throbber
CHAPTER
`
`VI
`
`Cluster Analysis and
`the Design of Congener Sets
`
`VI-1 POSSIBILITIES OF MOLECULAR
`MODIFICATION
`
`As the study of structure-activity relationships develops
`and especially as work in the biomedicinal chemical, field
`gains momentum, the need to deal with many more vari-
`ables becomes pressing. From an economic standpoint,
`the probelm of ruling out
`irrelevant parameters and
`focusing on .the relevant ones early in a structure-
`activity study is one of extreme importance. This pro-
`blem is both crucial and complex and deserves much
`more systematic attention than has been customarily
`allotted to it in the past.
`.
`'
`It has been pointed out‘
`that the number of deriva-
`tives that can be made from a set of N substituents
`
`where m is the number of nonsymmetric positions on
`the parent compound is Nm; for example, if one were
`making derivatives of quinoline using the 166 well-char-
`
`r/Y.‘I
`.\ /.
`/I
`
`if we made only one-billionth of the possibilities, it
`would amount to one million molecules; yet relatively
`few dmg modification programs make as many as a
`thousand derivatives.
`
`A general formula for calculating the possibilities is
`
`k . __"_l___
`k!(n — k)!
`
`X
`
`In this expression, X is the number of substituents to be
`considered, n is the total number of nonsymrnetric
`positions on the parent molecule, andk is the number of
`substituents to be placed on the parent compound at
`one time. With this formula we can consider simpler and
`more varied cases. For example, using only 100 substitu-
`ents from the 2000 of Appendix I and considering only
`three out of the seven possible positions on quinoline
`leads to 35,000,000 analogs. With 100 substituents and
`only two positions, one still has to face 210,000 possibil-
`ities. Even considering only 20 substituents, two at a,
`time, means 8400 possibilities. No wonder that “me
`too” drugs are always being developed.
`
`acterized substituents of Table VI-l in all possible com-
`binations, this would amount to 1667 or approximately
`3.5 X 10” molecules. Of course, 166 is a small fraction
`of the almost 2000 substituents in Appendix I. What
`constitutes a reasonable sample of 1015 congeners? Even
`48
`
`VI-2 THE COLLINEARITY PROBLEM
`
`Since the cost of modifying a parent structure is so great
`and since the possibilities are so enormous, one wants to
`
`AURO - EXHIBIT 1018
`
`

`
`Table Vl-1 Well-Characterized0 Aromatic Substituentsb
`
`Br
`C1
`F
`S02F
`SF5
`I
`I02
`NO
`N02
`NNN
`H
`OH
`SH
`B(OHh
`NH2
`NHOH
`S02 NH2
`NHNH2
`5 -Cl-1-Tetrazo1y 1
`N=CC12
`CF3
`OCF3
`S02CF3
`SCF3
`CN
`NCS
`SCN
`co2-
`1-Tetrazolyl
`NHCN
`CHO
`C02H
`CH2 Br
`CH2C1
`CH2I
`NHCHO
`CONH2
`CH=NOH
`CH3
`NHCONH2
`NHC=S(NH2 )
`OCH3
`CH20H
`SOCH3
`S02CH3
`OS02CH3
`SCH3
`SeCH3
`NHCH3
`NHS0 2CH3
`CF2CF3
`c=cH
`NHCOCF3
`CH2CN
`
`1r
`
`0.86
`0.71
`0.14
`0.05
`1.23
`1.12
`-3.46
`-1.20
`-0.28
`0.46
`0.00
`-0.67
`0.39
`-0.55
`-1.23
`-1.34
`-1.82
`-0.88
`-0.65
`0.41
`0.88
`1.04
`0.55
`1.44
`-0.57
`1.15
`0.41
`-4.36
`-1.04
`-0.26
`-0.65
`-0.32
`0.79
`0.17
`1.50
`-0.98
`-1.49
`-0.38
`0.56
`-1.30
`-1.40
`-0.02
`-1.03
`-1.58
`-1.63
`-0.88
`0.61
`0.74
`-0.47
`-1.18
`1.68
`0.40
`0.08
`-0.57
`
`H-
`Accpt
`
`H-
`Donor
`
`MR
`
`[¥
`
`<R
`
`am
`
`ap
`
`0
`0
`0
`1
`0
`0
`1
`
`1
`0
`0
`1
`0
`1
`1
`1
`1
`1
`1
`0
`0
`1
`
`0
`1
`1
`
`1
`0
`0
`0
`1
`
`1
`0
`
`1
`1
`1
`1
`0
`0
`I
`I
`0
`0
`1
`
`0
`0
`0
`0
`0
`0
`0
`0
`0
`0
`0
`
`1
`1
`0
`0
`0
`0
`0
`0
`0
`0
`0
`0
`0
`1
`0
`1
`0
`0
`0
`1
`
`1
`0
`
`0
`1
`0
`0
`0
`0
`0
`1
`
`0
`0
`1
`0
`
`8.88
`6.03
`0.92
`8.65
`9.89
`13.94
`63.51
`5.20
`7.36
`10.20
`1.03
`2.85
`9.22
`11.04
`5.42
`7.22
`12.28
`8.44
`23.16
`18.35
`5.02
`7.86
`12.86
`13.81
`6.33
`17.24
`13.40
`6.05
`18.33
`10.14
`6.88
`6.93
`13.39
`10.49
`18.60
`10.31
`9.81
`10.28
`5.65
`13.72
`22.19
`7.87
`7.19
`13.70
`13.49
`16.99
`13.82
`17.03
`10.33
`I8.17
`9.23
`9.55
`14.30
`10.11
`
`0.44
`0.41
`0.43
`0.75
`0.57
`0.40
`0.63
`0.50
`0.67
`0.30
`0.00
`0.29
`0.28
`-0.07
`0.02
`0.06
`0.41
`0.17
`0.58
`0.23
`0.38
`0.38
`0.73
`0.35
`0.51
`0.51
`0.36
`-0.15
`0.52
`0.26
`0.31
`0.33
`0.10
`0.10
`0.09
`0.25
`0.24
`0.25
`-0.04
`0.04
`0.23
`0.26
`0.00
`0.52
`0.54
`0.39
`0.20
`0.13
`-0.1I
`0.25
`0.44
`0.19
`0.36
`0.21
`
`-0.17
`-0.15
`-0.34
`0.22
`0.15
`-0.19
`0.20
`0.45
`0.16
`-0.13
`0.00
`-0.64
`-0.11
`0.18
`-0.68
`-0.40
`0.19
`-0.71
`0.07
`-0.08
`0.19
`0.00
`0.26
`0.18
`0.19
`-0.09
`0.19
`0.13
`0.02
`-0.18
`0.13
`0.15
`0.05
`0.03
`0.03
`-0.23
`0.14
`-0.13
`-0.13
`-0.28
`-0.05
`-0.51
`0.00
`0.01
`0.22
`0.00
`-0.18
`-0.12
`-0.74
`-0.20
`0.11
`0.05
`-0.21
`-0.18
`
`0.39
`0.37
`0.34
`0.80
`0.61
`0.35
`0.68
`0.62
`0.71
`0.27
`0.00
`0.12
`0.25
`-0.01
`-0.16
`-0.04
`0.46
`-0.02
`0.60
`0.21
`0.43
`0.38
`0.79
`0.40
`0.56
`0.48
`0.41
`-0.10
`0.52
`0.21
`0.35
`0.37
`0.12
`0.11
`0.10
`0.19
`0.28
`0.22
`-0.07
`-0.03
`0.22
`0.12
`0.00
`0.52
`0.60
`0.39
`0.15
`0.10
`-0.30
`0.20
`0.47
`0.21
`0.30
`0.16
`
`0.23
`0.23
`0.06
`0.91
`0.68
`0.18
`0.78
`0.91
`0.78
`0.15
`0.00
`-0.37
`0.15
`0.12
`-0.66
`-0.34
`0.57
`-0.55
`0.61
`0.13
`0.54
`0.35
`0.93
`0.50
`0.66
`0.38
`0.52
`0.00
`0.50
`0.06
`0.42
`0.45
`0.14
`0.12
`0.11
`0.00
`0.36
`0.10
`-0:17
`-0.24
`0.16
`-0.27
`0.00
`0.49
`0.72
`0.36
`0.00
`0.00
`-0.84
`0.03
`0.52
`0.23
`0.12
`0.01
`49
`
`

`
`Table VI-I Well-Characterized0 Aromatic Substituentsb (Continued)
`
`CH=CHN02-(trans)
`CH=CHz
`NHC=O(CH2 Cl)
`COCH3
`SCOCH3
`OCOCH 3
`C02CH3
`NHCOCH3
`NHCOzCH3*
`C=O(NHCH3)
`CH=NOCH3
`NHC=S(CH3)
`CH=NNHC=S(NH2 )
`CH2 CH3
`CH=NNHCONHNH2
`CH2 0CH3
`OCH2 CH3
`SOCzHs *
`SCzHs
`SeC2H5 *
`NHC2H5
`S02 CzH5 *
`N(CH3 )z
`NHSOzC2 Hs*
`P(CH3h
`PO(OCH3h
`C(OH)(CF 3 )z
`CH=CHCN
`Cyclopropy1
`COC2Hs*
`SCOC2 H 5 *
`COzCzHs
`OCOC2 H5 *
`CH 2 CH2 COzH
`NHCOzC2 Hs
`CONHC2 Hs*
`NHCOCzHs *
`CH=NOCzHs*
`NHC=S{C2 Hs)*
`CH(CH3h
`C3Ha
`NHC=S(NHC2 H5 )
`OCH(CH3)2
`OC3 H1
`CH2 0C2H5 *
`SOC3H7*
`S02C3H7*
`SC3H7*
`SeC3H7*
`NHC3H7*
`~HS02C3H7*
`N(CH3h
`Si(CH3h
`CH=C(CNh
`so
`
`1T
`
`0.11
`0.82
`-0.50
`-0.55
`0.10
`-0.64
`-0.01
`-0.97
`-0.37
`-1.27
`0.40
`-0.42
`-0.27
`1.02
`-1.32
`-0.78
`0.38
`-1.04
`1.07
`1.28
`0.08
`-1.09
`0.18
`-0.64
`0.44
`-1.18
`1.28
`-0.17
`1.14
`0.06
`0.64
`0.51
`-0.10
`-0.29
`0.17
`-0.73
`-0.43
`0.94
`0.12
`1.53
`1.55
`-0.71
`0.85
`1.05
`-0.24
`-0.50
`-0.55
`1.61
`1.82
`0.62
`-0.10
`-5.96
`2.59
`0.05
`
`H-
`Accpt
`
`H-
`Donor
`
`1
`0
`1
`
`1
`1
`1
`
`1
`1
`0
`I
`
`1
`1
`0
`0
`I
`
`1
`1
`0
`1
`1
`1
`0
`
`1
`1
`I
`I
`1
`I
`1
`0
`0
`I
`
`1
`0
`0
`
`0
`0
`1
`
`0
`0
`1
`0
`0
`0
`0
`1
`1
`1
`0
`
`0
`1
`0
`0
`0
`0
`0
`1
`0
`0
`1
`0
`0
`1
`0
`0
`0
`0
`0
`0
`1
`
`0
`1
`0
`0
`1
`0
`0
`0
`0
`0
`0
`0
`I
`1
`0
`0
`0
`
`MR
`
`16.42
`10.99
`19.77
`11.18
`18.42
`12.47
`12.87
`14.93
`16.53
`14.57
`14.93
`23.40
`29.92
`10.30
`24.86
`12.07
`12.47
`18.35
`18.42
`21.68
`14.98
`18:14
`15.55
`22.82
`21.19
`21.87
`15.18
`16.23
`13.53
`15.83
`23.07
`17.47
`17.12
`16.52
`21.18
`19.22
`19.58
`19.58
`28.05
`14.96
`14.96
`31.66
`17.06
`17.06
`16.72
`23.00
`22.79
`23.07
`26.33
`19.63
`27.47
`21.20
`24.96
`21.53
`
`~
`
`&t
`
`Om
`
`aP
`
`0.33
`0.07
`0.23
`0.32
`0.36
`0.41
`0.33
`0.28
`0.14
`0.34
`0.39
`0.27
`0.46
`-0.05
`0.23
`0.01
`0.22
`0.52
`0.23
`0.13
`-0.11
`0.54
`0.10
`0.25
`-0.08
`.0.37
`0.28
`0.26
`-0.03
`0.32
`0.36
`0.33
`0.41
`-0.02
`0.14
`0.34
`0.28
`0.39
`0.27
`-0.05
`-0.06
`0.38
`0.30
`0.22
`0.01
`0.52
`0.54
`0 23
`0.13
`-0.11
`0.25
`0.89
`-0.04
`0.58
`
`-0.05
`-0.08
`-0.25
`0.20
`0.11
`-0.07
`0.15
`-0.26
`-0.28
`0.05
`-0.06
`-0.13
`-0.02
`-0.10
`-0.05
`0.02
`-0.44
`0.01
`-0.18
`-0.12
`-0.51
`0.22
`-0.92
`-0.20
`0.39
`0.19
`0.05
`-0.07
`-0.19
`0.20
`0.11
`0.15
`-0.07
`-0.05
`-0.28
`0.05
`-0.26
`-0.06
`-0.13
`-0.10
`-0.08
`-0.28
`-0.72
`-0.45
`0.02
`0.01
`0.22
`-0.18
`-0.12
`-0.51
`-0.20
`0.00
`-0.04
`0.30
`
`0.32
`0.05
`0.17
`0.38
`0.39
`0.39
`0.37
`0.21
`0.07
`0.35
`0.37
`0.24
`0.45
`-0.07
`0.22
`0.02
`0.10
`0.52
`0.18
`0.10
`-0.24
`0.60
`-0.15
`0.20
`0.03
`0.42
`0.29
`0.24
`-0.07
`0.38
`0.39
`0.37
`0.39
`-0.03
`0.07
`0.35
`0.21
`0.37
`0.24
`-0.07
`-0.07
`0.30
`0.10
`0.10
`0.02
`0.52
`0.60
`0.15
`0.10
`-0.24
`0.20
`0.88
`-0.04
`0.66
`
`0.26
`-0.02
`-0.03
`0.50
`0.44
`0.31
`0.45
`0.00
`-0.15
`0.36
`0.30
`0.12
`0.40
`-0.15
`0.16
`0.03
`-0.24
`0.49
`0.03
`0.00
`-0.61
`0.72
`-0.83
`0.03
`0.31
`0.53
`0.30
`0.17
`-0.21
`0.50
`0.44
`0.45
`0.31
`-0.07
`-0.15
`0.36
`0.00
`0.30
`0.12
`-0.15
`-0.13
`0.07
`-0.45
`-0.25
`0.03
`0.49
`0.72
`0.00
`0.00
`-0.61
`0.03
`0.82
`-0.07
`0.84
`
`~--.......
`
`

`
`Table VI-I Well-Characterized0 Aromatic Substituentsb (Continued)
`
`I-Pyrryl
`2-Thienyl
`3-Thienyl
`CH=CHCOCH3
`CH =CH C02 CH3 *
`COC3H7*
`SCOC3H1*
`OCOC3H7*
`C02C3H1*
`(CH2hC02H*
`CONHC3H7*
`NHCOC3H7*
`NHC=OCH(CH3h
`NHC02C3H7*
`CH=NOC3H7*
`NHC=S(C3H1)*
`C4H9
`C(CH3h
`OC4H9
`CH20C3H7*
`N(C2Hsh,
`NHC4H9*
`P(C2H5 ) 2 *
`PO(OC2H5 h*
`CH2 Si( CH3 )3
`CH=CHCOC2Hs *
`CH=CHC02 C2H5
`CH=NOC4H9*
`CsHu *
`CH20C4H9*
`C6Hs
`N=NC6H5
`OC6 H 5
`S02C6 H5
`OS02C6 }15
`NHC6 H5
`NHS02 C6 H5
`2,5-di-Me-1-pyrry1
`CH=CHCOC3H1*
`CH=CHC02 C3H7 *
`Cyclohexy1
`2-Benzthiazo1y1
`COC6 Hs
`C0 2 C6 H5
`OCOC6 H5
`N=CHC6 H5
`CH=N4Hs
`NHCOC6 H5
`CH2C6 H 5
`CH20C6 H5
`c=cc6 Hs
`CH=NNHCOC6 H 5
`CH2Si(C2H5 h*
`CH=CHC6 H5-( trans)
`
`7r
`
`0.95
`1.6 I
`1.8 I
`-0.06
`0.32
`0.53
`I .18
`0.44
`1.07
`0.25
`-O.I9
`0.1 I
`-O.I8
`0.7I
`1.48
`0.66
`2.13
`1.98
`1.55
`0.30
`1.18
`1.16
`1.52
`-0.10
`2.00
`0.48
`0.86
`2.02
`2.67
`0.84
`1.96
`1.69
`2.08
`0.27
`0.93
`1.37
`0.45
`1.95
`1.02
`I.40
`2.5 I
`2.13
`1.05
`1.46
`1.46
`-0.29
`-0.29
`0.49
`2.0I
`1.66
`2.65
`0.43
`3.26
`2.68
`
`H-
`Accpt
`
`H-
`Donor
`
`MR
`
`:j;
`
`~
`
`(Jm
`
`(Jp
`
`1
`0
`0
`1
`I
`1
`
`0
`0
`1
`1
`1 .
`1
`0
`1
`0
`I
`1
`
`0
`1
`0
`0
`1
`
`I
`0
`1
`1
`1
`I
`1
`I
`1
`0
`I
`0
`
`0
`0
`
`0
`0
`0
`0
`0
`0
`0
`0
`0
`
`1
`1
`1
`0
`1
`0
`0
`0
`0
`0
`1
`0
`0
`0
`0
`0
`0
`0
`0
`0
`0
`0
`0
`0
`I
`
`0
`0
`0
`0
`0
`0
`0
`0
`0
`0
`1
`0
`0
`0
`
`0
`0
`
`21.85
`24.04
`24.04
`21.10
`22.56
`20.48
`27.72
`21.77
`22.17
`21.17
`23.87
`24.23
`24.23
`25.83
`24.23
`32.70
`19.61
`19.62
`21.66
`21.37
`24.85
`24.26
`30.49
`31.16
`29.61
`25.75
`27.21
`28.88
`24.26
`26.02
`25.36
`31.3I
`27.68
`33.20
`36.70
`30.04
`37.88
`31.15
`30.40
`31.86
`26.69
`38.88
`30.33
`32.31
`32.33
`33.01
`33.01
`34.64
`30.01
`32.19
`33.21
`42.37
`43.56
`34.I7
`
`0.50
`0.10
`0.04
`0.28
`0.24
`0.32
`0.36
`0.41
`0.33
`-0.02
`0.34
`0.28
`0. I8
`0.14
`0.39
`0.27
`-0.06
`-0.07
`0.25
`O.OI
`0.01
`-0.28
`-0.08
`0.37
`-O.I5
`0.28
`0.24
`0.39
`-0.06
`0.01
`0.08
`0.28
`0.34
`0.56
`0.36
`-0.02
`0.2I
`0.52
`0.28
`0.24
`-0.13
`0.25
`0.30
`0.33
`0.23
`0.09
`0.31
`0.09
`-0.08
`0.02
`0.12
`0.33
`-0 15
`0.06
`
`-0.09
`0.04
`-0.06
`-0.27
`-0.19
`0.20
`0.11
`-0.07
`0.15
`-0.05
`-0.05
`-0.26
`-0.26
`-0.28
`-0.06
`-0.13
`-0.11
`-0.13
`-0.55
`0.02
`-0.91
`-0.25
`0.39
`0.19
`-0.07
`-0.27
`-0.19
`-0.06
`-0.08
`0.02
`-0.08
`0.13
`-0.35
`0.18
`0.00
`-0.38
`-0.18
`-O.IO
`-·o.27
`-O.I9
`-0.10
`0.06
`0.16
`0.13
`-0.08
`-0.63
`0.13
`-0.27
`-O.OI
`0.02
`0.05
`0.20
`-0.07
`-O.I2
`
`0.47
`0.09
`0.03
`0.21
`0.19
`0.38
`0.39
`0.39
`0.37
`-0.03
`0.35
`0.21
`0.1 I
`0.07
`0.37
`0.24
`-0.08
`-0.10
`0.10
`0.02
`-0.23
`-0.34
`0.03
`0.42
`-0.16
`0.21
`0.19
`0.37
`-0.08
`0.02
`0.06
`0.32
`0.25
`0.61
`0.36
`-0.12
`0.16
`0.49
`0.21
`O.I9
`-0.15
`0.27
`0.34
`0.37
`0.21
`-0.08
`0.35
`0.02
`-0.08
`0.03
`O.I4
`0.39
`-0.16
`0.03
`
`0.37
`0.05
`-0.02
`-O.OI
`0.03
`0.50
`0.44
`0.31
`0.45
`-0.07
`0.36
`0.00
`-0.10
`-0.15
`0.30
`0.12
`-0.16
`-0.20
`-0.32
`0.03
`-0.90
`-0.51
`0.31
`0.53
`-0.21
`-0.01
`0.03
`0.30
`-0.16
`0.03
`-0.01
`0.39
`-0.03
`0.70
`0.33
`-0.40
`0.01
`0.38
`·-0.01
`0.03
`-0.22
`0.29
`0.43
`0.44
`0.13
`-0.55
`0.42
`-0.19
`-0.09
`0.04
`O.I6
`0.5I
`-0.2I
`-0.07
`51
`
`'
`
`'j
`I
`
`:I
`t
`
`I
`
`

`
`Table Vl-1 Well-Characterized0 Aromatic Substituentsb (Continued)
`
`CH=CHCOC 6 H5
`Ferrocenyl
`N(C6Hsh
`P=O(C6Hs)z
`
`11'
`
`0.95
`2.46
`3.61
`0.70
`
`H-
`Accpt
`
`H-
`Donor
`
`MR
`
`/¥
`
`~
`
`Om
`
`ap
`
`l
`0
`1
`
`0
`0
`0
`0
`
`40.25
`48.24
`54.96
`59.29
`
`0.22
`-0.15
`0.07
`0.3I
`
`-0.15
`-0.04
`-0.29
`0.24
`
`0.18
`-O.I5
`0.00
`0.38
`
`0.05
`-O.I8
`-0.22
`0.53
`
`4 By well-characterized, we mean that the set of eight constants is known for each substituent; we do not mean to
`imply that all of the constants are of the highest accuracy.
`bSubstituents are ordered first by number of C, then by number of H, and the remaining elements alphabetically.
`
`TableVI-2 Well-Characterized0 Aliphatic Substituents
`
`Br
`Cl
`F
`
`N02
`H
`OH
`SH
`NH2
`CBr3
`CCI3
`CF3
`CN
`SCN
`C02
`C02H
`CH2 Br
`CH2 C1
`CH21
`CONH2
`CH=NOH
`CH3
`NHCONH2
`OCH3
`CH20H
`SOCH3
`OS02CH3
`SCH3
`NHCH3
`CF2CF3
`G==CH
`CH2CN
`CH=CHN02 -trans
`CH=CH2
`COCH3
`OCOCH3
`COzCH3
`NHCOCH3
`C=O(NHCH3)
`
`52
`
`Fr
`
`0.20
`0.06
`-0.38
`0.59
`-1.16
`0.23
`-1.64
`-0.23
`-1.54
`2.03
`1.61
`0.29
`-1.27
`-0.48
`-5.19
`-1.11
`0.74
`0.60
`1.13
`-2.18
`-1.02
`0.77
`-2.90
`-1.54
`-1.10
`-2.24
`-1.34
`-0.02
`-1.38
`1.34
`0.01
`-0.73
`-0.63
`0.88
`-1.13
`-0.72
`-0.72
`-1.94
`-1.94
`
`H-Accpt
`
`H-Donor
`
`0
`0
`0
`0
`1
`0
`l
`0
`I
`0
`0
`0
`I
`
`1
`1
`0
`0
`0
`1
`
`0
`1
`1
`1
`1
`1
`0
`1
`0
`0
`
`0
`I
`1
`
`0
`0
`0
`0
`0
`0
`
`0
`0
`0
`0
`0
`0
`1
`0
`0
`0
`1
`1
`0
`1
`0
`1
`0
`0
`0
`l
`0
`1
`0
`0
`0
`0
`0
`0
`1
`
`MR
`
`8.80
`5.93
`1.05
`13.76
`6.71
`1.03
`2.55
`8.76
`4.37
`28.8I
`20.12
`5.02
`5.39
`13.40
`5.15
`6.03
`13.39
`10.49
`18.60
`9.81
`I0.28
`5.65
`13.72
`7.33
`7.19
`13.70
`16.99
`13.33
`9.11
`9.23
`8.25
`10.11
`16.42
`9.79
`10.29
`11.85
`11.85
`13.71
`13.39
`
`f¥
`
`0.44
`0.41
`0.43
`0.40
`0.67
`0.00
`0.29
`0.28
`0.02
`0.27
`0.31
`0.38
`0.51
`0.36
`-0.15
`0.33
`0.10
`0.10
`0.09
`0.24
`0.25
`-0.04
`0.04
`0.26
`0.00
`0.52
`0.39
`0.20
`-0.11
`0.44
`0.19
`0.21
`0.33
`0.07
`0.32
`0.41
`0.33
`0.28
`0.34
`
`L-----------------------........... -.FT._-.-.~, •. ,.r_. .• R.r•=·•"•zn•··~•·•,•••·•·•rr•·rl·'l~'l=i·"l'i·•·~llllllllllllllllllllllllllllllllllll
`
`

`
`Table VI-2 Well-Characterized0 Aliphatic Substituents (Continued)
`
`CH2CH3
`OCH2CH3
`CH20CH3
`SOC2H5 *
`SC2Hs
`CH2Si(CH3h
`NHC2H5
`N(CH3h
`CH=CHCN
`Cyclopropy1
`COC2H5 *
`C02C2Hs
`OCOC2Hs*
`EtC02H
`NHC02C2Hs
`CONHC2H 5 *
`NHCOC 2 Hs*
`CH(CH3h
`C3H7
`OCH(CH3h
`OC3H1
`CH20C2Hs*
`SOC3H1*
`SC3H7*
`NHC3H7 *
`Si(CH3h
`2-Thieny1
`3-Thienyl
`CH=CHCOCH3
`CH=CHC02CH3 *
`COC3H1*
`OCOC3H 7*
`C02C3H7*
`(CH2)3C02H*
`NHCOC3H 7 *
`CONHC3H7*
`C4H9
`CCCH3h
`OC4H9
`CH20C3H1*
`NHC4H9*
`N(C2Hsh
`CH=CHCOC2Hs*
`CH=CHC02C2Hs
`CsHu *
`CH20C4 H9*
`C6Hs
`OC6 H 5
`S02C6 H 5
`NHC6H5
`2-Benzthiazolyl
`CH=CHCOC3H 7*
`CH=CHC02C3H1*
`COC6 H5
`C02C6 H 5
`
`Fr
`
`1.43
`-0.51
`-0.23
`-1.70
`0.52
`3.62
`-0.84
`-0.64
`-0.74
`1.49
`-0.59
`-O.I8
`-O.I8
`-0.03
`-1.40
`-1.40
`-1.40
`(84
`1.97
`-0.10
`0.03
`0.03
`-1.16
`1.06
`-0.30
`2.96
`1.58
`1.58
`-0.13
`0.28
`-0.05
`0.36
`0.36
`0.5I
`-0.86
`-0.86
`2.51
`2.22
`0.57
`0.57
`0.24
`0.16
`0.41
`0.82
`3.10
`1.11
`1.90
`1.22
`-0.39
`0.75
`1. 78
`0.95
`1.36
`0.69
`0.60
`
`H-Accpt
`
`H-Donor
`
`0
`
`0
`0
`1
`
`1
`0
`
`1
`I
`I
`1
`0
`0
`
`I
`0
`
`0
`0
`0
`1
`1
`1
`1
`1
`1
`1
`1
`0
`0
`
`1
`1
`1
`1
`0
`1
`0
`1
`
`0
`0
`0
`0
`0
`0
`1
`0
`0
`0
`0
`0
`0
`
`0
`0
`0
`0
`0
`0
`0
`1
`0
`0
`0
`0
`0
`0
`0
`0
`I
`1
`1
`0
`0
`0
`0
`1
`0
`0
`0
`0
`0
`0
`0
`0
`I
`0
`0
`0
`0
`0
`
`MR
`
`10.30
`11.93
`12.07
`18.35
`17.93
`29.61
`13.76
`14.14
`15.33
`13.53
`14.65
`16.76
`I7.12
`16.52
`19.96
`18.04
`18.36
`. 14.96
`14.96
`16.52
`16.52
`I6.72
`23.00
`22.58
`18.41
`24.96
`24.04
`24.04
`19.92
`21.85
`I9.30
`21.77
`21.46
`2l.l7
`23.01
`22.69
`19.61
`19.62
`21.12
`21.37
`23.06
`23.44
`24.57
`26.03
`24.26
`26.02
`25.36
`27.02
`33.20
`28.50
`38.88
`29.22
`26.50
`29.96
`31.60
`
`[¥
`
`-0.05
`0.22
`0.01
`0.52
`0.23
`-0.15
`-0.11
`0.10
`0.26
`-0.03
`0.32
`0.33
`0.41
`-0.02
`0.14
`0.34
`0.28
`-0.05
`-0.06
`0.30
`0.22
`0.01
`0.52
`0.23
`-O.Il
`-0.04
`0.10
`0.04
`0.28
`0.24
`0.32
`0.41
`0.33
`-0.02
`0.28
`0.34
`-0.06
`-0.07
`0.25
`0.01
`-0.28
`0.01
`0.28
`0.24
`-0.06
`0.01
`0.08
`0.34
`0.56
`-0.02
`0.25
`0.28
`0.24
`0.30
`0.33
`53
`
`

`
`54
`
`Cluster Analysis and the Design of Congener Sets
`
`Table VI-2 Well-Characterized0 Aliphatic Substituents (Continued)
`
`Fr
`
`1.22
`-0.03
`2.44
`1. 7I
`4.82
`2.72
`1.81
`2.43
`2.43
`
`OCOC6 Hs
`NHCOC6H5
`CH2C6Hs
`CH20C6Hs
`CH2Si(C2Hsh*
`CH=CHC6H5-(trans)
`CH=CHCOC6 H5
`Ferrocenyl
`N(C6Hsh
`
`0 See footnote a, Table Vl-1.
`
`H-Accpt
`
`H-Donor
`
`0
`I
`0
`0
`I
`0
`
`0
`1
`0
`0
`0
`0
`0
`0
`0
`
`MR
`
`32.33
`34.28
`30.01
`31.77
`43.56
`32.97
`39.05
`48.24
`53.55
`

`
`0.23
`0.09
`-0.08
`0.02
`-0.15
`0.06
`0.22
`-0.15
`0.07
`
`gain the maximum amount of information possible from
`each derivative that is to be tested in some standard
`system. This means that at any given point in time, one
`wants to consider all of the known variables that cause
`change in activity of the parent molecule when a sub(cid:173)
`stituent change is made. For quantitative work, we are
`limited to those variables that can be defined in numer(cid:173)
`ical terms. Four such parameters, 1T, MR, :Y and 61, are
`well characterized and have been shown to be relevant in
`many biomedicinal QSAR. The problem of selecting a
`set of substituents that would be independent with re(cid:173)
`spect to these four variables is illustrated in Tables Vl-3
`and VI-4?
`
`Table VI-3 Two Sets of Substituents for Compound
`Modification
`
`Set A
`
`Set B
`
`CH3
`N02
`COCH3
`c=cH
`SCH3
`
`NHC6 H5
`OCH2CH2CH3
`S02CH2CH2CH3
`I
`CH2Cl
`
`CH3
`CF3
`F
`CN
`N0 2
`
`CH2CH3
`NHCOCH3
`CONH2
`S02NH2
`0CF3
`
`Table VI-4 Squared Correlation Matrices for Substitu(cid:173)
`ents of Table Vl-3°
`
`Set A
`
`Set B
`
`1T
`
`6i
`
`$
`
`MR
`
`1T
`
`IR
`

`
`MR
`
`1T
`iR

`MR
`
`0.94 0.30 0.32
`1T
`iR
`0.32 0.38
`1
`1
`0.09 §
`MR
`
`0.09 0.08 0.26
`0.15 0.03
`1
`0.03
`1
`
`0 The figures are r2 for the correlation between variables.
`
`From an inspection of these two sets, even knowing
`the values of 1T, 9", iR, and MR, it is not possible to
`decide which is the better set as fat as independence
`among the four variables is concerned. However, it can
`easily be done by formulating the correlation matrices
`for the two sets of substituents as in Table Vl-4. One
`sees immediately from the correlation matrix that 1T and
`6i are almost completely collinear in Set A; either of
`these two vectors would give almost the same result in
`a correlation equation. Hence, one cannot be sure
`whether the correct variable is 1T or 6i or if indeed both
`variables are involved. All of the other variables except
`!¥ and MR show significant collinearity. Selecting data
`Set A would mean that one would have to make more
`derivatives if either 1T or iR turned up in the correlation
`equation to resolve their relative importance. Only 1T and
`MR show significant collinearity in data Set B, and this
`is not serious for most purposes. Although 10 substitu(cid:173)
`ents would not be enough to work in a system where
`four variables are influencing a given process, they do
`illustrate the collinearity problem.
`Since only a tiny fraction of the almost infinite num(cid:173)
`ber of possibilities can be studied in drug modification,
`we cannot afford redundancy. Testing two congeners
`that have essentially the same physicochemical pro(cid:173)
`perties is most likely to be less valuable than testing two
`with different properties. One often sees sets of con(cid:173)
`geners in the literature where all of the normal alkyl
`groups from methyl to decyl have been made and tested.
`While this may give one useful information on optimum
`lipophilicity, it also may not. The variables 1T andMR for
`such substituents are prefectly collinear so that hydro(cid:173)
`phobicity and bulk tolerance effects cannot be resolved
`with such a set of congeners. Of course, such a data set
`would reveal nothing about the electronic effect of
`sub sti tuen ts.
`
`

`
`Vl-3 Cluster Analysis
`
`55
`
`....._
`
`.--L
`
`..___
`
`L
`
`L...-
`
`"' u·
`c:
`"' .~
`-o
`c:
`0
`·;::;
`"' E
`~
`;;;
`E
`<(
`
`I
`
`l
`
`..--
`
`L...
`
`l
`
`r-L-
`
`A B C DE FG HI
`
`* *** * **
`J KUM N OP Q~ S TU ~W X YZ AA
`Substituents
`Figure VI-1
`
`. .
`
`VI-3 CLUSTER ANALYSIS
`
`The problem of selecting a set of substituents with in(cid:173)
`dependence among several parameters has concerned
`medicinal chemists for some time. Meyer and Hemme
`pointed out in 1935 that one could not gain information
`about the relative role of physicochemical properties of
`narcotics from the study of sets of homologous series.
`The alkyl groups are completely collinear with respect to
`many parameters.
`Craig4 first emphasized the importance of plotting rr vs
`a to obtain a set of substituents with minimal collinear(cid:173)
`ity and, at the same time, good coverage of substituent
`space. Wooton et al. 5 have developed a sophisticated
`algorithm for substituent selection.
`Hierarchical clustering can greatly assist in the proper
`selection of substituents from the ever-growing number
`available. Most computer centers have available the
`UCLA biomed BMDP2M, BMDP1M, or the Xerox Data
`Systems CLUSANL programs. The clustering in this
`chapter has been done with the Xerox program.
`
`In this program, the parameters x' can be placed on
`the same scale via eq VI-1. X in this expression is the
`mean value of a given parameter and Si is the standard
`
`(VI-1)
`
`deviation. This equation defines the deviation of each
`point from the group average X; in units of the standard
`deviation. If we have N substituents, each with K para(cid:173)
`meters, then the Euclidian distance between them is
`given by
`
`K
`-
`. f l2% - -
`dij- [ ~ (Xik - Ajk) ]
`l, 1 - 1' 2 ... N (VI-2)
`k=l
`
`In hierarchical clustering, all interpoint distances in K
`space are calculated via eq VI-2, and the two closest
`points are clustered into a pseudo point (see Figure
`VI-I). In Figure Vl-l,R and S are the two points closest
`to each other; the pseudo point is formed from these
`
`

`
`56
`
`two and is then clustered with T; this group of three is
`then clustered withP and Q. Note that His so isolated in
`data space that it does not enter a cluster until the
`penultimate group. At the bottom of the graph all points
`are distinct units in data space; at the top, all have been
`forced into a single cluster.
`The composition of the clusters that one obtains
`depends entirely on the parameters that are used in eq
`VI-2 to obtain the dij- If one uses parameters not pertin(cid:173)
`ent to the data set for which substituents are being
`selected, this will not result in a well-balanced group of
`congeners on which to base the QSAR. For this reason,
`in the case of substituents for use in an aromatic system
`we have clustered only on rr, f#", (i{,MR, and H-bonding;
`these are established variables that can be shown to be
`reasonably independent. The parameters Om and ap have
`been shown to be strongly related? This can be seen
`from the correlation matrix of Table VI-9 for all 166
`aromatic substituents.
`If steric effects are involved, it is assumed thatMR will
`the steric properties of substituents. 1
`approximate
`Since at the present time we do not have a set of hydro(cid:173)
`gen-bonding parameters, we have assigned hydrogen
`bond acceptors a value of 1, hydrogen bond donors a
`value of 1 (at present there are no substituents acting
`only as donors), and other substituents a value of 0. We
`believe that the inclusion of hydrogen bonding gives
`better balanced sets of clusters.
`The aliphatic constants of Table VI-2 have been
`clustered on the same variables (Table VI-6), except that
`(R has not been included. These constants refer to
`systems where resonance is not present.
`The 166 "aromatic" substituents of Table VI-1 have
`been forced into three sets of clusters containing 20, 10,
`and 5 su bstituents, respectively. Note that in the· "20"
`set the clusters vary in size from 2 to 16 members. Those
`substituents closest to each other in six-dimensional
`space are forced into clusters; hence, when choosing a
`set of substituents, one should, insofar as possible, select
`one substituent from each cluster. Some substituents
`turn out to be rather strange from the point of view of
`synthesis, metabolic stability, or chemical reactivity; for
`this reason, one may need to take two substituents from
`the same cluster.
`When one forces 166 substituents into 20 clusters, it
`means of necessity that the substituents in a particular
`set may not appear similar from the traditional view(cid:173)
`point of organic chemistry. For example, in the "5"
`cluster set of Table VI-5 we find H and cyclopropyl to(cid:173)
`gether. If, instead of forcing 166 substituents into five
`clusters, we had compressed them to a lesser degree into
`60, then a single cluster with Hand Me would result; the
`
`Cluster Analysis and the Design of Congener Sets
`
`similarity is obviously much closer. At the "60" cluster
`level, 15 substituents are so far removed from the others
`in data space that they "cluster" alone [e.g., F, 10 2 ,
`C02 -, N(CH3hl.
`One does not assume by selecting one substituent
`from each group that a set of substituents perfectly
`orthogonal with respect to each vector will be obtained.
`The next imperative step is to form a correlation matrix
`as in Table VI-4. The collinearity between two variables
`will often be unacceptably high; a plot of the values of
`one variable against the other helps one choose new sub(cid:173)
`stituents to break up this feature.
`For example, a chemist selects a substituent from each
`cluster in the "1 0" cluster set of aromatic substituents
`+
`giving the following groups: Br, N02 , N(CH 3)3, OH,
`S02 NH2 , OCF 3 , NCS, NHCOC 6H5 , OCH 3 , C4H9 • The
`correlation matrix is given in Table VI-7. This is not a
`satisfactory set because of the high collinearity between
`nand:¥ and between H-acceptor and MR.
`Discussing this set with medicinal chemists brings out a
`number of further objections. The N0 2 group is so read(cid:173)
`ily reduced in biological systems that it would be more
`appropriate to substitute it with CN from the same
`cluster. The N{CH 3) 3 group bears a charge. It is well
`known from studies in physical organic chemistry that
`charged substituents behave poorly when mixed in sets
`of neutral groups. In the initial phases of study, one
`would not expect the charged group to behave in the
`same fashion as neutral substituents. Several such groups
`could be introduced later via an indicator variable. The
`only other substituent in this cluster is 102 , which is not
`selected because little is known of its behavior in
`+
`biologic systems. N(CH 3 )3 is replaced with H from the
`first and largest cluster. The NCS group is so highly
`active chemically that it might not behave as a true
`congener and is replaced with OC 6H5 • The new set is
`then: Br, H, CN, OH, S0 2NH2, OCF 3 , OC 6H5 ,
`NHCOC 6 H5 , OCH3 , C4 H9 . This affords the correlation
`matrix ofTable VI-8.
`Table Vl-8 shows that although there is still some
`collinearity between certain variables, it has been re(cid:173)
`duced to a reasonable level. Also, the new set of sub(cid:173)
`stituents contains a good spread in values of the various
`parameters: rr (-1.82 to 2.13), :¥(-0.06 to 0.44, tR
`(-0.64 to 0.19), and MR (0.10 to 3.46).
`The hydrogen bonding parameters are of course the
`most poorly defined. Nevertheless, inspection of the
`clustering of the aromatic substituents at the 10 set level
`shows that they do cluster hydrogen-bonding groups
`well. Most of the nonhydrogen bonders are clustered
`into groups 1 and 8. The acceptors fall into clusters 2, 6,
`and 7. The substituents that are both donors and
`
`

`
`Table VI-Sa Aromatic Constants-Twenty Ouster Sets
`
`10 members= Br
`SH
`2 17 members= S02F
`S02 CH3
`CH=C(CN)z
`OS02 CH3
`3 16 members= H
`c=cH
`N=CC1z
`Se(C2 H5 )*
`3 members= OH
`4
`5 4 members= B(OH)2
`6 8 members= NH(OH)
`, NHCHO
`7 5 members= S0 2(NH2 )
`8 16 members= OCF3
`CH=CHCN
`COCH 3
`COzC3H1*
`9 15 members= NCS
`CH=NOC4H9*
`CH=CHCOzCzHs
`10 15 members= CH2 I
`N=NC6H5
`Cyclohexy1
`11 21 members= NHC=S(NH2 )
`NHC=O(CH2CI)
`NHC0 2C2 H5
`NHCOC3H7*
`CH=NNHCOC6H5
`8 members= OCH3
`N(CH3)z
`5 members= NHCH3
`13
`5 members= CH2 0CH3
`14
`2 members= P(CH3) 2
`15
`16 10 members= SCOC3 H7*
`2-Benzthiazolyl
`3 members= CH2 Si(CzHsh*
`17
`18 3 single-
`I
`member= 10 2
`groups
`20
`
`12
`
`C1
`SF 5
`N0 2
`5-C1-1-tetrazo1yl
`PO(OCH3h
`OCOCH 3
`CH3
`CH2CH3
`SCH3
`
`NH2
`CH 2 0H
`NHCONH2
`NHS02 CH3
`CON Hz
`CH2 CN
`SCN
`SCOCH3
`
`I
`CF3
`SOz(CF3)
`SOC3 H7*
`1-Tetrazoly1
`
`CH2 Br
`Cyclopropyl
`Se(CH3 )
`
`NHNH2
`EtC0 2 H
`NHCN
`NHCOCH3
`C=O(NHCH3)
`CH=CHN0 2 (tr)
`COzCH3
`C0 2C2H5
`
`Pyrryl
`2,5-di-Me-Pyrry1*
`CH=CHCOC 3 H1*
`2-Thieny1
`L=CC6Hs
`CH2 Si(CH3h
`CH=NNHCONHNH2
`NHCOCzH 5*
`NHC=OCH(CH3)2
`8(0H)(CF3h
`
`CH=NOC2 H5 *
`CH=CHCOCH3
`CH=CHCOzC3H1*
`Se(C3H7)*
`CH=CHC6H5 (tr)
`CH2 C6H5
`CH=NNHC=S(NH 2 )
`NHC=S(CH3)
`NHCOzC 3H1*
`NHC=S(C3}f?)*
`
`OCHzCH3
`N(CzH 5 )z
`NH(C2 H5 )
`CH2 0CzH5 *
`P(CzHsh*
`COC6 H5
`PO(OCzHsh*
`Ferrocenyl
`
`C0 2-
`
`OCH(CH3h*
`N=CHC 6 H5
`NHC 3 H7*
`CH2 0C3H1*
`
`COzC6Hs
`CH=NC6H5
`N(C6Hs h
`
`+
`N(CH3))
`
`NNN
`SCF3
`NO
`SOzCzHs*
`SOCzH5 *
`
`CH=CH2
`HC(CH3)z
`S(CzHs)
`
`(CHzhCOzH*
`CH=NOH
`
`CONBC2 H5 *
`CH=NOCH3
`COCzH5 *
`COC3H7*
`
`OCOC3H7*
`CH=CHC02CH3*
`OCOC6H5
`3-Thienyl
`Si(CH3h
`C4H9 ·
`CONHC3H7*
`NHSOzC2Hs *
`NHC=S(C2 Hs)*
`NHSOzC6Hs
`
`OC3H7
`
`NHC4H9*
`CH20C4H9*
`
`OS0 2C6Hs
`S02 C6H5
`
`F
`CF 2CF3
`CN
`S02C3 H1*
`SOCH3
`
`CH2 C1
`C3H7
`SC3H7*
`
`NHCOCF1
`
`C02H
`OCOC2Hs*
`CHO
`SCOC 2H5 *
`
`CH=NOC3H7*
`CH=CHCOCzHs *
`OC6H5 .
`C6Hs
`CsHn *
`C(CH3h
`NHC=S(NHC2Hs)
`NHC0 2 CH3*
`NHS0 2C3H7*
`NHCOC6Hs
`
`OC4H9 *
`
`NHC 6 H5
`CHzOC6Hs
`
`CH=CHCOC6Hs
`P=O(C6Hsh
`
`(.h
`
`"--
`
`

`
`Vo
`00
`
`Table VI-Sb Aromatic Constants-Ten Cluster Sets
`
`26 members= Br
`SH
`H
`c==cH
`N=CCh
`Se(C2 Hs)*
`2 17 members= S02F
`S02CH3
`CH=C(CN)z
`OSOzCH3
`3 2 members= 102
`4 8 members= OH
`NHC3H7*
`5 18 members= B(OH)z
`NHCONH2
`NHS02 CH3
`CONHC2Hs*
`6 21 members= OCF 3
`CH=CHCN
`COCH3
`C02C3H7*
`CH2 0C 6 H5
`7 25 members= NCS
`CH=NOC4H9*
`CH=CHC02C2Hs
`SCOC3H7*
`2-Benzthiazo1yl
`8 20 members= CH21
`N=NC6Hs
`Cyclohexyl
`P(CH3)2
`9 21 members= NHC=S(NH2)
`NHC=O(CHzCl)
`NHCOzC2Hs
`NHCOC3H7*
`CH=NNHCOC6H5
`10 8 members= OCH3
`N(CH3h
`
`C1
`SF5
`CH3
`CH2 CH3
`SCH3
`
`N0 2
`5-Cl-1·tetrazoly1
`PO(OCH3h
`<;?COCH3
`N(CH3h
`NH2
`NHC4H9"'
`CH20H
`NHCN
`NHCOCH3
`C02H
`CH2CN
`SCN
`SCOCH3
`CHzOCH3
`
`I
`CF3.
`CH2Br
`Cyclopropyl
`Se(CH3)
`
`SOz(CF3)
`SOC3H7*
`l-Tetrazoly1
`
`NHNH2
`NHC6Hs
`EtC0 2 H
`CH=NOH
`S02(NHz)
`C02-
`CH=CHN02 .(tr)
`COzCH3
`C02C2 Hs
`CH20CzHs*
`
`Pyrry1
`2,5-di-Me-Pyrryl *
`CH=CHCOC3H7*
`COC6H5
`PO(OCzHsh*
`2-Thienyl
`c=cc6 Hs
`CH 2 Si(CH3h
`P(CzHsh*
`CH=NNHCONHNH2
`NHCOC2Hs*
`NHG=OCH(CH3)z
`C(OH)(CF3h
`
`CH=NOC2 Hs*
`CH=CHOCH3
`CH=CHC02C3H7*
`COzC6Hs
`CH=NC6 Hs
`Se(C3H7)*
`CH=CHC6Hs (tr)
`CH2C6Hs
`CH2Si(CzHsh*
`CN=NNHC=S(NH2 )
`NHC=S(CH3)
`NHC02C3H7*
`NHC=S(C3H7)*
`
`NNN
`SCF3
`CH=CH2
`CH(CH3)2
`SCC2Hs)
`
`NO
`S02 C2Hs*
`SOC2Hs*
`
`F
`CF2CF3
`CH2C1
`C3H7
`SC3H7*
`
`CN
`S02C3H7*
`SOCH3
`
`NHCH3
`
`NH(CzHs)
`
`(CHzhC02H*
`NHCOCF3
`CONH2
`
`CH=NOCH3
`COC2H5 *
`COC3H7*
`CHzOC3H7
`
`OCOC3H7*
`CH=CHOz CH3 *
`OCOC6 Hs
`OS0 2 C6 H5
`S02 C6H5
`3-Thienyl
`Si(CH3h
`C4H9
`Ferrocenyl
`CONHC3H7*
`NHSO.ZC2Hs*
`NHC=S(C2 Hs)*
`NHS02C6Hs
`
`NH(OH)
`NHCHO
`C=O(NHCH3)
`
`OCOCzHs*
`CHO
`SCOC2 Hs*
`CH20C4H9*
`
`CH=NOC3H7*
`CH=CHCOC2 Hs *
`OC6H5
`CH=CHCOC6 Hs
`P=O(C6Hsh
`C6Hs
`CsHu *
`C(CH3h
`N(C6Hsh
`NHC=S(NHC2 Hs)
`NHC02CH3*
`NHSOzC3H7*
`NHCOC 6 Hs
`
`OCHzCH3
`N(CzHs)2
`
`OCH(CH3)z*
`N=CHC6Hs
`
`OC3H7
`
`OC4H9*
`
`

`
`Table VI-Se Aromatic Constants-Five Cluster Sets
`
`26 members= Br
`SH
`H
`c=CH
`N=CCl2
`Se(C2Hs)*
`2 65 members= S02 F
`S02CH3
`CH=C(CNh
`OS02CH3
`CH=NOCH3
`COC2Hs*
`COC3H7*
`CH20C3H7*
`NCS
`CH=NOC4H9*
`CH=CHC02C2Hs
`SCOC3H1*
`2-Benzthiazolyl
`3 16 members= OH
`NHC3H7*
`OCH(CH3h*
`N=CHC6Hs
`4 39 members= B(OHh
`NHCONH2
`NHS02CH3
`CONHC2Hs*
`CH=NNHC=S(NH2)
`NHC=S(CH3)
`NHC02C3H7*
`NHC=S(C3H7 )*
`5 20 members= CH2I
`N=NC6Hs
`Cyclohexyl
`P(CH3h
`
`Cl
`SFs
`CH3
`CH2CH3
`SCH3
`
`N02
`5-Cl-1-Tetrazolyl
`PO(OCH3h
`OCOCH3
`OCOC2H5 *
`CHO
`SCOC2Hs *
`CH20C4H9*
`Pyrryl
`2,5-di-Me-Pyrryl *
`CH=CHCOC3H1*
`COC6Hs
`PO(OC2Hsh*
`NH2
`NHC4H9*
`OC3H7
`
`CH20H
`NHCN
`NHCOCH3
`C02H
`CONHC3H7*
`NHS02C2Hs*
`NHC==;;;S(C2Hs )*
`NHS02C6Hs
`2-Thienyl
`c=cc6Hs
`CH2Si(CH3h
`P(C2Hsh *
`
`I
`CF3
`CH2Br
`Cyclopropyl
`Se(CH3)
`
`S02(CF3)
`SOC 3 H1*
`1-Tetrazolyl
`OCF3
`CH=CHCN
`COCH3
`C02C3H7*
`CH20C6Hs
`CH=NOC2H5 *
`CH=CHCOCH3
`CH=CHC02C3H1*
`C02C6Hs
`CH=NC6H5
`NHNH2
`NHC6Hs
`OC4H9 *
`
`EtC02H
`CH=NOH
`S02(NH2)
`co2-
`NHC=S(NHC2H5 )
`NHC02CH3*
`NHS02C3H7*
`NHCOC6Hs
`Se(C3H7)*
`CH=CHC6H5 (tr)
`CH2C6Hs
`CH2Si(C2Hs h *
`
`NNN
`SCF3
`CH=CH2
`CH(CH3h
`S(C2Hs)
`
`NO
`S02C2Hs *
`SOC 2 H5 *
`CH2CN
`SCN
`SCOCH3
`CH20CH3
`102
`OCOC3H7*
`CH=CHC02CH3 *
`OCOC6Hs
`OS02C6Hs
`S02C6Hs
`NHCH3
`OCH3
`N(CH3)2
`
`(CH2hC02H*
`NHCOCF3
`CONH2
`NHC=S(NH2)
`NHC=O( CH2 Cl)
`NHC02C2Hs
`NHCOC3H7*
`CH=NNHCOC6Hs
`3-Thienyl
`Si(CH3h
`C4H9
`Ferrocenyl
`
`F
`CF2CF3
`CH2Cl
`C3H7
`SC3H1*
`
`CN
`S02C3H7*
`SOCH3
`CH=CHN02 (tr)
`C02CH3
`co2~Hs
`<;H20C2Hs *
`N(CH3h
`CH=NOC3H1*
`CH=CHCOC2Hs *
`OC6Hs
`CH=CHCOC6Hs
`P=O(C6Hsh
`NH(C2Hs)
`OCH2CH3
`N(C2Hsh
`
`NH(OH)
`NIICHO
`C=O(NHCH3)
`CH=NNHCONHNH2
`NHCOC2Hs*
`NHC=OCH(CH3h
`C(OH)(CF3h
`
`C6Hs
`CsHll *
`C(CH3h
`N(C6Hsh
`
`Vt
`1.0
`
`

`
`"' 0
`
`Table VI-6a Aliphatic Constants-Twenty Cluster Sets
`
`4
`
`6 members= Br
`CF2 CF3
`2 5 members::;: N0 2
`3 6 members= H
`SCH3
`6 members= OH
`C=O(NHCH3)
`5 2 me

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket