throbber
NASA/TMm2001-211122
`
`Thermal
`Barrier
`
`Conductivity
`and Environmental
`
`of Ceramic
`Barrier
`
`Thermal
`
`Coating Materials
`
`Zhu
`Dongming
`Ohio Aerospace
`
`Institute,
`
`Brook
`
`Park, Ohio
`
`Narottam
`Glenn
`
`P. Bansal
`Research
`Center,
`
`Cleveland,
`
`Ohio
`
`Kang N. Lee
`Cleveland
`State University,
`
`Cleveland,
`
`Ohio
`
`Robert
`Glenn
`
`A. Miller
`Research
`
`Center,
`
`Cleveland,
`
`Ohio
`
`September
`
`2001
`
`1
`
`UTC 2024
`General Electric v. United Technologies
`IPR2016-01289
`
`

`

`The NASA STI Program
`
`Office...
`
`in Profile
`
`NASA has
`its founding,
`Since
`of aeronautics
`the
`advancement
`science.
`The NASA Scientific
`
`dedicated
`been
`space
`and
`and Technical
`
`to
`
`Information
`in helping
`
`(STI) Program
`NASA maintain
`
`plays
`Office
`this
`important
`
`a key
`role.
`
`part
`
`is operated
`Office
`The NASA STI Program
`the Lead Center
`Langley
`Research
`Center,
`NASA's
`scientific
`and
`technical
`information.
`
`by
`for
`
`The
`
`to the
`access
`provides
`Office
`NASA STI Program
`of
`largest
`collection
`the
`NASA STI Database,
`science
`STI
`in the world.
`aeronautical
`and
`space
`The Program
`Office
`is also NASA's
`institutional
`mechanism
`for disseminating
`the
`results
`of
`its
`and
`research
`development
`activities.
`These
`results
`are published
`by NASA in the NASA STI Report
`Series, which
`includes
`the
`following
`report
`types:
`
`of
`
`Reports
`PUBLICATION.
`TECHNICAL
`significant
`research
`or a major
`completed
`of
`the
`results
`research
`that
`present
`phase
`of
`data
`extensive
`NASA programs
`and
`include
`compilations
`or
`theoretical
`analysis.
`Includes
`of significant
`scientific
`and
`technical
`data
`information
`deemed
`to be of continuing
`of peer-
`reference
`value.
`NASA's
`counterpart
`but
`reviewed
`formal
`professional
`papers
`has
`less
`stringent
`limitations
`on manuscript
`length
`and
`extent
`of graphic
`presentations.
`
`and
`
`TECHNICAL
`
`MEMORANDUM.
`
`Scientific
`
`are prelimina
`that
`findings
`technical
`and
`quick
`release
`e.g.,
`interest,
`of specialized
`and
`bibliographies
`papers,
`reports,
`working
`that
`contain
`minimal
`annotation.
`Does
`not
`
`D" or
`
`contain
`
`extensive
`
`analysis.
`
`CONTRACTOR
`
`REPORT.
`
`Scientific
`
`and
`
`technical
`contractors
`
`findings
`and
`
`by NASA-sponsored
`grantees.
`
`CONFERENCE
`
`PUBLICATION.
`
`Collected
`
`from scientific
`papers
`conferences,
`symposia,
`meetings
`sponsored
`NASA.
`
`technical
`and
`seminars,
`or cosponsored
`
`or other
`by
`
`SPECIAL
`technical,
`
`PUBLICATION.
`or historical
`
`Scientific,
`information
`
`from
`
`NASA programs,
`often
`concerned
`substantial
`public
`
`and missions,
`projects,
`with
`subjects
`having
`interest.
`
`TRANSLATION.
`TECHNICAL
`translations
`of
`foreign
`language
`and
`technical
`material
`pertinent
`mission.
`
`English-
`scientific
`to NASA's
`
`that
`services
`Specialized
`Office's
`diverse
`Program
`custom
`thesauri,
`creating
`data
`bases,
`organizing
`results..,
`even
`providing
`
`complement
`offerings
`building
`publishing
`videos.
`
`and
`
`the STI
`include
`customized
`research
`
`For more
`
`information
`
`about
`
`the NASA STI
`
`Program
`
`Office,
`
`see the
`
`following:
`
`•
`
`•
`
`•
`
`•
`
`the NASA STI Program
`Access
`at httpYlwww.sti.nasa.gov
`
`Home
`
`Page
`
`question
`your
`E-mail
`help@sti.nasa.gov
`
`via
`
`the
`
`Internet
`
`to
`
`Fax your
`Help Desk
`
`to the NASA Access
`question
`at 301-621-0134
`
`the NASA Access Help Desk
`
`at
`
`Telephone
`301-621-0390
`
`Write
`
`to:
`
`NASA Access Help Desk
`NASA Center
`for AeroSpace
`7121 Standard
`Drive
`
`Hanover,
`
`MD 21076
`
`Information
`
`2
`
`

`

`NASA/TM--2001-211122
`
`Thermal
`Barrier
`
`Conductivity
`and Environmental
`
`of Ceramic
`Barrier
`
`Thermal
`
`Coating Materials
`
`Zhu
`Dongming
`Ohio Aerospace
`
`Institute,
`
`Brook
`
`Park, Ohio
`
`Narottam
`Glenn
`
`P. Bansal
`Research
`Center,
`
`Cleveland,
`
`Ohio
`
`Kang N. Lee
`Cleveland
`State University,
`
`Cleveland,
`
`Ohio
`
`Robert
`Glenn
`
`A. Miller
`Research
`
`Center,
`
`Cleveland,
`
`Ohio
`
`National
`
`Aeronautics
`
`and
`
`Space Administration
`
`Glenn
`
`Research
`
`Center
`
`September
`
`2001
`
`3
`
`

`

`Acknowledgments
`
`by NASA Ultra-Efficient
`supported
`This work was
`at NASA Glenn Research
`George W. Leissler
`TBC and EBC coatings
`specimens.
`Thanks
`various
`
`Engine Technology
`Center
`for his assistance
`are due
`to John Setlock
`ceramic
`compositions.
`
`Program.
`(UEET)
`in the preparation
`for his help with
`
`The authors
`are grateful
`of plasma-sprayed
`hot pressing
`of
`
`to
`
`or manufacturers'
`report
`in this
`are used
`names
`names
`Trade
`not constitute
`an official
`does
`only. This usage
`identification
`implied,
`by the National
`or
`either
`expressed
`endorsement,
`Aeronautics
`and Space Administration.
`
`for
`
`for Aerospace
`NASA Center
`Drive
`7121 Standard
`Hanover, MD 21076
`
`Information
`
`National
`
`Technical
`
`Information
`
`Service
`
`5285 Port Royal Road
`Springfield,
`VA 22100
`
`Available
`
`from
`
`Available
`
`electronically
`
`at http://gltrs.grc.nasa.gov/GLTRS
`
`4
`
`

`

`THERMAL
`CONDUCTIVITY
`ENVIRONMENTAL
`
`BARRIER
`THERMAL
`OF CERAMIC
`BARRIER
`COATING
`MATERIALS
`
`AND
`
`Dongming
`
`Zhu, Narottam P. Bansal, Kang N. Lee and Robert A. Miller
`National
`Aeronautics
`and Space Administration
`Glenn Research
`Center
`Cleveland,
`Ohio 44135
`
`ABSTRACT
`
`been
`have
`EBC's)
`and
`(TBCs
`coatings
`barrier
`environmental
`and
`barrier
`Thermal
`from high
`engines
`turbine
`in gas
`components
`ceramic
`and Si-based
`developed
`to protect metallic
`based
`(BSAS)/mullite
`and
`(Ba,Sr)AlzSi_,Os
`oxides
`temperature
`attack.
`Zirconia-yttria
`based
`values
`of
`conductivity
`In this
`study,
`thermal
`have
`silicates
`been
`used
`as the
`coating materials.
`at high temperatures
`zirconia-yttria-
`and BSAS/mullite-based
`coating materials
`were
`determined
`test,
`the
`specimen
`using
`a steady-state
`laser
`heat
`flux
`technique.
`During
`the
`laser
`conductivity
`surface
`was heated
`by delivering
`uniformly
`distributed
`heat
`flux from a high power
`laser. One-
`dimensional
`steady-state
`heating
`was
`achieved
`by
`using
`thin
`disk
`specimen
`configuration
`(25.4 mm diam and
`2 to
`4 mm thickness)
`the
`appropriate
`backside
`air-cooling.
`The
`
`and
`
`temperature
`backside
`temperature
`corrections
`specimen
`
`by two surface
`measured
`carefully
`was
`thickness
`specimen
`the
`across
`gradient
`as
`a function
`determined
`were
`thus
`values
`thermal
`conductivity
`The
`pyrometers.
`heat
`loss and laser
`absorption
`radiation
`I-D heat
`transfer
`equation.
`The
`on the
`based
`measurements.
`The
`effects
`were
`considered
`in the
`conductivity
`of
`the materials
`porosity
`and sintering
`on measured
`conductivity
`values were
`also evaluated.
`
`and
`of
`
`of
`
`INTRODUCTION
`
`been
`have
`(EBC's)
`coatings
`barrier
`Environmental
`temperature
`from high
`engines
`turbine
`components
`in gas
`higher
`significantly
`for
`continuously
`increasing
`demands
`future
`EBC systems
`efficiency
`and better
`engine
`reliability,
`engine
`components
`the
`and
`environmental
`protections
`of
`barrier
`functions
`environment
`[4].
`In particular,
`thermal
`loads
`and
`chemical
`reducing
`engine
`component
`thermal
`the
`required
`mechanical
`properties
`and
`durability
`of
`these
`advanced
`thermal
`barrier
`and
`environmental
`barrier
`coatings
`impact
`the successful
`use of ceramic
`components
`in advanced
`
`ceramic
`Si-based
`to protect
`developed
`attack
`[1-3]. With
`environmental
`temperature,
`fuel
`engine
`operating
`for both
`thermal
`must
`be designed
`combustion
`gas
`in
`gas
`turbine
`a necessity
`for
`of EBC's
`become
`thus maintaining
`reaction
`rates,
`of
`development
`components.
`The
`(TBC's
`and EBC's)
`will
`directly
`engine
`systems.
`
`have
`coatings
`(Ba,Sr)A12Si2Os(BSAS)-mullite
`and
`ZrO2-8 wt% Y203,
`Plasma-sprayed
`and environmental
`for superalloy
`components,
`coatings
`successfully
`used as thermal
`barrier
`been
`respectively.
`In this
`matrix
`composite
`(CMC)
`systems,
`coatings
`for SiC/SiC
`ceramic
`barrier
`a laser
`steady-state
`heat
`flux technique
`is established
`to evaluate
`high temperature
`thermal
`study,
`the
`conductivity
`of
`both
`hot-pressed
`and
`plasma-sprayed
`TBC/EBC
`materials.
`The
`thermal
`conductivity
`data
`are of great
`importance
`for
`future
`advanced
`coating
`design.
`
`NASA/TM--2001-211122
`
`1
`
`5
`
`

`

`MATERIALS
`
`AND EXPERIMENTAL
`
`METHODS
`
`Materials
`
`materials,
`TBC and EBC coating
`Several
`tested
`at
`and mullite+BSAS
`mixtures,
`were
`conductivity
`values
`using
`a laser
`steady
`state
`either
`hot-pressed
`disks
`(25.4 mm diam and
`
`ZrO_,-8 wt% Y203,
`including
`high
`temperatures
`to determine
`heat
`flux test
`technique.
`The
`test
`2 to 4 mm thickness),
`or
`254
`
`BSAS, mullite,
`their
`thermal
`specimens
`were
`to 400-1am
`thick
`
`powders
`spray-dried
`using
`fabricated
`were
`specimens
`The hot-pressed
`coatings.
`plasma-sprayed
`by plasma-
`were prepared
`specimens
`coating
`under
`30 MPa pressure.
`The
`at 1500 °C for an hour
`or on melt-
`onto
`superalloy
`disks
`(25.4 mm diam and
`3.2 mm thickness)
`spraying
`the powders
`infiltrated
`(MI)
`SiC/SiC
`ceramic
`matrix
`composites
`(25.4 mm diam and
`2.2 mm thickness)
`substrates.
`
`Thermal
`
`Conductivity
`
`Testing
`
`Thermal
`3.0 kW CO2 laser
`
`conductivity
`(wavelength
`
`testing
`10.6
`
`ceramic
`the
`of
`lain ) high-heat
`
`materials
`coating
`flux
`rig. A schematic
`
`carried
`was
`diagram
`
`out
`of the
`
`using
`test
`
`a
`rig
`
`approaches
`test
`the general
`1, and
`in Fig.
`illustrated
`are
`facilities
`test
`actual
`the
`of
`photos
`and
`conductivity
`flux
`thermal
`In this
`steady-state
`laser
`heat
`[5-9].
`elsewhere
`described
`been
`have
`was provided
`by the laser
`beam,
`and backside
`air-cooling
`was
`surface
`heating
`the
`specimen
`test,
`the desired
`specimen
`temperatures.
`A uniform laser
`heat
`flux was obtained
`over
`used to maintain
`the
`23.9 mm diam aperture
`region
`the
`specimen
`surface
`by using
`an integrating
`ZnSe
`lens
`combined
`with the specimen
`rotation.
`Platinum
`wire
`flat
`coils
`(wire
`diam 0.38 mm) were
`used to
`form thin
`air gaps
`between
`the
`top
`aluminum
`aperture
`plate
`and
`stainless-steel
`back
`plate
`to
`minimize
`the specimen
`heat
`losses
`through
`the fixture.
`
`of
`
`The
`
`thermal
`
`conductivity
`
`kcerami
`
`c of
`
`the
`
`ceramic
`
`materials
`
`can
`
`be determined
`
`from the
`
`pass-through
`
`heat
`
`flux
`
`qthru and measured
`
`temperature
`
`difference
`
`ATcerami
`
`c
`
`across
`
`the
`
`ceramic
`
`specimen
`conditions
`
`the
`(or
`[5, 7]
`
`ceramic
`
`coating)
`
`thickness
`
`lcerami
`
`c
`
`under
`
`the
`
`steady-state
`
`laser
`
`heating
`
`k ceramic = q thru "l ceramic
`
`/ ATceramic
`
`( 1)
`
`obtained
`
`by
`
`The
`
`actual
`
`pass-through
`
`heat
`
`flux
`
`qthru
`
`for
`
`a given
`
`ceramic
`
`specimen
`
`was
`
`subtracting
`radiation
`
`the
`heat
`
`loss
`reflection
`laser
`loss
`(total
`emissivity
`
`(measured
`was
`taken
`
`and
`by a 10 ktm reflectometer)
`as 0.50 for
`the oxides
`and silicates)
`
`the
`at
`
`calculated
`the ceramic
`
`coating
`
`surface
`
`(i.e.,
`
`qthru = qdelivered --qreflected --qradiated ) from the
`
`laser
`
`delivered
`
`heat
`
`flux.
`
`that
`Note
`surfaces
`
`the
`because
`
`non-reflected
`of
`the
`
`quite
`
`laser
`high
`
`is
`energy
`emissivity
`
`assumed
`at
`the
`
`at or near
`absorbed
`to be
`10.6 _tm laser wavelength
`
`the
`region
`
`specimen
`for
`the
`
`oxides
`
`and
`
`silicates.
`
`In some
`
`test
`
`cases,
`
`the
`
`pass-through
`
`heat
`
`flux
`
`q,h,_ was
`
`verified
`
`with
`
`internal
`embedded
`
`flux
`heat
`miniature
`
`incorporated
`gauge
`thermocouple.
`
`with
`For
`the
`
`the
`hot
`
`substrates
`pressed
`
`(instrumented
`bulk
`specimens,
`
`via
`specimens)
`the
`temperature
`
`an
`
`an
`
`NASA/TM--2001-211122
`
`2
`
`6
`
`

`

`difference
`
`AT, vr.mi ,.
`
`in the
`
`ceramic
`
`was
`
`directly
`
`measured
`
`by
`
`using
`
`surface
`
`and
`
`backside
`
`pyrometers
`and
`at 0.97
`
`pyrometers,
`8 pm infrared
`(both
`for mullite
`and BSAS
`silicates).
`
`emissivity
`For
`
`set
`was
`coating
`
`oxides.
`for ZrO2-Y203
`at 0.94
`specimens,
`the
`temperature
`
`the
`
`difference
`
`in the
`
`ceramic
`
`coating
`
`AT_.er.,,,i,. was obtained
`
`from the measured
`
`coating
`
`surface
`
`and
`
`substrate
`respectively,
`
`using
`temperatures
`backside
`and subtracting
`the temperature
`
`an
`
`8 um pyrometer
`drops
`in the substrate
`
`two-color
`a
`and
`and bond coat
`
`pyrometer,
`
`ATcer.,,,,c
`
`= Tceramic-surqfi'e-
`
`T,',,bst,'ate-back
`
`10
`
`_li_
`
`_ fl_o,,a
`
`qthru
`
`" dl
`
`qth,-u
`
`dl
`
`k s,tl_strate(T )
`
`where
`
`and
`
`T_.ubstrate_l_ack
`
`are measured
`
`ceramic:
`
`surface
`
`and
`
`substrate
`
`backside
`
`L'eramic-surqlce
`
`temperatures,
`
`lboml,
`
`1
`
`sllb_D'afC
`
`,
`
`and
`
`kl, ond(T)
`
`and
`
`k
`
`(T_
`
`are
`
`the
`
`thicknesses
`
`and
`
`the
`
`_ltt)_D'Ug('
`
`temperature-dependent
`
`thermal
`
`conductivity
`
`of the bond coat
`
`and substrate,
`
`respectively.
`
`RESULTS
`
`AND DISCUSSION
`
`Phase Structures
`
`of Coating Materials
`
`the
`
`of ZrO2-8 wt% Y203, BSAS,
`results
`diffraction
`X-ray
`typical
`2 shows
`Figure
`hot-pressed
`ZrO2-8 wt% Y203
`had
`and
`plasma-sprayed
`The
`materials.
`BSAS+mullite
`phases
`after
`the processing
`and
`the
`laser
`some monoclinic
`and cubic
`t' phase with
`tetragonal
`and
`cubic
`phases were
`usually
`present
`conductivity
`testing. However,
`more monoclinic
`thermal
`due to the lower
`processing
`temperature.
`in the hot-pressed
`ZrO2-8 wt% Y203 specimen
`probably
`showed
`mainly
`the
`(Ba,Sr)Al2Si2Os
`Both
`hot-pressed
`and
`plasma-sprayed
`BSAS
`specimens
`celsian
`phase.
`The BSAS+mullite
`mixture
`specimen
`contained
`both the
`(Ba,Sr)Al2Si208
`celsian
`and mullite
`phases,
`as expected.
`
`and
`a
`
`Thermal
`
`Conductivity
`
`of ZrOz-8 wt % YzOa
`
`thermal
`the
`used
`is extensively
`(2I"O2-4.55 mol%)
`ZrO2-8 wt% Y203
`mechanical
`excellent
`low thermal
`conductivity
`and
`because
`of
`its
`material
`test
`temperature
`conductivity
`of a hot-pressed
`specimen
`as a function
`of
`thermal
`Fig. 3 (a). The
`dense
`bulk material
`a conductivity
`value
`of 2.0 to 2.3 W/m-K,
`only slight
`temperature
`dependence.
`
`had
`
`as
`
`coating
`barrier
`The
`properties.
`in
`is shown
`and
`showed
`
`The
`
`thermal
`
`conductivity
`
`of a 180-I, tm thick,
`
`plasma-sprayed
`
`ZrO2-8 wt% Y203
`
`coating
`
`superalloy
`based
`on a nickel
`specimen
`porous, microcracked
`thermal
`relatively
`1316 °C for
`temperature
`of
`surface
`of
`conductivity
`value
`1.0 W/m-K,
`but
`1.4 W/m-K
`due to the ceramic
`sintering.
`
`substrate
`barrier
`20 hr.
`after
`
`as a function
`coating
`(with
`can
`seen
`It
`20 hr
`testing
`
`be
`laser
`
`is shown
`of time
`10 vol% porosity)
`that
`the
`coating
`the
`conductivity
`
`in Fig. 3 (b). The
`was
`tested
`at a
`had
`an
`initial
`increased
`to
`
`NASA/TM--2001-211122
`
`3
`
`7
`
`

`

`Thermal
`
`Conductivity
`
`of BSAS
`
`and Mullite
`
`results
`test
`conductivity
`the thermal
`4 shows
`Figure
`thermal
`The measured
`flux
`technique.
`heat
`the
`laser
`using
`of
`temperature
`range
`2.8
`to 3.0 W/m-K
`in the
`about
`conductivity
`during
`the heating
`cycle
`is due
`to possible
`results
`are
`consistent
`with
`the
`conductivity
`measurements
`
`of a hot-pressed
`conductivity
`800
`to
`1400°C.
`specimen
`cracking.
`of
`a laser
`sintered,
`
`BSAS
`disk specimen
`specimen
`was
`of
`this
`A sudden
`drop
`in
`The
`conductivity
`254-_tm
`thick
`
`substrate
`superalloy
`base
`on a nickel
`specimen
`coating
`dense BSAS
`also be seen that
`thermal
`conductivity
`of a 254- _tm thick plasma-sprayed
`
`it can
`(Fig. 5). From Fig. 5,
`mullite
`coating
`showed
`
`stronger
`temperature
`temperature
`
`temperature
`regime.
`range
`
`than BSAS.
`dependence
`coating
`had
`The mullite
`of 1000 to 1400 °C.
`
`conductivity
`Lower
`conductivity
`values
`
`values were measured
`of-1.9
`to 2.5 W/m-K
`
`at high
`in the
`
`initial
`the
`coating,
`BSAS
`plasma-sprayed
`as
`the
`For
`As shown
`of higher
`porosity.
`due
`to the presence
`lower
`significantly
`of BSAS was
`about
`1.4 W/m-K
`at 900 °C. Considerable
`conductivity
`during
`the
`first
`heating-cooling
`cycle
`due
`to the
`ceramic
`observed
`to -2.2 W/m-K at 900 °C.
`cycle,
`the conductivity
`increased
`
`be
`can
`values
`conductivity
`thermal
`the initial
`in Fig. 6,
`conductivity
`increase
`was
`sintering.
`After
`the
`first
`test
`
`Thermal
`
`Conductivity
`
`of BSAS
`
`and Muilite Mixtures
`
`thermal
`the
`7 shows
`Figure
`using
`the
`disk specimens
`for
`the
`two materials
`were
`
`and mullite
`BSAS
`of hot-pressed
`results
`test
`conductivity
`conductivity
`thermal
`The measured
`laser
`heat
`flux technique.
`about
`3.0 W/m-K
`at 600 °C and
`1.6 to 2.0 W/m-K at 1500 °C.
`
`mixture
`values
`
`higher
`slightly
`A
`(30 wt% BSAS+70mullite)
`
`conductivity
`material.
`
`was
`
`observed
`
`for
`
`the
`
`higher
`
`BSAS
`
`containing
`
`to the
`Similar
`also
`coatings
`the
`254-_tm
`
`+ mullite
`BSAS
`plasma-sprayed
`the
`coating,
`BSAS
`sprayed
`plasma
`shown
`in
`value
`due
`to porosity.
`As
`initial
`conductivity
`lower
`showed
`thick mullite+20wt%
`BSAS
`coating
`had
`an
`initial
`conductivity
`of
`
`mixture
`Fig. 8,
`
`1.5 W/m-K,
`However,
`coating.
`
`to 2.0 W/m-K
`and increased
`coating
`had less
`conductivity
`
`the
`
`at 900 °C after
`increase
`due
`
`cycle
`first heating
`the
`to sintering
`as compared
`
`to sintering.
`due
`to pure BSAS
`
`Thermal
`
`Conductivity
`
`of TBC/EBC
`
`Systems
`
`also
`was
`systems
`of TBC/EBC
`conductivity
`Thermal
`results
`of a two-layer
`BSAS/mullite+20
`conductivity
`test
`thermal
`CMC
`substrate.
`The
`first
`heating-cooling
`on
`the
`SiC/SiC
`coated
`to the
`larger
`initial
`ceramic
`sintering.
`due
`conductivity
`increase
`much
`less
`conductivity
`increase.
`This
`cycle,
`however,
`showed
`temperatures,
`most of the sintering
`and densification
`had occurred
`
`the
`9 shows
`Fig.
`investigated.
`coating
`that was
`wt% BSAS
`had
`a
`significant
`cycle
`heating-cooling
`second
`The
`the
`given
`at
`is because
`during
`the first cycle.
`
`test
`
`NASA/TM--2001-211122
`
`4
`
`8
`
`

`

`In order to evaluate muitilayer TBC/EBC coating conductivity information at high
`temperature,a ZrO2-8wt% Y203/mullite/Si/SiC-SiCCMC system was tested at a surface
`temperatureof 1560°C with a laserpass-thruheat flux of 115W/m-K. Figure 10 (a) and (b)
`show the coatingthermal conductivity, and the estimatedtemperaturedistribution acrossthe
`coatingsystem.Theoverall initial ceramiccoatingconductivitywasabout 1.6to 1.8W/m-K, but
`theconductivityquickly increasedto about2.2W/m-K afterthe hightemperatureexposurefor a
`short period of
`time. A slight decreasein coating conductivity may be related to some
`microcrackingof thecoatingsystems.Coatingsinteringanddelaminationwill becomeimportant
`issuesfor developingadvancedceramiccoatingsystemsdesignedfor high temperatureandhigh
`thermalgradientapplications.
`
`CONCLUSIONS
`
`thermal
`conductivity
`used to investigate
`has been
`flux technique
`heat
`steady-state
`A laser
`current
`BSAS
`of
`the
`conductivity
`values
`Thermal
`several
`TBC and EBC coating materials.
`of
`as compared
`to
`in the range
`of 1.9 to 3.0 W/m-K,
`and mullite
`based EBC coating materials
`were
`plasma-sprayed
`barrier
`coating
`material.
`The
`-2.0 W/m-K
`for
`the ZrO2-8 wt% Y203
`thermal
`for
`1.0 W/m-K
`(1.4 W/m-K
`for EBCs
`and
`coatings
`showed
`lower
`initial
`conductivity
`values
`due
`to higher
`hot
`ZrO2-8 wt% Y203)
`as
`compared
`to the
`oppressed
`bulk
`coating
`materials
`TBC and EBC
`was
`porosity.
`Significant
`conductivity
`increase
`observed
`for
`the plasma-sprayed
`coating
`systems
`after
`the
`laser
`high temperature
`thermal
`exposure
`because
`of ceramic
`sintering
`and densification.
`
`REFERENCES
`
`Durability
`Surface
`
`and
`of Mullite
`and Coatings
`
`for
`
`Ceramics,"
`
`and Environmental
`"Development
`and R.A. Miller,
`K.N. Lee
`Dual Layer Coatings
`for SiC and Si3N4 Ceramics,"
`Mullite/YSZ
`vol. 86-87,
`pp. 142-148,
`1996.
`Technology,
`Barrier Coatings
`Environmental
`"Key Durability
`Issues with Mullite-Based
`K.N. Lee,
`2000.
`122, pp. 632-636,
`Si-Base Ceramics,"
`vol.
`Transactions
`of the ASME,
`Coatings
`for Si-Based
`K.N. Lee,
`"Current
`Status
`of Environmental
`Barrier
`vol.
`133-134,
`pp. 1-7, 2000.
`Surface
`and Coatings
`Technology,
`D. Zhu, K.N. Lee,
`and R.A. Miller,
`"Thermal
`Conductivity
`and Thermal
`Behavior
`of Refractory
`Silicate
`Coatings
`on SiC/SiC
`Ceramic
`Matrix
`NASA TM-210824,
`NASA Glenn Research
`Center, Cleveland,
`April
`2001.
`D. Zhu
`and R.A. Miller,
`"Thermal
`Conductivity
`and Elastic Modulus
`Thermal
`Barrier
`Coatings
`Under
`High
`Heat
`Flux
`Conditions,"
`NASA
`NASA Glenn Research
`Center, Cleveland,
`Ohio, April
`1999.
`Evolution
`D. Zhu
`and R.A. Miller,
`"Thermal
`Conductivity
`and
`Elastic Modulus
`of Thermal
`Thermal
`Barrier
`Coatings
`Under High Heat Flux Conditions,"
`Journal
`vol. 9, pp. 175-180,
`2000.
`Technology,
`Thermal
`of Ceramic
`Change
`D. Zhu
`and R.A. Miller,
`"Thermal
`Conductivity
`Kinetics
`NASA
`Laser Heat Flux Technique,"
`Barrier
`Coatings
`Determined
`by the Steady-State
`Glenn Research
`Center, Cleveland,
`Ohio, NASA TM-209639,
`Research
`and Technology
`1999, pp. 29-31, March
`2000.
`
`Cyclic
`Gradient
`Composites,"
`
`Evolution
`TM-209069,
`
`of
`
`of
`Spray
`
`[1]
`
`[21
`
`[3]
`
`[4]
`
`[5]
`
`[61
`
`[7]
`
`NASA/TM--2001-211122
`
`5
`
`9
`
`

`

`[8]
`
`[9]
`
`"Thermal
`D. Zhu and R.A. Miller,
`vol. 27, pp. 43--47,
`MRS Bulletin,
`D. Zhu, R.A. Miller,
`B.A. Nagaraj,
`Thermal
`Barrier
`Coatings
`Evaluated
`vol.
`
`Surface
`
`and Coath_gs
`
`Technology,
`
`Coatings
`
`for Advanced
`
`Barrier
`2000.
`"Thermal
`and R.W. Bruce,
`by a Steady-State
`Laser
`138, pp. 1-8, 2001.
`
`Gas-Turbine
`
`Engines,"
`
`Conductivity
`Heat
`Flux
`
`of EB-PVD
`Technique,"
`
`Laser beam/
`
`integrating
`
`lens
`
`Reflectometer_"
`
`300 rpm
`
`Specimen
`
`I
`
`3.0 kW CO 2 high power
`
`laser
`
`J
`
`Pyrometers
`
`Air gap
`
`Platinum flat coils
`
`Aluminum laser
`
`aperture
`
`Ceramic
`coating
`Bond coat
`Miniature
`
`thermocouple
`Back aluminum TBC
`coated
`plate edge
`
`Aluminum back
`
`plate
`
`Cooling
`
`air
`
`tube
`
`Metal
`
`_r CMC substrate
`
`Thermocouple
`
`(a)
`
`Slip ring
`
`Cooling
`
`air
`
`(b)
`
`During the test,
`of TBC/EBC materials.
`conductivity
`thermal
`flux rig for determining
`high heat
`Figure 1.wLaser
`temperatures
`are measured
`by infrared pyrometers.
`The
`surface
`and the substrate
`backside
`the ceramic
`thermal
`conductivity
`of the ceramics
`can be determined
`from the pass-through
`heat
`flux and measured
`temperature
`difference
`through
`the ceramic
`specimen
`(or the ceramic
`coating)
`thickness
`under
`the steady-
`state laser heating
`conditions
`by a one-dimensional
`(one-D)
`heat
`transfer model.
`(a) Schematic
`diagram
`laser
`test
`rig;
`(b) A 3.0 kW CO 2 continuous
`wave
`laser system;
`(c) The test
`rig with a ceramic
`specimen
`under
`testing.
`
`NASA/TM--2001-211122
`
`6
`
`10
`
`

`

`....
`
`4
`
`......
`
`t
`
`....
`
`I
`
`''
`
`'
`
`I
`
`....
`
`I
`
`....
`
`(a)
`
`•
`
`Zirconia
`cubic
`
`tetragonal
`phases
`
`and
`
`0 Zirconia monoclinic
`
`phase
`
`II
`F
`i
`
`1400[
`
`....
`
`I
`1200 _
`
`looo
`
`L
`800 _-
`
`¢n
`t-
`
`¢-
`,1
`
`.>
`
`ec
`
`•
`
`•
`
`1
`
`•
`
`ZrO2-8 wt% Y203
`plasma-sprayed
`
`-
`
`ZrO2-8 wt% Y203-hot
`•
`
`pressed
`
`•
`
`i
`200 [-
`
`oll •
`
`_ iO
`
`g
`0
`
`0 ["'":'_"' F"_-,,-.....i_,_,.,_,.,I _-_i_ r_'_'"FA ,-_,"......._.'-_,-,_-',,--_,,_I,__,"-_,.._,+_..i _',"r'i
`
`
`20
`30
`40
`50
`60
`70
`80
`90
`100
`
`Diffraction
`
`angle
`
`2e, deg
`
`8OO
`
`....
`
`I
`
`....
`
`!
`
`....
`
`i
`
`....
`
`I
`
`....
`
`•
`
`I
`
`....
`
`[
`
`....
`
`I
`
`....
`
`• Mullite
`
`(b)
`
`700
`
`600
`
`500
`
`o_
`
`400
`
`.1
`.>_
`
`_
`
`:300
`
`coo
`
`200
`
`100
`
`o
`
`o
`
`0
`
`00[
`
`0
`
`0
`
`•
`
`•
`
`o
`
`_
`
`o
`
`••
`
`o
`
`Mullite + 20wt%
`
`BSAS-hot
`
`pressed
`
`o BSAS celsian
`
`phase
`
`o
`
`o
`
`o
`
`o
`
`0
`
`o
`
`o o
`
`BSAS plasma-sprayed
`
`%0o
`
`o ooooo
`
`0 0 930 0 °°0
`
`0°o
`
`0
`
`0
`
`o
`
`o |
`
`BSAS hot pressed
`
`%0 Jlo.Ooo% oTo oooo
`
`yo
`
`o
`
`0
`
`20
`
`25
`
`30
`
`35
`Diffraction
`
`40
`angle
`
`45
`20, deg
`
`50
`
`55
`
`6O
`
`patterns
`diffraction
`X-ray
`2.nTypical
`Figure
`(b) BSAS,
`and BSAS + mullite materials.
`
`of
`
`(a) ZrO2-8 wt% Y203 , and
`
`NASA/TM--2001-211122
`
`7
`
`11
`
`

`

`]
`
`I
`
`I
`
`I
`
`]
`
`Hot-pressed
`
`specimen
`
`0
`
`0
`
`0
`
`0
`
`o
`
`0
`
`0
`
`4.0
`
`3.5
`
`3.0
`
`2.5
`
`2.0
`
`1.5
`
`1.0
`
`.m
`._>
`
`t-
`O
`
`e-
`l--
`
`0.5
`
`0.0
`
`200
`
`400
`
`600
`Test
`
`800
`temperature,
`
`1000
`"C
`
`1200
`
`1400
`
`1316 °C
`
`plasma-sprayed
`
`coating
`
`2O
`
`of ZrO2-8 wt% Y203 determined
`conductivity
`Figure 3.--Thermal
`by
`of
`technique.
`(a) Thermal
`conductivity
`steady-state
`laser heat
`flux
`a hot pressed
`specimen
`as a function
`of temperature.
`(b) Thermal
`conductivity
`of a plasma-sprayed
`coating
`specimen
`as a function
`of test
`time at 1316 °C.
`
`NASA/TM--2001-211122
`
`8
`
`12
`
`

`

`' ' ' I ' ' ' -U_
`
`I
`
`I
`
`! ' '
`
`F
`
`1500
`
`C}
`
`oc
`
`_
`
`-.,1
`O"
`
`"'l
`
`C1
`E
`
`-
`
`1000
`
`500
`
`k
`
`Tsurface
`Tback
`Laser
`
`power
`
`---t--
`
`....
`
`c
`
`BSAS
`
`5.0
`
`4.5
`
`4.0
`
`!E
`
`= :3.5
`
`t-
`O
`
`E :3.0
`
`e,-
`
`2.5
`
`3.5 mm disk specimen
`
`(a)
`
`2.0
`
`0
`
`I,,
`20
`
`1__,,
`40
`
`j,,,
`J,,,
`80
`60
`Time, minutes
`
`i,,,
`100
`
`,
`
`,
`
`J ,
`120
`
`0
`40
`
`5.0
`
`l
`
`'-
`
`'
`
`'
`
`I
`
`I
`
`1
`
`'
`
`'
`
`r
`
`I
`
`I
`
`BSAS
`
`Possible
`
`cracking
`
`--,
`
`\
`
`\\
`
`- " - <3- 0_'_ O'_'-'O0
`
`0
`
`0
`
`0
`
`0
`
`0 0
`
`0
`
`"\
`
`4.5
`
`4.0
`
`._>
`
`= 3.5
`"E}
`
`OO
`
`"_ 3.0
`
`e-
`t--
`
`2.5
`
`(b)
`,
`
`,
`
`2.0
`
`200
`
`,
`
`b
`400
`
`,
`
`,
`
`,
`
`J
`600
`
`I
`800
`Surface
`
`,
`
`,
`
`,
`I
`1000
`temperature,
`
`0
`
`,
`
`0
`
`,
`
`°C
`
`,
`
`,
`
`,
`I
`1200
`
`,
`
`L
`1400
`
`,
`
`,
`
`!
`
`,
`1600
`
`determined
`BSAS specimen
`k of a hot-pressed
`conductivity
`4.--Thermal
`Figure
`conductivity
`of BSAS specimen
`laser
`test
`technique.
`(a) Thermal
`a steady-state
`time during
`a heat-cooling
`cycle. A sudden
`drop
`in conductivity
`test
`function
`of
`of
`is due to possible
`specimen
`cracking.
`(b) Thermal
`conductivity
`during
`heating
`as a function
`of surface
`test
`temperature
`(the dashed
`line indicates
`BSAS specimen
`the average
`ceramic
`thermal
`conductivity).
`
`from
`as a
`
`NASA/TM--2001-211122
`
`9
`
`13
`
`

`

`]
`
`'
`
`'
`
`'
`
`I
`
`l
`
`I
`
`I
`
`'
`
`'
`
`'
`
`I
`
`'
`
`'
`
`'
`
`,,,"
`
`8
`10 f
`
`'
`
`'
`
`,
`
`; C}
`
`_
`
`_1_
`
`/--Mullite
`
`BSAS
`
`i _%_.
`
`-
`
`_,
`
`delan_nation
`
`____
`
`6
`
`4 2
`
`200
`
`400
`
`600
`
`1000
`800
`Surface
`temperature,
`
`°C
`
`1200
`
`1400
`
`1600
`
`BSAS
`of 254 i_m thick, plasma-sprayed
`conductivity
`Figure 5.--Thermal
`and mullite
`coatings
`on superatloy
`substrate
`specimens.
`The coating
`specimens
`were previously
`laser-sintered
`at 1300 °C for 2 hours and
`thermal
`conductivity
`of the coating
`specimens
`were measured
`using a
`heating-cooling
`cycle (the dashed
`lines represent
`estimated
`average
`thermal
`conductivity
`values).
`
`NASA/TM--2001-211122
`
`10
`
`14
`
`

`

`1400
`
`1200
`
`1000
`
`800
`
`600
`
`400
`
`2OO
`
`E
`
`e-
`
`o"
`
`E
`
`0
`5O
`
`(b)
`
`6
`
`_r
`
`5
`
`4
`
`3
`
`2
`
`6_
`03
`rn
`
`O
`
`t-
`O
`
`e-
`l-
`
`Tsurfac e _,
`
`\
`
`/
`
`/
`
`_Tback
`
`•
`
`//
`
`/-- kBSAS
`
`_-- Heat
`
`flux
`
`/
`
`/
`
`/
`
`0
`
`0
`
`10
`
`20
`Time, minutes
`
`30
`
`40
`
`'
`
`1
`
`i
`
`I
`
`'
`
`I
`
`{
`
`BSAS
`thickness
`
`254 p.m
`
`Cooling
`
`3.5
`
`3.0
`
`2.5
`
`2.0
`
`--
`
`1.5
`
`-
`
`1.0
`
`iE
`
`"5
`
`"O
`
`c"o
`o
`
`t-k-
`
`0.5
`
`F
`
`80(
`
`....
`
`....
`
`t
`900
`
`....
`
`I
`1000
`Surface
`
`'
`
`I
`
`i
`1100
`temperature,
`
`....
`
`'
`
`I
`I
`1200
`°C
`
`....
`
`I
`1300
`
`1400
`
`of 254 p.m thick,
`BSAS coating
`plasma-sprayed
`conductivity
`Figure &--Thermal
`as a function
`of BSAS coating
`SiC/SiC
`CMC substrate.
`(a) Thermal
`conductivity
`test
`time during
`a heat-cooling
`cycle.
`The conductivity
`rise is due to the coating
`sintering.
`(b) Thermal
`conductivity
`of BSAS coating
`as a function
`of
`test
`temperature.
`
`on
`of
`
`NASA/TM--2001-211122
`
`11
`
`15
`
`

`

`l
`
`F
`
`'
`
`I
`
`I
`
`'
`
`'
`
`t
`
`'
`
`I
`
`20 wt% BSAS + 80 wt% mullite
`disk specimen
`
`(a)
`
`O00q_
`
`<_.
`
`0
`
`O
`
`6.0
`
`5.0
`
`._ 4.0
`
`_-_>
`
`= 3.0
`"0
`t-
`
`2.0
`
`1.0
`
`O E
`
`r-
`p-
`
`0.0
`200
`
`,
`
`,
`
`,
`
`!
`400
`
`,
`
`,
`
`,
`
`,
`
`,
`
`t
`600
`
`,
`
`,
`
`J ,
`800
`Temperature,
`
`,
`
`1 ,
`,
`1200
`
`,
`
`,
`
`I
`1400
`
`,
`
`,
`
`,
`
`1600
`
`,
`
`,
`
`I
`1000
`°C
`
`3.5
`
`'
`
`1
`
`E
`
`I
`
`'
`
`'
`
`'
`
`t
`
`_
`
`l
`
`30 wt% BSAS + 70 wt% mullite
`disk specimen
`
`(b)
`
`O
`
`O
`
`O
`
`3.0
`
`2.5
`
`._>
`
`= 2.0
`"10
`
`C0
`
`E 1.5
`
`e-
`l'-
`
`1.0
`
`0.5
`
`200
`
`,
`
`,
`
`,
`
`I
`400
`
`,
`
`,
`
`,
`
`,
`
`,
`
`I
`600
`
`,
`
`,
`
`,
`
`I
`800
`Temperature,
`
`,
`
`,
`
`,
`
`I
`1200
`
`,
`
`,
`
`[
`1400
`
`,
`
`,
`
`,
`
`1600
`
`,
`
`,
`
`I
`1000
`°C
`
`conductivity
`7.mThermal
`Figure
`specimens
`as a function
`of
`+ 30 wt% BSAS.
`
`of hot-pressed
`temperature.
`
`test
`
`BSAS and mullite mixture
`wt% BSAS;
`(a) Mullite-20
`
`disk
`(b) Mullite
`
`NASA/TM----2001-211122
`
`12
`
`16
`
`

`

`'
`
`'
`
`I
`
`....
`
`I
`
`'
`
`'
`
`i
`
`'
`
`I
`
`I
`
`....
`
`Mullite + 20 wt% BSAS coating
`thickness
`254 I*m
`
`-_--
`
`Cooling
`
`%_
`
`0 C_
`
`_v
`
`Heating
`
`3.5
`
`,_ 3.0
`
`2.5
`
`_
`.__
`
`t-
`O 2.0
`
`e-
`_-
`
`1.5
`
`1.0
`
`0.5
`
`....
`
`800
`
`....
`
`l
`900
`
`I
`1000
`Surface
`
`....
`
`I
`1100
`temperature,
`
`....
`
`°C
`
`J ....
`1200
`
`....
`
`i
`1300
`
`1400
`
`of 254 p.m thick mullite
`conductivity
`8.mThermal
`Figure
`CMC substrate
`SiC/SiC
`as a function
`of
`test
`temperature.
`increase
`was observed
`during
`the heating/cooling
`cycle
`
`+ 20 wt% BSAS coating
`Thermal
`conductivity
`due to ceramic
`sintering.
`
`on
`
`NASA/TM--2001-211122
`
`13
`
`17
`
`

`

`3.5 __ ....
`
`_ '
`
`E BSAS + (mullite
`
`total
`
`thickness
`
`I
`
`+ 20 wt% BSAS)
`254 ixm
`
`(a)
`
`3.0
`
`2.5
`
`,
`E
`_
`
`1 st cycle
`
`\, _ _._'
`
`_\_i _,\ :_;;_.--:._ \
`
`i_._ _:_\<_
`
`_._._ _.
`
`--_
`
`Cooling
`
`-
`
`_
`
`_
`
`_
`
`HA_tinn
`
`g 2.0
`
`"O
`
`EO
`
`E 1.5
`
`e'-
`F-
`
`1.o
`
`0.5 L ....
`800
`
`_ ,
`
`,
`
`I
`900
`
`....
`
`I
`,
`1000
`Surface
`
`....
`
`I
`1100
`temperature.
`
`....
`
`I
`1200
`°C
`
`1 .....
`1300
`
`1400
`
`3.5
`
`....
`
`I
`
`....
`
`I
`
`....
`
`I
`
`....
`
`I
`
`....
`
`I
`
`....
`
`BSAS + (mullite
`
`+ 20 wt% BSAS)
`
`total
`
`thickness
`
`254 i_m
`
`(b)
`
`2nd cycle
`
`.
`....L
`_._!': L\i';t":::_
`
`_
`
`" ii
`
`_':
`
`--_
`..... :C,,
`
`_
`
`:
`
`Cooling
`',? -
`
`_:_,,:
`
`........
`
`Heating
`
`3.0
`
`2.5
`
`!E
`
`"6
`"_ 2.0
`
`1.5
`
`1.0
`
`EOI
`
`3 E
`
`¢-
`F-
`
`0.5
`
`tlZl
`
`8OO
`
`_ ,
`
`,
`
`I
`900
`
`,
`
`,
`
`I
`,
`1000
`Surface
`
`,
`
`....
`
`I
`,
`1100
`temperature,
`
`l
`1200
`°C
`
`,
`
`,
`
`,
`
`I
`,
`1300
`
`,
`
`,
`
`,
`
`,
`
`1400
`
`+ 20 wt% BSAS
`of BSAS (127 l_m thick)/mullite
`Figure g._Thermal
`conductivity
`(127 _m thick) on SiC/SiC CMC substrate
`as a function
`of coating
`test
`temper-
`ature.
`(a) The first heating-cooling
`cycle showed
`a larger conductivity
`increase
`due to ceramic
`sintering.
`(b) The second
`heating-cooling
`cycle had much less
`conductivity
`increase
`probably
`because most of the sintering and densification
`occurred
`during the first cycle.
`
`NASA/TM--2001-211122
`
`14
`
`18
`
`

`

`1600
`
`1400
`
`1200
`
`0
`
`lOOO
`E
`
`8OO
`
`600
`
`(a)
`
`\
`
`\
`
`_-- koverall ceramic
`
`coating
`
`10
`
`20
`
`30
`Time, minutes
`
`40
`
`50
`
`60
`
`ZrO2-8 wt% Y203
`
`_ Mullite
`
`Si
`
`(b)
`
`3.0
`
`2.5
`
`2.0
`
`._>
`
`"o
`(.-
`
`oo
`
`e.-
`I--
`
`1.5
`
`1.0
`
`0
`
`1600
`
`1550 [
`
`1500
`
`9
`
`1450
`
`1400
`
`-
`
`_1_,_;_
`
`_ii )1":::_:t- :2
`
`Q)tn
`E
`
`1350
`
`1300
`
`1250
`
`-
`
`-
`
`-
`
`1200
`
`,
`
`0.0
`
`0.5
`
`Pass-thru
`
`heat
`
`flux 115 W/cm 2
`
`1.0
`Distance
`
`2.0
`1.5
`from surface, mm
`
`2.5
`
`3.5
`
`(2541_m)/
`of a ZrO2-8 wt% Y203 (1371_m)/mullite
`conductivity
`10._Thermal
`Figure
`Si
`(76 _m) on a SiC/SiC
`CMC substrate.
`(a) Thermal
`conductivity
`increased
`during
`a short
`time
`high temperature
`exposure.
`(b) The estimated
`temperature
`distribution
`in the coating
`system.
`
`NASA/TM--2001-211122
`
`15
`
`19
`
`

`

`REPORT
`
`DOCUMENTATION
`
`PAGE
`
`Form Approved
`OMB No. 0704-0188
`
`Public reporting
`burden
`gathering
`and maintaining
`collection of
`information,
`Davis Highway,
`Suite
`
`1 hour per response,
`is estimated to average
`information
`of
`for this collection
`and completing
`and reviewing
`the collection
`of
`information,
`the data needed,
`for
`reducing
`this burden,
`to Washington
`Headquarters
`including
`suggestions
`1204. Arlington,
`VA 22202-4302,
`and to the Office
`of Management
`and Budget,
`
`data sources.
`existing
`searching
`instructions,
`reviewing
`the time for
`including
`aspect of
`this
`Send comments
`regarding
`this burden estimate
`or any other
`Services, Directorate
`for
`Information Operations
`and Reports.
`1215 Jefferson
`Paperwork Reduction
`Project
`(0704-0188), Washington.
`DC 20503.
`
`1. AGENCY
`
`USE ONLY
`
`(Leave
`
`blank)
`
`2.
`
`REPORT
`
`DATE
`
`3. REPORT
`
`TYPE
`
`4.
`
`TITLE
`
`AND
`
`SUBTITLE
`
`September
`
`2001
`
`Thermal
`
`Conductivity
`
`of Ceramic
`
`Thermal
`
`Barrier
`
`and Environmental
`
`Barrier
`
`Coating Materials
`
`6. AUTHOR(S)
`
`Dongming
`
`Zhu, Narottam
`
`E Bansal,
`
`Kang N. Lee,
`
`and Robert A. Miller
`
`AND DATES
`Technical
`
`COVERED
`Memorandum
`
`5. FUNDING
`
`NUMBERS
`
`%_-71_0_20_0
`
`7.
`
`PERFORMING
`
`ORGANIZATION
`
`NAME(S)
`
`AND
`
`ADDRESS(ES)
`
`Aeronautics
`National
`John H. Glenn
`Research
`
`and Space Administration
`Center
`at Lewis
`Field
`
`Cleveland,
`
`Ohio
`
`44135-3191
`
`9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
`
`Aeronautics
`
`and Space Administration
`
`8.
`
`PERFORMING
`
`ORGANIZATION
`
`REPORTNUMBER
`
`E-12971
`
`10.
`
`SPONSORING/MONITORING
`AGENCY
`REPORTNUMBER
`
`National
`
`Washington,
`
`DC 20546-0001
`
`11.
`
`SUPPLEMENTARY
`
`NOTES
`
`NASA TM--2001-211122
`
`Zhu, Ohio Aerospace
`Dongming
`Miller, NASA Glenn Research
`
`Institute, 22800 Cedar Point Road, Brook Park, Ohio 44142; Narottam P. Bansal
`Center: Kang N. Lee, Cleveland
`State University,
`1983 E. 24th Street, Cleveland,
`
`and Robert A.
`Ohio 44115-2403.
`
`Responsible
`
`person, Narottam E Bansal,
`
`organization
`
`code 5130, 216-433-3855.
`
`12a.
`
`DISTRIBUTION/AVAILABILITY
`
`STATEMENT
`
`12b.
`
`DISTRIBUTION
`
`CODE
`
`Unclassified-
`
`Unlimited
`
`Subject
`
`Category:
`
`27
`
`Distribution:
`
`Nonstandard
`
`Available
`
`electronically
`
`at hun://_ltrs.urc.nasa.uov/GLTRS
`
`from the NASA Center
`is available
`This publication
`13. ABSTRACT (Maximum 200 words)
`
`for AeroSpace
`
`Information,
`
`301-621-0390.
`
`Thermal
`
`barrier
`
`and
`
`environmental
`
`barrier
`
`coatings
`
`(TBC's
`
`and EBC's)
`
`have
`
`been
`
`developed
`
`to protect
`
`metallic
`
`Si-based
`
`ceramic
`
`components
`
`in gas
`
`turbine
`
`engines
`
`from high
`
`temperature
`
`attack.
`
`Zirconia-yttria
`
`based
`
`oxides
`
`and
`
`and
`
`8 (BSAS)/mullite
`(Ba,Sr)AI2Si20
`ity values
`of zirconia-yttria-
`
`silicates
`based
`and BSAS/mullite-based
`
`have
`
`as the
`used
`been
`coating materials
`
`coating
`were
`
`materials.
`determined
`
`In this
`at high
`
`thermal
`study,
`temperatures
`
`conductiv-
`using
`a
`
`steady-state
`
`laser
`
`heat
`
`flux technique.
`
`During
`
`the
`
`laser
`
`conductivity
`
`test,
`
`the
`
`specimen
`
`surface
`
`was
`
`heated
`
`by delivering
`
`uniformly
`
`distributed
`
`heat
`
`flux
`
`from a high
`
`power
`
`laser. One-dimensional
`
`steady-state
`
`heating
`
`was
`
`achieved
`
`by using
`
`thin
`
`specimen
`disk
`temperature
`
`configuration
`gradient
`across
`
`and the appropriate
`(25.4 mm diam and 2 to 4 mm thickness)
`the
`specimen
`thickness
`was
`carefully
`measured
`by two
`surface
`
`The
`air-cooling.
`backside
`and backside
`pyrometers.
`
`The
`
`thermal
`
`conductivity
`
`values
`
`were
`
`thus
`
`determined
`
`as a function
`
`of
`
`temperature
`
`based
`
`on the
`
`1-D heat
`
`transfer
`
`equation.
`
`the materials
`
`were
`
`considered
`
`in the
`
`conductivity
`
`measure-
`
`The
`
`radiation
`
`heat
`
`loss
`
`and laser
`
`absorption
`
`corrections
`
`of
`
`ments.
`
`The
`
`effects
`
`of specimen
`
`porosity
`
`and
`
`sintering
`
`on measured
`
`conductivity
`
`values
`
`were
`
`also
`
`evaluated.
`
`14.
`
`SUBJECT
`
`TERMS
`
`Ceramic
`
`coatings;
`
`Thermal
`
`conductivity;
`
`Mullite;
`
`Zirconia;
`
`Celsian
`
`15. NUMBER
`
`OF PAGES
`
`16.
`
`PRICE
`
`CODE
`
`21
`
`17.
`
`CLASSIFICATION
`SECURITY
`OF REPORT
`
`18.
`
`SECURITY
`OF THIS
`
`CLASSIFICATION
`PAGE
`
`Unclassified
`
`NSN 7540-01-280-5500
`
`Unclassified
`
`19.
`
`SECURITY
`
`CLASSIFICATION
`
`20.
`
`LIMITATION
`
`OF ABSTRACT
`
`OF ABSTRACT
`
`Unclassified
`
`Standard
`
`Form
`
`298
`
`(Rev.
`
`2-89)
`
`Prescribed
`298-102
`
`by ANSI
`
`Std. Z39-18
`
`20
`
`

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket