pressure
`forces the sleeve to move into the open position
`whereby said sleeve and mandrel ports are aligned
`permitting fluid to flow through said sleeve and
`mandrel ports and into said axial passageway;
`means releasably affixing said sliding sleeve relative
`to said mandrel so that said sleeve remains in a
`closed position until an elevated pressure is ef-
`fected within said axial passageway; and
`latch means for engaging said sleeve when said sleeve
`moves to the open position so that said sleeve is
`latched in the open position.
`5. The vent assembly of claims 1, 2, 3, or 4 wherein
`said piston means forms a variable chamber; and further
`including means forming an aperture extending from
`said axial passageway to said variable chamber to pro-
`vide an opening force during the initial opening move-
`ment of said piston means and thereafter providing a
`relatively smaller force during the final opening move-
`ment.
`6. The vent assembly of claims 3 or 4 and further
`including guide means disposed on said piston means for
`bringing said ports into registry in said open position.
`7. In a cased borehole having a tubing string sus-
`pended therein, a packer located along the tubing string
`for closing the casing annulus, and a vent assembly
`series connected in the tubing string below the packer,
`the method comprising the steps of:
`(1) providing the vent assembly with a ported tubular
`body, forming an annular chamber within the said
`body and slidably mounting a ported slccvc within
`the annular chamber;
`(2) closing the port through the body and thus the
`axial passageway of the tubular string to the flow
`of fluids from the casing annulus by sliding the
`ported sleeve to a closed position where the ports
`are nonaligned;
`(3) lowering the tubing string, packer and vent assem-
`bly into the cased borehole in the closed position;
`(4) effecting a pressure differential between the axial
`passageway of the tubing string and the casing
`annulus by elevating the pressure within the axial
`passageway; and
`(5) using the pressure differential of step (4) to force
`the sleeve to slide into the open position where the
`ports are aligned to immediately open a flow path
`allowing the flow of fluids from the casing annulus,
`through the ports and axial passageway, and up to
`the surface.
`‘
`8. In a cased borehole having a tubing string sus-
`pended therein, a packer located along the tubing string
`for closing the casing annulus, and a vent assembly
`series connected in the tubing string below the packer,
`the method comprising the steps of:
`(1) providing the vent assembly with a ported tubular
`body, forming an annular chamber within the said
`body and slidably mounted a ported sleeve within
`the annular chamber;
`(2) closing the port through the body and thus the
`axial passageway of the tubular string to the flow
`of fluids from the casing annulus by sliding the
`ported sleeve to a closed position where the ports
`are nonaligned;
`(3) lowering the tubing string, packer and vent assem-
`bly into the cased borehole in the closed position;
`
`l0
`
`15
`
`20
`
`25
`
`30
`
`35
`
`45
`
`50
`
`55
`
`60
`
`65
`
`8
`(4) effected a pressure differential between the axial
`passageway of the tubing string and the casing
`annulus by elevating the pressure within the axial
`passageway;
`(5) using the pressure differential of step (4) to force
`the sleeve to slide into the open position where the
`ports are aligned to allow the flow of fluids from
`the casing annulus,
`through the ports and axial
`passageway, and up to the surface; and
`(6) latching the sleeve in the open position.
`9. In a cased borehole having a tubing string sus-
`pended therein, a packer located along the tubing string
`for closing the casing annulus, and a vent assembly
`series connected in the tubing string below the packer,
`the method comprising the steps of:
`(1) providing the vent assembly with a ported tubular
`body, forming an annular chamber within the said
`body and slidably mounting a ported sleeve within
`the annular chamber;
`(2) closing the port through the body and thus the
`axial passageway of the tubular string to the flow
`of fluids from the casing annulus by sliding the
`ported sleeve to a closed position where the ports
`are nonaligned;
`(3) lowering the tubing string, packer and vent assem-
`bly into the cased borehole in the closed position;
`(4) effecting a pressure differential between the axial
`passageway of the tubing string and the casing
`annulus by elevating the pressure within the axial
`passageway;
`(5) using the pressure differential of step (4) to force
`the sleeve to slide into the open position where the
`ports are aligned to allow the flow of fluids from
`the casing annulus,
`through the ports and axial
`passageway, and up to the surface; and
`(6) reducing the force on the sleeve during step (5)
`after the sleeve initially moves toward the open
`position.
`10. In a cased borehole having a tubing string sus-
`pended therein, a packer located along the tubing string
`for closing the casing annulus, a perforating gun sus-
`pended from the tubing string, and a vent assembly
`series connected in the tubing string between the packer
`and the perforating gun, the method comprising the
`steps of:
`.
`(1) providing the vent assembly with a ported tubular
`body,
`forming an annular chamber within said
`body and slidably mounting a ported sleeve within
`the annular chamber;
`(2) closing the port through the body and thus the
`axial passageway of the tubular string to the flow
`of fluids from the casing annulus by sliding the
`ported sleeve to a closed position where the ports
`are nonaligned;
`(3) lowering the tubing string, packer and vent assem-
`bly into the cased borehole in the closed position;
`(4) extending the axial passageway through the tub-
`ing string from the perforating gun to the surface;
`(5) effecting a pressure differential between the axial
`passageway of the tubing string and the casing
`annulus by elevating the pressure within the axial
`passageway; and
`(6) using the pressure differential of step (5) to force
`the sleeve to slide into the open position where the
`ports are aligned to allow the flow of fluids from
`the casing annulus,
`through the ports and axial
`passageway, and up the axial passageway to the
`surface.
`*
`*
`*
`*
`*
`
`Page 6 of 6
`Page 6 of6

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket