throbber
APPLICATION OF UNEQUALERROR PROTECTION CODES
`ON COMBINED SOURCE-CHANNEL CODING OF
`IMAGES
`
`K . FAZEL - J.J. LHUILLIER
`
`LABORATOIRES D'ELECTRONIQUE PHILIPS
`3, avenue Descartes, 94450 Limeil-BrBvannes, France
`
`ABSTRACT
`
`combined
`investigates a
`This paper
`source-channel encoding o f
`images w i t h a small
`amount o f redundancy. The source encoder under
`the Discrete-Cosine-Transform
`study
`i s based on
`(DCT), adaptive quantization and variable length
`(VLC) ; while
`the channel encoder
`i s
`encoding
`the unequal error p r o t e c t i o n
`(UEP)
`based on
`p r i n c i p l e . To measure the importance o f each b i t
`i n the transmitted frame a f t e r the VLC, a f a c t o r
`o f s e n s i t i v i t y f o r each b i t t o channel e r r o r s i s
`defined. By u t i l i z i n g the f a c t o r o f s e n s i t i v i t y ,
`the optimal e r r o r r a t e allowed f o r each b i t i n the
`frame,
`t h a t minimizes
`the e f f e c t s o f channel
`two UEP
`noise,
`i s estimated. The performance o f
`codes
`constructed by
`the Blokh-Zyablov
`code
`construction method,
`are evaluated
`f o r
`two
`sequences o f images.
`
`INTRODUCTION
`redundancy o f d i g i t a l TV
`the
`reduce
`To
`images,
`d i f f e r e n t coding algorithms have been
`studied. The performance o f such an algorithm
`depends mainly on i t s compression f a c t o r and the
`s i g n a l t o noise power r a t i o (SNH) a t the decoder
`side. The higher
`the compression
`f a c t o r a t
`the
`source,
`the greater
`i s the s i g n i f i c a n c e of
`the
`transmitted information, and hence the greater the
`e f f e c t s o f channel errors. The v i s i b i l i t y o f
`channel e r r o r s depends strongly on
`the source
`encoding algorithms. As an example the minimum b i t
`e r r o r r a t e (BER) f o r which e r r o r s are j u s t notice-
`f o r a simple DPCh
`able a t
`the display
`i s 10-7
`algorithm ( f i x e d length codewords) ; whereas i t
`f a l l s dbwn t o 10-10 when t h i s algorithm i s follow-
`ed by variable-length-encoding
`(VLC) [ 1 ].
`As a r e s u l t ,
`f o r noisy channels applications,
`i t i s necessary t o correct the channel errors or
`t o devise methods
`f o r
`reducing
`the e f f e c t o f
`
`errors (techniques o f error-concealment) . I n the
`
`f i e l d o f e r r o r c o n t r o l many coding techniques have
`been studied. These techniques consist o f coding
`the
`images without
`taking
`i n t o account
`t h e i r
`characteristics, or, on
`the contrary, combining
`the source and channel coding by u t i l i z i n g the
`properties o f images.
`I n t h i s l a s t case many tech-
`niques have been investigated h-31. Modestino e t
`a1 [Z] use the p r i n c i p l e o f f i n d i n g a trade-off
`between source and channel coding, when the source
`encoder under study
`i s based on
`the discrete-
`cosine-transform (LET), and a f i x e d number o f b i t s
`a l l o c a t e d t o each transformed block (no VLC). By
`applying convolutional and block codes ( a l l w i t h
`low coding r a t e ) ,
`they consider three d i f f e r e n t
`
`(information b i t s
`s e l e c t i v e p r o t e c t i o n options
`the DCT c o e f f i c i e n t s are
`which are r e l a t e d t o
`coded i n three d i f f e r e n t ways) f o r a l a r g e set o f
`encoder
`and decoder
`pairs. Using
`the
`same
`[3] by estimating
`p r i n c i p l e , Gomstock and Gibson
`the more important b i t s o f the DCT blocks t o be
`protected,
`evaluate
`the performance of
`some
`Hamming codes. Since these techniques consume a
`p a r t o f
`the a v a i l a b l e b i t r a t e as p a r i t y check
`b i t s f o r the more important c o e f f i c i e n t s o f
`the
`DCT block, a performance degradation i s expected.
`However
`t h i s performance degradation
`i s much
`smaller than the one expected i f no p r o t e c t i o n is
`performed (when e r r o r s occur).
`The purpose o f t h i s paper i s t o i n v e s t i -
`( < 11 %), where the
`gate combined source-channel encoding w i t h a small
`amount o f e x t r a redundancy
`adaptive
`the DCT,
`source encoder
`i s based on
`length encoding. The
`quantization and variable
`channel encoder
`i s based on
`the unequal-error-
`p r o t e c t i o n (U.E.P)
`codes, where only one encoder-
`decoder i s required t o achieve d i f f e r e n t l e v e l s o f
`p r o t e c t i o n i n the transmission message word. The
`main
`important
`functions o f
`the source encoder
`under study,
`the influence o f channel e r r o r s on
`the p i c t u r e q u a l i t y and
`the e r r o r s e n s i t i v i t y
`f a c t o r o f each b i t (i.e.the measure o f importance
`o f each b i t ) i n the variable length coded frames
`(i.e. DCT block c o e f f i c i e n t s coded i n VLC), are
`i n section 11. The optimal b i t e r r o r
`described
`r a t e s (i.e.
`the optimal error-protection
`l e v e l s )
`required f o r each b i t i n the transmitted frame i s
`discussed i n section Ill. I n section I V by review-
`i n g b r i e f l y the U.E:P.
`codes and an
`i n t e r e s t i n g
`way of constructing them, Blokh-Zyablov (bZ) code
`construction,
`we
`bring-out
`some
`constraints
`imposed by
`the c h a r a c t e r i s t i c s o f
`the source
`encoder frames (i.e.
`frames w i t h variable length,
`and
`good synchronization properties). F i n a l l y
`examples and numerical
`r e s u l t s are given and
`discussed i n section V. P a r t i c u l a r a t t e n t i o n i s
`paid
`t o
`the number o f
`l e v e l s o f p r o t e c t i o n
`required f o r the U.E.P.
`codes
`t o a t t a i n optimal
`performances.
`
`11. SOURCE CODING ALGORITHM AND INFLUENCE OF
`TRANShISSION ERRORS
`a) Source coding algorithm
`To
`reduce
`the raw b i t r a t e o f d i g i t a l
`d i f f e r e n t coding algorithms have been
`images,
`studied. For
`l i m i t e d bandwidth channels,
`the
`performance measurement of such a coding scheme
`depends on
`i t s compression factor,
`the signal t o
`noise power r a t i o (SNR) a t the decoder side and
`
`0898
`
`320.5.1.
`CH2829-0/90/0000-0898 $1 .OO 0 1990 IEEE
`
`Apple Inc. Exhibit 1005 Page 1
`
`

`
`reconstructed
`the
`the subjective q u a l i t y o f
`p i c t u r e (a reasonable SNR
`i s not on i t s own a
`guarantee o f good p i c t u r e q u a l i t y ) .
`One of
`the most a t t r a c t i v e schemes pos-
`sessing a high performance i s based on the Dis-
`(DCT) 141, whose block
`crete-Cosine-Transform
`diagram i s given i n f i g . 1. L e t ’ s b r i e f l y look
`- the p i c t u r e i s divided i n t o small blocks o f
`a t the more important functions o f t h i s scheme:
`the DCT. Let f ( j , k) j, k = 0 ,.., n-1 denote
`
`(NxN) pixels, and each block i s submitted t o
`
`the amplitudes o f the p i x e l s before transfor-
`mation. The bidimensional DCT i s then defined
`F(u,v)= 4c(u)c(v) 1 1
`( 2 ‘+l)ulT
`by :
`f ( j , k ) cos{ ‘IzN }
`j k=O,. .N-1
`N-1, and C(w) = 4%
`
`u,v = O,..
`
`for w = 0
`L 1 elsewhere
`these transformed samples are quantized. The
`quantization step varies according
`t o
`the
`a c t i v i t y o f the block and t o the frequency,
`i n order t o l
`i m i t the v i s i b l i t y o f the coding
`noise ;
`(except DC
`the quantized values
`f i n a l l y
`component F(0, 0 ) ) are coded using variable-
`length-coding t o minimize the output b i t r a t e
`without l o s s o f information. As
`t h i s process
`generates a variable output b i t rate, a
`b u f f e r memory i s incorporated, combined w i t h
`a
`regulation mechanism,
`r e a c t i n g on
`the
`quantizer,
`t o match
`the
`f i x e d b i t
`r a t e
`requirement o f the channel.
`the
`To
`f u r t h e r
`improve
`the e f f i c i e n c y o f
`scheme,
`one can perform
`the s t a t i s t i c a l
`coding
`(VLC) on several adjacent blocks
`multiplexed on a c o e f f i c i e n t basis. Thus
`s p a t i a l c o r r e l a t i o n can be taken i n t o account
`t o reduce the number o f b i t s devoted t o the
`DC components. The b i t stream i s obtained by
`4 adjacent blocks ( 1 quad-
`combining
`block)
`i n the f o l l o w i n g way
`( f i g . 2a) : 9
`b i t s which are reserved f o r the DC component
`o f the f i r s t block, 4 x 2 b i t s f o r the a c t i -
`followed by
`the d i f f e -
`v i t i e s o f 4 blocks,
`the remaining DC components
`rences between
`the 1 s t DC component, and completed by
`and
`the variable-length codewords corresponding
`t o
`the other c o e f f i c i e n t s o f
`the blocks
`previously scanned
`i n a zig-zag order and
`multiplexed. Because
`t h i s frame contains a
`variable number o f values
`(zeros are
`run
`l e n g t h coded), 8 s p e c i a l separation p a t t e r n
`(End O f Block = EOB) belonging t o the Huffman
`t a b l e i s inserted.
`This coding algorithm achieves a high
`performance f o r various sequences o f image.
`I n the absence o f channel errors,
`the SNR i s
`greater than 34 dB
`f o r a b i t r a t e o f 1 b i t /
`p i x e l . Let’s look a t the performances degra-
`dation o f t h i s algorithm i n the presence o f
`channel e r r o r s i n the next sections.
`b ) Influence of channel errors
`the
`As was mentioned i n the introduction,
`higher the compression factor,
`the greater the
`significance o f the transmitted information and
`hence the greater the e f f e c t s o f errors.
`
`-
`
`-
`
`I n practice, channel e r r o r s cause more
`degradation than
`the b i t r a t e reduction.
`I n
`a d d i t i o n v i s i b i l i t y of channel e r r o r s depends
`strongly on the source encoder algorithm. For
`the encoder under study, by taking the ELIB as
`the synchronization pattern, we can p o i n t out
`the f o l l o w i n g events i n the presence o f channel
`e r r o r s :
`I f the e r r o r s occur i n the f i x e d length p a r t of
`the frame,
`the v i s i b i l i t y o f the corresponding
`defects i s proportional t o the s i g n i f i c a n c e o f
`the corrupted
`information
`( f o r
`instance an
`error i n the most s i g n i f i c a n t b i t s o f the DC
`component would dramatically modify the whole
`block).
`I f the e r r o r s occur i n the variable length p a r t
`o f
`the stream a correct segmentation
`i s no
`longer garanteed. It may be
`recovered i f a
`self-synchronization code [ 5 ] i s used, b u t i t
`doesn’t prevent from merging 2 frames (or more
`if the synchronization patterns themselves are
`wrong)
`i n t o one. I t induces some s p a t i a l s h i f t
`t h a t i s unacceptable from a subjective p o i n t o f
`l
`l
`view. To solve the problem, a new framing w i
`be discussed i n section I V .
`the
`Assuming a good synchronization,
`importance o f each b i t i n the transmitted frames
`can be quantized by
`i t s s e n s i t i v i t y
`t o channel
`errors.
`c ) Error sensitivity of each bit
`The approach described here t o measure
`the s e n s i t i v i t y o f each b i t t o the channel
`e r r o r s
`i s s i m i l a r
`t o
`the
`i n t u i t i v e approach
`which has been developed by 2. Hagenaurer e t
`[6 1.
`It takes benefit o f
`the
`f o l l o w i n g
`a1
`remark : each b i t o f the b i t stream has t o be
`protected proportionnaly
`t o i t s influence on
`the SlvR when corrupted by an error. Levels o f
`p r o t e c t i o n and hence e r r o r p r o b a b i l i t i e s o f the
`t h a t
`t h e i r
`respective
`b i t s are adjusted so
`c o n t r i b u t i o n ( s e n s i t i v i t y ) t o the o v e r a l l noise
`power, weighted by
`t h e i r e r r o r p r o b a b i l i t i e s ,
`are equal. This condition leads t o an optimal
`s e t o f parameters.
`the SlvR
`f o r a given
`More precisely,
`i s
`i n the presence o f channel e r r o r s
`image
`given by : SlvR = 10 l o g
`
`defined as the t h e o r e t i c a l
`.PN
`represents
`image and
`Then P
`i s given by :
`N
`
`the noise power.
`
`noise.
`
`M
`4N2
`PN = c
`- ki(kIe)’
`i=l k = l (xi(k)
`Where M and (\r2 are respectively the number o f
`quadblock ( 4 adjacent blocks) i n the image and
`the number o f p i x e l s i n each block.
`Where xi( k ) represents the kth p i x e l amplitude
`o f the ith block before encodin and F i ( k ) e the
`i # h block a f t e r
`k t h p i x e l amplitude o f
`the
`i n the presence o f channel errors. I f
`decoding,
`there i s np. channel e r r o r x^’(k)e = ^xl(k) and^
`(il(k), - x l ( k ) )
`represents the source coding
`L e t li be the length o f coded frame +,
`l be 211.
`
`then the number o f e r r o r patterns w i
`
`l
`
`320.5.2.
`
`0899
`
`Apple Inc. Exhibit 1005 Page 2
`
`

`
`independence of e r r o r patterns from
`Assuming
`frame t o frame,
`the noise power can be expres-
`sed as *
`M 4'N2
`M 21i
`C Pe
`C E (k,i) + C
`, C
`1=1 k=l
`i=l e=l
`
`x
`
`PN
`
`4NL
`(kzl E;(k,i)+2
`where :
`
`(k,i)
`
`EC(k,i)X E (k,i))
`q
`xi(k) - Pi(k)
`A1(k) - Pi(k)
`tehe eth error
`i s the p r o b a b i l i t y o f
`
`ano Pe
`pattern.
`The pN can be w r i t t e n as :
`
`where :
`
`. .
`.
`2
`C E
`= C
`P
`i=l k=l
`nq
`which i s the source coding noise.
`21i
`M
`
`(k,i),
`
`A i = :!$; ~ ~ ( k , i j + 2
`2
`~ ~ ( k , i ) x E (k,i)
`
`9
`P
`depends on
`the channel errors, and i t
`cbk be considered as the sum o f channel noise
`and
`the
`i n t e r a c t i o n o f source coding-channel
`noises.
`Assuming t h a t we can neglect the e f f e c t o f
`e r r o r patterns o f weight > 1 a f t e r correction,
`then PNc can be w r i t t e n as :
`M
`li
`- C
`P . A!
`C
`P
`
`J
`J
`NC - i=l j=1
`where P j i s the p r o b a b i l i t y o f e r r o r i n the jth
`b i t (Pj. doesn't depend on the frame) and A l
`j i s
`t o an e r r o r on b i t J o f
`the noise power due
`block i.
`p..- can be r e w r i t t e n as :
`h a x
`NL 1
`M
`C p . A_
`Cmax p . . C A 1
`( 1 )
`
`j=1 J
`J
`'NC - ,j=1
`j 1=i J
`
`Wheh lmaX i s the maximal
`frame-length value
`and A;
`the averaae c o n t r i b u t i o n o f an e r r o r on
`b i t jJon any block.
`From previous formula (I), the s e n s i t i v i t y o f
`b i t j can be derived :
`
`(SNR) .
`J
`
`j = 1, ...
`
`?llElX
`
`'SM
`10 l o g
`+ A .
`~ P
`J
`Nq
`t h a t i s obtained by systematicaly p u t t i n g an
`e r r o r a t the j t h b i t p o s i t i o n o f a l l frames.
`A curve o f s e n s i t i v i t y has been p l o t t e d
`f o r " G i r l " TV sequences i n f i g . 4
`t h a t i s i n
`agreement with
`expectations
`o f
`previous
`section. Optimal s e t o f b i t e r r o r r a t e s P j i s
`evaluated i n the next section.
`
`111. OPTIMAL B I T ERROR RATE REQUIRED FOR EACH B I T
`t THE T R A m l t D tRAMt
`the SNR o f an
`As was discussed before,
`image,
`i n the presence o f e r r o r s depends strongly
`on the b i t e r r o r r a t e f o r each b i t . To determine
`the optimal BER f o r each b i t t h a t achieves a high
`SNR, i t i s desirable t o f u l f i l the f o l l o w i n g con-
`d i t i o n : P N C = K < < P , where P
`i s the channel
`
`noise and p
`i s the source coding noise.
`We
`cakq choose a set o f P j SO
`t h a t a l l
`c o n t r i b u t i o n t o noise power are equal. This choice
`driven by
`i n t u i t i o n i s proved
`t o minimize a
`c r i t e r i o n
`strongly
`r e l a t e d
`t o
`the
`o v e r a l l
`P j K j = K , j 1, ... lmax I t y i e l d s : PNc = lmaX
`redundancy.
`
`p . =K ' ; K ' = -
`K
`o r
`A .
`lmax
`J
`where K i s a predefined constant.
`So t o respect the above condition, we have t o
`equalize the curve o f s e n s i t i v i t y factor. Let's
`the b i t e r r o r r a t e
`consider the example o f " G i r l " ,
`i n f i g . 6. It
`required f o r each b i t i s given
`corroborates our
`f i e l i n g
`t h a t
`the
`f i r s t b i t s
`(corresponding t o low order DCT c o e f f i c i e n t s ) need
`more protection than the l a s t b i t s (corresponding
`t o high order DCT c o e f f i c i e n t s ) . Although,
`i n case
`o f error, segmentation i s no longer correct u n t i l
`the end o f
`the
`frame,
`the
`l a s t b i t s do not
`contribute a l o t e i t h e r t o s i g n a l t o noise r a t i o
`o r t o subjective q u a l i t y ( t h e human eye i s l e s s
`s e n s i t i v e t o high frequency p a r t ) .
`
`I V . APPLICATION OF U.E.P. CODES
`a) Unequal-error-protection codes
`I n many aoolications i t i s desirable t o
`provide d i f f e r e n t p i d t e c t i o n l e v e l s f o r d i f f e r e n t s
`components m i o f the message word m. Linear codes
`t h a t provide a greater amount o f protection f o r
`c e r t a i n positions
`than
`f o r others are c a l l e d
`unequal-error-protection codes [7-11 1
`A s u i t a b l e measure o f these protection-
`l e v e l s f o r d i f f e r e n t p o s i t i o n s i n a message word
`i s the so c a l l e d separation-vector [8 ] :
`the
`D e f i n i t i o n : For a l i n e a r (n,k) code C over
`(S(G)l, S(G)2 ... S(G)k) with respect t o a genera-
`the separation vector S(G) =
`alphabet GF(q),
`m i # O } , i = 1, ... k
`t o r matrix G o f C i s defined by
`S(G)i = min {wt(mG)/mGGF(q)k,
`) denotes the Hamming weight function.
`where w t (
`V i , j = 1, K,
`If S ( G ) i = S ( G ) j
`then,
`the
`code i s an equal-error-protection.
`min (S(G) i), i = 1, ... k:
`The minimum distance o f the code i s dmin
`
`The error-correction c a p a b i l i t y o f a code,
`when we use a q-ary symmetric channel i s given by
`Theorem 1 [ 9 1: A
`l i n e a r code C over GF(q), with
`generator matrix G and complete maximum l i k e l i h o o d
`decoding, guarantees the c o r r e c t i n t e r p r e t a t i o n o f
`weight i s l e s s or equal t o sfc)i-1 .
`the ith message d i g i t , wheneve
`the e r r o r pattern
`
`code
`A basic problem i s t o f i n d an U.E.P.
`with a given dimension and separation vector such
`t h a t i t s information r a t e i s maximal. D i f f e r e n t
`construction methods have been studied [9 3 [U 1.
`i n t e r e s t i n g one i s based on
`the Blokh-Zyablov
`An
`(BZ) construction [111 We w i
` now examine t h i s
`l
`l
`constructina method :
`B-lokh- Zyabiov (BZ) U.E.P.
`( f i g . 2b)
`
`code construction [U]
`
`Let B i be a (n, k i , d i ) l i n e a r code over
`(2ai), with a generator matrix G i and minimum
`GF
`f o r i = 1, ..r Let G be
`distance d i ,
`generator
`( m l , m2, ... mr), mie GF
`1!bi, ai, and
`matrix f o r a C(N, K ) code, where K
`l e t m =
`(2a1) 1 be the
`i t h components o f
`the message m.
`Then
`the BZ
`coding process i s as follows :
`
`0900
`
`320.5.3.
`
`Apple Inc. Exhibit 1005 Page 3
`
`

`
`- the m i , i = 1.. .r, i s coded by the code B i : C i
`= m i G i p
`- then C i i s arranged i n the ith block ( a i l i n e s
`and n columns) of nxK matrix M
`where each
`column of ith block i s the binary representation
`- f i n a l l y the complete matrix h i s coded by G and
`o f symbols o f C i ,
`gives the BZ codewords : C = GTM,
`The r e s u l t i n g code i s a two dimensional (N,
`n) code o f length nN and
`r
`r a t e R = HZlaiki.
`L e t e i n K ( i = 1, ... r ) denote
`
`the minimum
`distance o f the binary code generated by the l a s t
`( r - i + l ) blocks o f L,
`then the U.E.P.
`c a p a b i l i t y o f
`the BZ code i s derived i n the f o l l o w i n g :
`[U]. The BZ code has a separation
`Theorem 2
`. .mr)
`vector (S1,Sp,..Sr)
`f o r the message space (ml,m2,
`t h a t s a t i s f i e s the f o l l o w i n g i n e q u a l i t i e s :
`S i 2 ei.di
`i f d1.d 2 d2.e2 2 dr.er
`From the above construction, we can derive
`codes for a given dimension and
`d i f f e r e n t U.E.P.
`given code
`rate. L e t ' s see
`the a p p l i c a t i o n o f
`these codes t o imaqe transmission :
`b ) Application o f U.E.P.
`t o image transmission
`the
`As we saw before the b i t stream a f t e r
`source encoder has d i f f e r e n t l e v e l s o f s e n s i t i v i t y
`t o errors, hence an U.E.P.
`code i s required. The
`two problems encountered
`i n the a p p l i c a t i o n o f
`these codes can be stated as follows:
`
`- The length o f each frame li varies,
`the
`thus,
`code should be adapted t o each li i.e.
`U.L.P.
`variable length U.E.P.
`codes should be envi-
`- and f i n a l l y ,
`saged,
`
`f i n d an U.E.P.
`i f we
`t a k i n g
`code,
`then,
`i n t o account the above mentioned problem,
`l
`l be
`the data r a t e a f t e r the coding process w i
`variable, (
`redundancy varies with
`the added
`respect t o l i ) hence, i t has t o be regulated.
`codes - t h a t o f shortening
`The v a r i a b i l i t y o f the frame length imposes a
`c o n s t r a i n t on U.E.P.
`the codewords i f li< number o f information b i t s
`available. A code can be shortened i f i t i s a
`systematic code. One systematic U.E.P.
`code can be
`designed by the BZ code construction i f the B i i s
`a systematic code and G has the f o l l o w i n g form :
`= 2
`8 1 here e l = 1, e2
`e3...er
`a2 and I i s the a1 x a1 i d e n t i f y
`ay matrix
`
`' ]
`
`G = f
`
`1
`
`0
`
`1
`
`
`
`the
`the class o f code possessing
`However
`above properties i s l i m i t e d and does not have
`optimal performance, nevertheless i t solves
`the
`problem o f frame-length v a r i a b i l i t y and has a very
`simple decoding process.
`To regulate the data rate, one can use the
`same p r i n c i p l e as used f o r r e g u l a t i n g the informa-
`t i o n data r a t e a f t e r the source encoder
`i.e.
`t o
`incorporate a supplementary b u f f e r memory, combin-
`ed with a regulation mechanism r e a c t i n g on
`the
`U.E.P
`code. But the system complexity ( f o r encod-
`i n g and decoding) p r o h i b i t s such a solution. An
`a l t e r n a t i v e s o l u t i o n consists o f using a common
`b u f f e r memory ( f i g . 3)
`f o r source-channel enco-
`ders. The feedback w i
`l
`l be the same as the source
`
`encoder (i.e. c o n t r o l l i n g the quantization step).
`As mentioned i n section 11, the synchronisa-
`t i o n between frames have t o be absolutly guarante-
`ed
`t o avoid any s p a t i a l s h i f t i n the p i c t u r e .
`coding process modifies the VLC
`Since the U.E.P.
`data stream the u t i l i z a t i o n o f EOB (a VLC word) as
`the synchronization pattern, doesn't allow
`t o
`assure a synchronization between frames. To aver-
`come t h i s problem,
`the s o l u t i o n proposed here i s
`l e n g t h li i n order
`t o
`transmit
`the
`frame
`t o
`separate the frames. To increase robustness o f the
`t h i s frame lengths are also protected so
`system,
`t h a t synchronisation recovery i s h i g h l y improved
`f o r c r i t i c a l channel BER values.
`I t has t o be
`noted
`t h a t an
`i n i m i t a b l e p a t t e r n
`i s r e g u l a r l y
`i m i t
`t o l
`i n s e r t e d
`(between each 16 quad-block)
`error propagation.
`To i l l u s t r a t e the a p p l i c a t i o n o f these codes
`t o some sequences o f images, we w i
`l
`l give some
`examples and dicuss the simulation r e s u l t s i n the
`following.
`V. EXAMPLES AND SIMULATION RESULTS
`the
` ction,
`
`
`N
`t
`r
`o
`t
`h
`e
`u
`purpose o f
`t h i s study
`i s t o define a combined
`source-channel encoding
`( w i t h small amount o f
`e x t r a redundancy), and t o i n v e s t i g a t e the perfor-
`codes i n the case o f random error8
`mance o f U.E.P.
`(Binary Symmetric Channel : BSC). TWQ sequences o f
`images : " G i r l " and Y3altimore" are coded w i t h the
`source-encoaer described i n section I1 (block s i z e
`6x8 ; b i t r a t e 1 b i t / p i x e l ) . The error s e n s i t i v i t y
`f a c t o r o f each b i t i n the coded variable-length
`frame
`i s measured
`f o r each sequence and
`i s
`represented i n Fig. 4. These curves have approxi-
`the SNR
`mately
`the same shape and show
`t h a t
`depends strongly on the p o s i t i o n o f erroneous b i t s
`i n the transmitted frames.
`The s e t of Pj i s calculated as indicated i n
`section 111 f o r a constant K equal t o 10-5. The
`e r r o r s e n s i t i v i t y f a c t o r s reordered i n an increas-
`the optimal error r a t e f o r
`i n g manner ( f i g . 5),
`i n Fig. 6. As shown by
`each b i t i s represented
`these curves, the f i r s t b i t s o f each ordered frame
`have
`t o be protected
`t o give an e r r o r r a t e of
`around 10-9, while the l a s t ones dodt r e q u i r e any
`protection, i f the channel b i t e r r o r r a t e i s l e s s
`than 10-2. Hence d i f f e r e n t l e v e l s o f p r o t e c t i o n
`are required.
`The frame-lenyth, which i s the most important
`information, has
`t o be protected very e f f i c i e n -
`t l y . Four frame-lengths are gathered and coded by
`a binary C(57, 40) shortened c y c l i c code. I f the
`channel b i t error r a t e i s
`then b i t e r r o r
`r a t e a f t e r decoding f o r the synchronization word
`i s
`which i s a reasonable value.
`frames
`the
`To p r o t e c t
`the
`information o f
`against channel errors,
`codes are
`two U.E.P.
`designed. These codes, which are constructed by
`the Blokh-Zyablov construction method have r e s ec-
`t i v e l y (745, 5366, 3372) (code 1 ) and (5354, &2)
`these vectors
`(code 2) separation vectors. As
`show,
`the f i r s t code has three l e v e l s o f protec-
`R o f
`the whole
`t i o n
`( t h e average
`redundancy
`channel encoder ( t h e frame-length and the U.E.P.
`p r o t e c t i o n b i t s ) i s U. X) while the second code
`has two l e v e l s o f p r o t e c t i o n ( R = 10 X). The B i
`codes used
`t o construct
`these b.E.P.
`codes are
`summarized i n t a b l e 1. The performance o f these
`
`320.5.4.
`
`0901
`
`Apple Inc. Exhibit 1005 Page 4
`
`

`
`codes are presented i n Fig. 7 : the U.E.P.
`U.E.P.
`code with three l e v e l s e x h i b i t s higher performance
`than the code with two l e v e l s o f protection.
`The subjective performances o f
`t h i s U.E.P.
`code w i t h 3 l e v e l s and the binary BCH (127, 113,
`code ( w i t h 11 !%
`5) equal-error-protection
`(E.E.P.)
`o f redundancy) are presented i n f i g . 8. As
`these
`p i c t u r e s i l l u s t r a t e , f o r channel b i t e r r o r r a t e P
`=
`(a very c r i t i c a l value) the U.E.P.
`code i s
`b e t t e r than the BCH EEP code.
`CONCLUSION
`the problem o f designing a
`I n t h i s paper
`combined source-channel encoding has been conside-
`red. The s e n s i t i v i t y f a c t o r o f each b i t (being the
`measure o f importance o f each b i t ) i n the trans-
`m i t t e d frame
`i s measured
`f o r
`two sequences o f
`images. These curves showed c l e a r l y
`t h a t an
`U.E.P.
`code i s desirable,
`t o protect, w i t h d i f f e -
`r e n t
`l e v e l s o f protection,
`the most
`important
`information a t the output o f the variable-length-
`encoder. The performances o f two U.E.P.
`codes have
`been investigated. The code of
`three l e v e l s o f
`p r o t e c t i o n w i t h 11 % o f average redundancy
`i s
`considered as the best candidate f o r t h i s applica-
`t i o n .
`REFERENCES
`5. Guichard and D. hasse "L'image Numdrique e t
`1:
`l e Codage".
`L'Echo des Recherches n o 126,
`21-36. 1986
`hodestino, D.L. Daut and A.L.
`5.W.
`Vickers
`"Combined source-channel coding o f images using
`the block cosines Transform" I.E.E.E.
`Trans. on
`Com. Vo. 29 pp. 1261-1273 Sept. 1981
`I
`D.R. Comstock and J.D. Gibson "Hamming coding
`o f DCT compressed images over noisy channels"
`IEEE Trans. on Com. Vol. 32 pp.856-861, July 84
`W.H. Chen and W.K. P r a t t "Scene adaptive coder"
`IEEL Trans. on Corn. vol. 32, n o 3, March 84.
`T. Ferguson and 3.H. Rabinowitz "Self synchro-
`IEEE Trans. on I T . vol.
`n i z i n g Huffman Codes",
`I
`30, n o 4, July 84.
`2. hagenauer, N. Seshadri and C.E.W.
`SudberG
`"Variable-rate
`sub-band
`speech
`coding and
`natched
`channel
`coding
`f o r mobile
`r a d i o
`I.E.E.E.
`Vehicular
`Technology
`channels"
`Conference, VTC-88, Philadelphia, Pennsylvania,
`h e 88.
`B. Masnick and 3. Wolf
`"On
`I.E.E.E.
`srror-protection codes",
`I
`vol. 13 pp. 600-607 July 1967
`-.A. Dunning and W.E. Robbins "Optimal encoding
`o f l i n e a r block codes f o r unequal e r r o r protec-
`tion".
`I C Vol. 37, pp. 150-177, 1978
`9.
`W.J.
`van G i l s "Linear-unequal-error-protection
`codes from shorter codes".
`I.E.E.E.
`Trans. on
`I T , vol. 30 pp. 544-545, May 1984
`E.L. Blokh, V.V.
`Zyablov "Coding o f generali-
`ed
`cascade
`codes".
`Problemy
`Peredachi
`I n f o r m a t s i i , vol. 10, n o 3, 1974
`V.V.
`"Codes w i t h
`V.A.
`Zinovev,
`Zyablov
`unequal-protection o f
`information symbols".
`Probl. Pered.
`Inform. Vol. 15, n o 3, pp.50-60,
`1979
`
`2.
`
`3.
`
`4.
`
`5.
`
`6.
`
`l i n e a r unequal-
`Trans. on I T ,
`
`7.
`
`8.
`
`10.
`
`11.
`
`I
`I
`I
`I
`
`pig.- Sourcrencoder blacbdiagran
`
`V.L.
`
`1 SW I DC I AC I
`- 10 bits (6-7
`DC : The first DCT coefficient - 9 bits
`- 8 bits
`su : Synchronization word
`V.L. : 4 DCT blocks coded in VLC - Variable-length
`AC : activities of blacks
`m- "he constituents of each frame
`
`frame-length)
`
`h K - Z ai
`C - G k
`
`iil
`
`G * NK matrix
`
`Figure Zb : the Blokh-Zyablor code constructioa
`
`U.E.P.
`
`1
`
`U.E.P. 2
`
`B1 (63, 4 5 ) over GF (2)
`B2 ( 6 3 , 61) over GF (Z6)
`
`B3 (63, 62) over GF (Z6)
`
`B1 (63, 59) over GF (Z6)
`B2 ( 6 3 , 62) over GF (Z6)
`
`TABLE 1 : The mbcodes of II.E.P.-Bi
`
`codes
`
`(UEP-encoder) t j , H z t
`
`(BSC)
`
`Source-encoder (Channel-encoder
`
`- The combined soureechomuel encoding s c b
`
`0902
`
`320.5.5.
`
`Apple Inc. Exhibit 1005 Page 5
`
`

`
`j
`Fig.4 Factor of bit error sensitivity
`
`a ) Coded image. No channel e r r o r s
`SNR = 3 4 , 8 dB
`
`100 800
`
`b ) Coded image + BCH-EEP Code
`SNR = 32,s dB)
`(P =
`
`.
`100
`
`.
`200
`
`.
`300
`
`.
`4 0 0
`i
`Fig.5 Orderd factor or bit error sensitivity
`
`
`500
`
`600
`
`1 E-01
`
`1 E-02
`
`1 E-03
`
`1E-04 -
`
`n 1E-05
`
`1 E-06
`1 €-or
`
`Fig.6 Optimal error rate for each bit
`
`lE-GI
`
`,
`100
`
`100
`
`I
`300
`
`600
`
`~
`
`800
`
`100
`
`~
`800
`
`~
`
`400
`I
`Fig.7 Performaces of U.E.P codes
`
`~
`
`~
`
`(
`
`C ) Coded image + BZ-UEP Code
`(P = 10-3, SNR = 33,s dB)
`F i g . 8 : The s u b j e c t i v e performances o f EEI?
`and UEP codes
`
`_
`
`
`
`320.5.6.
`
`0903
`
`Apple Inc. Exhibit 1005 Page 6

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket