throbber
Tm: .Ir-r 5:.-11. or l’lI.|\fl&Im‘._‘I’Jl..(‘Ifil' urn l'lxes:nnri::s-r.-ii. TIII.I1.-\|':i:1'rtI.H
`(‘np_\-right Q I'|r\‘l l-3." Thu \v\'|1luim.-i
`(E Wilkin.-3 (‘r-.
`
`V01. 1513. No. 2
`a"I'1'n.'rd'
`l-I1 U..S.A.
`
`T11]-I ['.‘IIU[.1‘.\'I‘IR(}IC I§FFl*Z(."I‘:-I AND RATl:I'.‘S OF I'IYDROI.YSIS OF
`{'1IXI-‘()R1IATI()NAI.I.Y RIGID .-‘\N:\I.C)Gi‘.-‘s OF ACETYLCHOl.L\'E‘
`
`{'. Y. CI-IIt')I'. .I_ 1’.
`
`l.O_\'(i_ J. 1'}.
`
`('.'.-L\‘f\'{]T\'
`
`\.\'n l’
`
`I)
`
`.\l€.\15'l‘l£0.\'G
`
`rim! I}ii.'i-ion of .-'|uIr‘(i':}‘Eii(:I
`J'}r,m1rf::Ii'n.f of Pi:-:Ii‘r:mC0iugg.r. Coil.-79:.‘ of .-'lfer}I'r'a'Ju'
`i"'iir'iiir'.s'h'_r,r.
`f10.I'i':*gi' 0} Pilinrrnnry. Un1'L;Pr.s'i'.i'_l..r of form. a"mrr:
`I-‘ally. Ioirrz
`
`.-\i-:-r.~}aur:| for iiiilili:-aiinii
`
`f\‘:>\'i.-iiilivr 18.
`
`1962:‘
`
`.\ii.-'i‘ii.-in‘
`
`'[‘|u- L'lIlIliI'II'1‘gl(' --in-c-is nml
`(‘mniu C. Y.. J. 1’. I.:m:. J. G. C.IN?\'().\' nn 1’. JJ. .-\Iui:.~;'r:tnx:;:
`I'.ilI':-3 of l]_\'Il1‘ul_\'.‘."=!:~.-‘- of :-onfornmiion:1|l_\‘ rigid analogs of IIl‘{‘l_\'ll'l|l'Jlll|l’. J.
`l’Ii.-u'ni.'irol_ Exp.
`'|'h:'r. 166: 243-348. 1969. 2—AL-elox_\'
`i'_\'I'll}I:l'[}]I_\.'l
`Il'llIli‘llI_\'l:ll11I11r}!1itll1]
`iuzliilx-.-a E.-\("{‘i\I)
`:|f'£' :-unI'm-marmn:ii1}' rigid zinulugs of :1L'nt_\‘l('h(Jlinu (ACh] will: Ir:iI1.-mill.
`:iI1:l {'i.-zniil
`:-<mf0rI11:I-
`Iiuli.-'. Thu‘
`(+)—lr'im.<—.-\CTl\I had strong ]'l1.'|.15L'.'l.'|I'lI'll('
`:I{‘li\'i|i:'.~i on drug iilnml
`[nra-.-'.-n11':-
`.-ind
`iziiuu-:i-pii: ilr-um pr:=|::Iralions, suggesting ihat
`the trniisniil form of .-\C-“T.\I
`\\':lS :13sor.'i.-1ln:l
`will:
`ii»: miisr':1rinic :H’li\.'i|if‘S. The (+J.(—)—r:1L~'-ACTM w.-1.-i vxpi-zriril
`To have strong
`nimIirnr- :u'tiviIi:'5 owing :0 ii.-=. L-isoizl coiiforninlion.
`l[uwu:v:~r.
`il. had n:'gluz':hIi.-
`I1i:‘0IiI'Ii:.‘
`'lI‘l1\'1l_\'
`run
`I‘:-ng I‘("E‘T.11:-.‘- nhrlnminis nmsr-in, presiamably due to {he l.3—intr‘r:u-[ion of The
`in--1|i_\'l«-nv izruiip of r_\':'ioprop:u1r~ ring with the r:1rhon_\'l znxygen v.'hi:’l1 is l)elie\'eil
`Io he
`|'I'I]lIl1‘I.’rl for nirotinie :1eti\'itics. The po:r:n:r_v ratios of rims:-:irinic :u:tivilies l)et\\'r.-en (+)—
`.u::l f--)—!mm‘~.-\CTM \\'(‘].'i-
`\'er_\' close Po those bvtwct.-n I.(+l- :1n.:I n(''l-:iu:-iyl-_r1-meIl1)'l-
`. lml1lII'. ‘fhv i1i1i:~:r;:ru:iu zuitivitirs of .-\Ch cinii (+l—t‘rflm‘-ACTM on (lei: lllfnlil pre.-‘slire were
`m:irlcz-:ll_\' [um-I'sIi:1l:‘:l by nr-osrigrnine (ll—l'0ld nnrl 23-fold. r:':i|Ir':'1i\‘(‘l_\'l, but [hm nl t'--)-
`r.rm.-~.\L"T')I
`\\':}:§ poorly ['10iI"l'Ill:l[i'Ll
`(3-(old). Thur
`sImIio:= run
`rnzyiimlic li_\‘¢lrol.\'si.-: of
`mms-—.\(.'T.\l
`|l_\'
`llN-U’ll‘lmllI'1{‘S|{!!':'tSlI‘ and eh0lir1r*st.vr:Isr‘
`rI~\'t.\:1|ed that
`the l'{"l.‘|.li\'l" rates of
`|'i_r:l:-nl_\-.-i.-a of {-l-)— .-md (—l—!rrm.5-ACTM by (IN?l}‘l<'l]I’)liI1t'>ilI‘r:l?=f' werv 96 rrml 59"}
`that of
`\f’|i
`\\'i:h iiw i-‘mm:-r-: the h_\'rlml_'L'*_=i~s
`r:1!v=.c l-:_\- r:holim--ster:iur- \\'l"Tl‘ G1 zuui 3-1*‘?
`in relation
`‘in .lI'l"5_\'il'lli|il.Ili’. Tl1l.‘.‘S2'
`I‘L=.~eI.llI£- indirulv that the hiollagir‘.
`.'u‘Ei\'iT_\' of
`E'-i- )—i!mIi.w—_-\CTl\I
`is
`inuln-am.-1lr'al
`l;_\’
`I'H‘1):=ll:.‘,I11in(‘ mun‘ lh:m that of
`[—)-ITI‘l1'?-'4-.\(‘T.\1 l!I‘i'!llIFI'
`illt’
`l0I‘mI‘l'
`is E.
`ll--‘.i'n'I'
`-Ill-:-'1]'.'Iiv fur Ihz» L-l1oline:3ir~r:u.=4-.-_
`
`iiiierisive studies on the In€‘.-l('CUlflI‘
`I}{‘._—'|’I1lII!
`:1c<:L_vlc}1oline
`(ACh),
`the possible
`femiirvs of
`biologi<- iinlaortanee oi" conformational isomerism
`re111:1in.< uncertain. For the elucidation of this
`
`reported have l}l'_’[‘.T‘l
`ihrr omnpnunrls
`pmhlvin,
`ll Sll‘IIUl1lI’:1ll_\' as close to ACh as possible and
`'_’i runinr:n:iiiun:1|ly as rigirl as possible (1\InrtiI1-
`:'-imiih H :il.,
`IF.It3Tl.
`In the present. work 2-
`:ir»r-tnxy l'_\‘(’ll‘11ll'{l])}'i trimethj.'l:m1Inonium indicies
`(.-\f'."l'.\[I were .‘Ei(!li3(‘Tf!Ll
`to meet
`the require-
`I‘.r1t‘ll1.':—‘
`.-'I.'1T("Il
`:ihm'e because these compounds
`Imve :1
`l'}‘£‘lE}[}F{)]!:lIlC ring in place of the choline
`mnir'[\' and :m-
`:~nn.~:iilvrc<l
`to be the .»'in:1llr-.'~:i
`
`i'ieri\'.1ti\'es ca-
`.\Cli
`.-imr.m,r.r
`-TrII:~ltII':‘
`f'l|l‘III|.I'.Il
`iuilalr
`ni mail:-r'r:ii_I1
`:»niifrurni:iIi-mal
`ri,r_rirli:_\‘.
`The tr:u:.~5ni¢|
`:m:l visoicl
`rrrmfnrniers of
`.XCTT.\I
`are $lI(J\\'lI in lir_rI1re l. The (‘holim-rgie Cfi(‘E't:-C and
`the r~}ioIinr-.~'t<=r:::-0 |:_\-ulrrilisis; of ACTH are re-
`
`lii-:'r-ii ml fr:I'|ILil1lii':IIi(JI1 SE_‘pl:‘I11l)£‘I' 15. 1958.
`:'rI|i.\
`\\u|'lc
`\\.'|:~I
`.-='ll]|'|iIii"Tf"l1
`in part
`lw 1'3.
`Pirlulir
`llr'.'Illl1 .*~':-t'\‘i:-i-
`(ir.-ull.-a .\il3—l39fi_. 3-‘B-1~l3l
`::Ii:l
`.\-B-H1110“.
`
`investigation. The rela-
`ported in the present
`tionships of conformational v:.tri:1tinns and the
`role of
`the unsubstituted m<:tli_\'|ene group of
`the eyc1oprop.'1ne ring of
`.v\C'I‘M to nicotinie
`and muscarinic clients are also discussed. The
`potentirttion by neostigrnine of
`the intisearinie
`activities of
`(+)~ and (—l-trans-.-XCTM on
`dog blood pressure is correlated with their rates
`of enzyrnatic hydrolysis h_\' acct}'IrhoIinesier:1se
`(AChI'l] arid ellolinosterase (Chl'-I].
`
`pnr_nr1mfE.0ns.
`'_:m'ssure
`4\«IE'l'ImUF~. Dog Moon!
`Mongrel dogs of 1-ithvr sex.
`\|.'(‘i5.{lIiTIfl
`9 to 13
`kg, \\'("l'l? :‘ll]f‘§l.l}f‘|i?.'f!(l with 15 ing.-"kg of iliiopentnl
`5-'-(li'llIllI'I
`and
`950 mg*'l-cg
`of
`h:':rhii‘:1l
`smiiiini
`aiimiiiistvru-(l
`i.\', The
`T.r:1(‘h(-:1
`\\':1s w;mnn|:1tnrl,
`rind the \':|izi
`in-rv .-'I"I‘lii)m‘:’i.
`'|‘hrm:i:r_|mui
`thr-
`I‘I}'H‘1'iI']lf‘lll:i
`the nloirs
`|\'1"TI"
`:tI'tifir'I.'tll_\' w-nlil.-uni
`with
`n
`Palrnn-r
`H‘:-‘[\EI':lfI’)1'. The riirht
`fi-mnr.-1|
`:1rIr~ri:|l
`[IFl‘:‘~':-'lIrl'
`\\':1.-e ml-:i.-Ilrrul
`\\'ilh rs 5<i:ith.'m1
`pressiirv lr::iis:ium-r {I".23.\.\) and :---mnlr-ii on an
`0fi'n:-r Dynogrrtph fi_vpi_- RS1. All vornprmmls
`\vI-I‘:-
`i1'ljr>:‘i¢-ti
`via
`:\
`}u‘;l.\'I'lli_\'h-m'
`I'Il.ll1i'l|'I‘
`in-
`
`ii.’-13
`
`(cid:54)(cid:88)(cid:81)(cid:16)(cid:36)(cid:80)(cid:81)(cid:72)(cid:68)(cid:79)(cid:16)(cid:44)(cid:51)(cid:53)(cid:21)(cid:19)(cid:20)(cid:25)(cid:16)(cid:19)(cid:20)(cid:20)(cid:19)(cid:23)(cid:16)(cid:3)(cid:40)(cid:91)(cid:17)(cid:3)(cid:20)(cid:19)(cid:21)(cid:20)(cid:15)(cid:3)(cid:83)(cid:17)(cid:3)(cid:20)(cid:3)(cid:82)(cid:73)(cid:3)(cid:25)
`Sun-Amneal-|PR2016-01104- Ex. 1021, p. 1 of 6
`
`EXHIBIT
`
`Ex. 1021
`
`

`
`2-1-1
`
`(_‘llIUL' ET .-u,.
`
`Vol’. I66
`
`
`
`Flu. 1. Thu‘ tr:i::.~:ui:I I.-\l mic! I-isiiicl [I'll r-nnfur1'n:LliuI1:-‘. [sf 2-:l('(3t(JK}' r‘_\'('l:J|JI'up_\'l lrilnttlliyliilnmtmilim
`L-'§.("l").l).
`'|‘l:<- t+ }— .'lfIll
`!—>-1.~:IIlI1l'I":i1-f('ITlIl‘1'
`tr:1r1e-mid or 1'1:-Hrlll
`.-\(‘ l‘.\l I'(m.~:1.II11!I‘ Iwn i|'.'II|.l‘I‘Ill'
`Iillflgur-4
`\\‘l1iI'lI l'.'1.IIlII1l
`Int-. E-§ll|JE'I'll11|:Ilr:-2L'(l.
`
`\\'(-I'(.-
`am]
`fL‘lIlfII':ll V:-in
`lrlil
`into Lln:
`Sr'rt<‘:l
`ml of
`i.-_-':Jl0I1i:.'
`in \\'i1h .'1lI(Jll[
`2
`rapidly W:l.‘.-‘l]i‘:’.l
`\'ul1lmr~ pf llll‘
`ee‘iil11-
`srilim-_ In :ulI
`(':]Sl'.\i
`ll]|' 1n1:1|
`tion.-3 injt-<~t.:'d \\':i.- lcwpt.
`t'I‘.|I1.‘=l.'iI1.L at 3 ml.
`Tlur
`:lu.-e:‘S U:-il'{|
`in
`Iln-
`lniu.'1.-.'-.-'.'1_\'
`\\'m'i~ \':iI‘ir-il
`by -1-fold i1m~r\'.'il.~::
`(1.1 pi:-"iii! and 0,1 #4:. In:
`fnr
`(-l-)-lrr.-re.-:—.-\C'l‘;\l. 30 ,uL( ki.’ uml
`I-ill
`,uL!'l-\';_’.'
`fur
`(—)-i’mn.x'—.\C'l‘.\l
`{lllil U.-I
`,u_i:_.»'k:_'
`flIl(l
`1.5 .14.’ kg
`for ACI1. Tliv lll'l{l'l‘1'
`ca!" ]mlI'I1Il::llfm cal m1i.~‘r-:n'ini:-
`.'1r'ti\‘it)' of
`tl|r‘.%r'
`rrI[11LJr}'l1IIll.~i
`lay
`50
`.t1I:_l-ig of
`Iiw).-‘1is:i11ii1i:
`\\'.-i.-'
`:*[lIIrlI‘l|.
`livforv
`:‘ul:lilioI1
`of
`I100.-'1i;:miru*.
`lllf‘
`.-:.'1mr-
`ilu.-‘i~
`ll‘\'l'l:-i
`:1.-'
`:-‘.t:1lr'1l
`:'1l)(n'r:
`\ri-rv 1i.~;ml_
`.\fir:'
`I|t'H.‘Sll!.’.l]!lT1f‘, 0.0lJh‘
`iuslfkiz
`:lI1:l 0.032 ,LI5.'._-"lip:
`raf
`("l-)-trrrns-.\C‘.TM, 3 ,c-Ia.’-lig
`:m:l
`32
`,r..tg.£
`lip.‘
`nil
`f—)—h':m.-4-_\(I'l‘l\l.
`illlll
`".015
`;.¢g:_x'kg and 0.061 ,u1."l\'l!
`rail
`.\{'li
`\\':'1‘:~ l1>=[‘Il.
`'l‘}1i~
`.In.~:r:s
`:i|i-l
`\rm‘i~
`I':1n-
`a:'lmini.~_:Ii'.'iIinn.<
`uI'
`lll'1I}.'!§
`rlomixn-«I. and all
`rnlizl
`:1
`:-Hln-I‘i.'i.
`I'm'
`p.'|:'.'1ll(rl—
`lino |1in.'1.~'.-e;i_\‘
`\\'r-rr~ m--I.
`!"r‘rJ_u‘} n:'.fu.v ri--larhrn.-:'ia:'.~'
`rm-fn.-—'
`:llrtliI]JIllT1l.~‘
`IIIII.‘-I‘l1‘
`
`.=nI:.~'t‘r’r' _m':-prri'r:!i‘0n. Tho
`\l.'l.‘~ I1lJl:illlI'll fimn Hxrairt
`
`lyv Burn (1952). Tlirn mu.-:-lr~
`;r:i;n'm;.< us (1:-.<:-riiu-rl
`was ll|.I'i‘fillll"fl
`:iT
`lmlln l'T]Il‘3
`:iml
`\\'.-is
`e<I|]ir-I'fII!=i~tl
`will:
`fmiz RiIIL'.:~I".-:
`.~=nli:|i--n
`f_\':i(‘|.
`£5.-13: K(‘l.
`0.30;
`f‘:1(Tlu_-'2l[-_-0.
`l'|.'2C{: X.-Ill(‘l');, £1.35:
`Lilli:-o.=-'4-.
`
`this was ox_\‘g:»I1utNl with 9572: 0:-
`;:,’|it:-r):
`(].'Il
`5‘.'F- CO-.- at mom lII‘l'Il]1I'I'ElllIl'E‘_ 'l‘In~ !'.'1l.(‘ of lluw
`of slip:-rl'1i.~;inn Iliiinl was 3 to -1 ml,-’n1i11 and was
`m:iinl:iini=d lJ_\'
`:1
`I-lnltvr inntm pinup (l_\'pI" RD
`-15). Drug solutitmu \\'('I'[‘
`injt-i-1:-nl
`into tho str(~am
`oi s11pi~t'f1::=i0ii
`llllltl
`in \‘0l111m'.< of nut niom tlmi
`0.1 ml. Tliv I‘l.‘l‘lI[=:i
`II111St.!lt- was |rl.'u':‘d .'LI. an initial
`ll‘II:-§l()I1 of
`1
`1:. TltE'
`ti-Iirainn (iv\':-lu|u'd In‘ cun-
`II'.'1r'ti0II ui Hm m11S('lI- w.-1.:
`II’I{‘i'lE‘iIlI‘l'.‘I.'l
`in grams on
`:1
`t'31.-illmm lI'.'I|lSfl'llE'f‘l‘ (tygw GT-03) and recorded
`on un 0lTnm- TJ_\'nnp:1'.'1pl1
`I‘l‘I'(l['ll{'l.'
`(lypv RS).
`WI ‘ T’! ‘
`.'*4::lIl1i:me-i of
`l.l1i'
`r-niliptallliui.-'
`;vrvp:i|‘i‘(l
`in
`rlistillvd
`\t".1lt‘l'. Tlw :~m1:-i~n1r.-itinnrs
`of
`drugs
`II:5{?ll
`in Ilur
`l:in:1:~'.~':L_\'
`\\1-:'--
`.-']I:l:~ml
`l'l_\'
`-1-fold in-
`I‘r‘T‘\'.'ilSZ 0.1 pg and 1.6 pg:
`fan‘ AC1},
`-10 ,btS.‘.' am!
`15-0 Hi!
`I'm‘
`(4.')~frrm.<—.-\("l‘.\I. N0 H; and S00 .u1.’.'
`for (v )—£rnn.<—."l.CTi\I and 100 fill.’ mid 401]
`,:.:_2: for
`f-l ).f—)-.-".='.-.~'-.-\('.'l‘l\I,
`Tin‘
`.'1IlT11iT1l.-ifI‘.'JIlIJl1=.-'
`of
`i1r1:;.'s nlul {lf‘|S1'S \\1‘r(.- 'I‘:lI'l(lUll]i7.l‘{l.
`pin.-3
`(iiiiiiv.-1
`(Elmira-,u:'g
`ii’:-mn
`;1JTc]JfIFflHr}?M_
`lay I!
`l)lr:\\' on
`\\'i-igliitii: 300 tn 500 L!
`\\‘[‘l‘[' slIm1:r':l
`lllr‘
`nl‘
`lllf'
`ilmim.
`lu-ml.
`'|‘lu-
`trlrmin.-tl pm-timi
`\\':l-‘S
`iiserl. An
`ap]1mxi|nari~l.\‘ 3 mi
`in
`lT‘T1|.{lll_
`inilinl
`lvn:-eirnl of
`]
`5,:
`\r:i.-‘ pl:1m~rl an !|1:'
`li.~:.~'11:'.
`Till‘ mnllimls of injm-lion nf fll'IT:.!:~= and rt-mriliul:
`
`(cid:54)(cid:88)(cid:81)(cid:16)(cid:36)(cid:80)(cid:81)(cid:72)(cid:68)(cid:79)(cid:16)(cid:44)(cid:51)(cid:53)(cid:21)(cid:19)(cid:20)(cid:25)(cid:16)(cid:19)(cid:20)(cid:20)(cid:19)(cid:23)(cid:16)(cid:3)(cid:40)(cid:91)(cid:17)(cid:3)(cid:20)(cid:19)(cid:21)(cid:20)(cid:15)(cid:3)(cid:83)(cid:17)(cid:3)(cid:21)(cid:3)(cid:82)(cid:73)(cid:3)(cid:25)
`Sun-Amneal-IPR2016-01104- Ex. 1021, p. 2 of 6
`
`

`
`196.9
`
`PHARMACOLOGY OF ACTH
`
`245
`
`of the contractions were as described in the last
`section. The ilea were superiused with Krebs—bicar-
`honate solution (NaCl, 0.93: KC-1, 0.351; CaCl:'
`2HsD, 0.373; KHaP0i,
`0.1.63; Mgs0., 0.18;
`Na]-ICOa, 2.00; glucose, 1.80 gjliter). The con-
`centrations of
`drugs
`used
`in the
`bioamay
`were spaced by 4-fold intervals: Oml as and
`0.004 cg for ACh and 10 as and 40 pg for (+).
`(—)-c£s—ACTM. The
`administration of drugs
`and doses were randomised. The relative po-
`tencies and 95% confidence limits of (+)— and
`(-}-trons-ACTM were cited from Armstrong at
`at. (1968).
`Radiometer titration method jar chotinesterose
`activity. The acetic acid formed during the hy-
`drolysis of esters was titrated with 0.05 N NaOH
`on a Radiometer titrator type T'IT1c and titri-
`graph type SBR2c. One milliliter of p-otamium
`hydrogen phthalate (0.3-676 5/21]] ml; 1 ml = 9
`..::mol of NaOH) was titrated with 0.05 N NaOH
`under N3 gas. From this titration curve,
`the
`ordinate of
`the titrigraph chart was calibrated
`directly in micrornoles of NaOH used, which is
`equivalent to micromoles of acetic acid liberated
`from esters by cholinesterssu. The values were
`expressed in micromoles per hour per unit of
`enzyme. The enzyme used was prepared 1.0 U/ml
`in Krebs-bicarbonate solution without NaHCOu
`(7.5 X 10" M NaCl, 7.5 X 10" M KCl and 41 X
`10" M MECL'5H10). The substrate solutions
`were prepared with the same solution in a con-
`centration of 5.6 X 10" M. The total volume of
`the reactants was 1 ml. The reaction vessel con-
`tained 0.8 ml of
`the enzyme at pH 7.0. The
`substrate (02 ml) was added through the sample
`hole, and the reaction mixture was titrated at
`pH 7.0 at 38°C for 10 min. The air in the reaction
`vessel was replaced by N: gas.
`Drugs used. The drugs used in this study were
`ACh
`bromide,
`atropine
`sulfate,
`neostigmine
`methyl sulfate and d-tubocurarine chloride. The
`
`(—)-trons-ACTM and (+5.
`(+)-trans-ACTM,
`(—)-cis-ACTM iodides were
`synthesised
`by
`Armstrong et al. (1963). All doses of drugs used
`refer to the salt form. AChE and ChE were ob-
`tained irom Nutritional Biochemicals Corpora-
`tion with specific activities of 1000 U/mg of pro-
`tein and 4 U/mg of protein, respectively.
`Statistical analysis. The relative potencies and
`the degree of potentiation of the compounds were
`calculated from a four-point parallel-line bio-
`assay as described by Finney (1055). Paired ob-
`servations were evaluated with Student’s t
`test
`(Snedecor, 1956}. A probability value of
`.05 or
`leas was considered to be significant.
`
`Rescue. The mosccrinic activities of ACTH
`on dog blood pressure. The response elicited by
`ACTM was a fall
`in blood premure that was
`immediate in onset and of brief duration. The
`relative potencies and the 95% confidence limits
`of (+)- and (—)-trans-AC'I'.M are shown in
`table 1. The (+)-trans-ACTM was 4.7 times
`more potent
`than ACh, whereas
`(--)-trans-
`ACTM was only ’/45 as potent as ACh. Direct
`comparison of
`(+]-
`and {—)-tram-AC'I'M
`showed that the former was 192 times more
`active than the latter (the 95% confidence limits
`were 105-385). The depressor efiects of (+)- and
`(-—)-trans-ACTM and ACh were completely
`blocked by 2 mg/kg of atropine sulfate.
`The muacorinic activities of ACTH on guinea-
`pig ileum. Table 1 shows the relative muscarinic
`activities of {+)- and (—)-trans-AC'1‘M and
`(+),(—)-cis-ACTM on guinea-pig ilea. The
`(+},(—)-C58-AC'i‘M was 5‘io.aoo as active as
`ACh. There was no significant difference in
`muscarinic activity on guinea-pig ileum between
`ACh and (+)-trons—AC’I‘M. The (-—)-trofl.s-
`
`The relative muacarinic activities of (+)- and (-)-trons-ACTH‘ and (+),{-}-cis-ACTH with respect
`to acstytcholine (A(.'h}
`
`TABLE 1
`
` Dog Blood Prim
`
`No of
`
`Relative
`potency
`
`95% Confidence
`limits
`
`a\Ch
`(+)-trans-ACTM
`(— )-trons—ACT'M
`(+),(—)-cis-ACTM
`
`1
`4 .70
`0.02%
`
`10
`10
`
`3 .21-9.79
`0.021-0.025
`
`Game:-Pi; Ileum
`
`N_c. at
`
`Relative
`|1I‘l0en¢-1!’
`
`95% Confidence
`limits
`
`1
`1.13*
`0.0022‘
`0.00010
`
`10
`10
`6
`
`0.81-1.46
`0.00l9—0 .0025
`0.00004-0.00029
`
`' ACTM, 2-acetoxy cyclopropyl trimethylammonium iodide.
`" Cited from Armstrong at at.
`(1908).
`
`(cid:54)(cid:88)(cid:81)(cid:16)(cid:36)(cid:80)(cid:81)(cid:72)(cid:68)(cid:79)(cid:16)(cid:44)(cid:51)(cid:53)(cid:21)(cid:19)(cid:20)(cid:25)(cid:16)(cid:19)(cid:20)(cid:20)(cid:19)(cid:23)(cid:16)(cid:3)(cid:40)(cid:91)(cid:17)(cid:3)(cid:20)(cid:19)(cid:21)(cid:20)(cid:15)(cid:3)(cid:83)(cid:17)(cid:3)(cid:22)(cid:3)(cid:82)(cid:73)(cid:3)(cid:25)
`Sun-Amneal-|PR2016-01104- Ex. 1021, p. 3 of 6
`
`

`
`246
`
`CHIOU ET AL.
`
`Vol. 166’
`
`ACTM was about 1/ion as active as ACh (Arm-
`strong et at, 1968) .
`The nicotiriic activities of ACTH or: frog
`rectus abdominis muscle. The efiect of ACTM
`
`on the frog rectus abdominis muscle was con-
`traction, which was abolished by 5 X 10" M
`d-tubocurarine chloride. As indicated in table 2,
`ACh was 77 times and 357 times more active
`
`than (+}- and (—)-trans-ACTM, respectively.
`A direct comparison of
`the (+}- and (—J-
`trons-ACTM was made, and the (+)-trans-
`ACTM was found to be 4.6 times more active
`
`(the 95% confidence limits were 3.3-6.5). The
`(+],(—)—cis—ACTM was about 1165:: as active
`asACh.
`
`Potentiotiort of muscorinic activities of ACTH
`by rteostigmine on dog blood pressure. As indi-
`cated in table 3,
`the muscarinic activities of
`AC}: and (+)-trans-ACTM were potentiated
`
`TABLE 2
`
`The relative mlcotimic activity of (+)- and (—)-
`trans-ACTH“
`and
`(+},(—)-cis-ACTM with
`respect
`to acetyickoline (A011)
`cm frog rectits
`abdomirtis muscle
`
`Cnmpoud
`
`No. of Relative
`Animals Potenqr 9s% dum
`
`ACI1
`(+)-trans-ACTM 10
`(— J-trans-ACTM
`10
`(-I-), (—)-cis-
`5
`ACTM
`
`1
`0.013
`0 .0028
`0.0042
`
`41-fold and 23-fold by 50 pg/kg of neostigmine,
`indicating that both compounds were good
`substrates for cholinesterases. The activity of
`(--)-trcms—AC'I'M was potentiated 3-fold only,
`suggesting that it was a poor substrate for
`cholinesterases.
`
`The enzymic hydrolysis of trcms—ACTM by
`chotinesterases. The relative rates of hydrolysis
`of ACh and trons-ACTM at the substrate con-
`centration of 5.6 X 10" M are shown in table 4.
`The results
`indicated that both ACh and
`
`for
`(+)-trans-ACTM were good substrates
`AChE, whereas (—)-trons-ACTM was a poorer
`substrate than (+)-trons-ACTM for AChE.
`The rate of hydrolysis was measured at substrate
`concentrations of 1.8 X 10" M, 1 X 10'' M,
`5.6 X 10" M, 3.2 X 10" M, 1.8 X 10" M and
`1 X 10“ M. The substrate concentration-
`
`activity curves obtained were bell-shaped with
`optimum rates of hydrolysis at a substrate con-
`
`TABLE 3
`
`The degree of pots-ntiotion of muscori-mic activities
`of (-l-)- and (— }-trons-ACTH“ and ocetytclmtine
`(ACII) by neostigmine° on dog blood pressure
`N .
`1'
`E Pggfifgggn C E:C:
`
`Compound
`
`0.008~0.021
`0 .0018-0 .0046
`0.0039-0.0047
`
`AC1:
`(+ )-trons -ACTM
`(—)-trans-ACTM
`
`22400
`41 -fold
`11-79
`23-1’old
`2.8-fold 1.6-5.4
`
`7
`7
`
`0 ACTM, 2-acetoxy cyclopropyl
`monium iodide.
`
`trimethylam-
`
`‘ ACTM, 2-acetoxy cyclopropyl. trimethylarm
`monium iodide.
`
`‘ 50 ;.:g/kg of neostigmine methyl sulfate.
`
`TABLE 4
`
`The rates of hydrolysis of {+)- and (—)—t-rims-ACTH‘ amt acetytchoii-no (A Oh) by ACJ:E° and 0ItE'
`ACIIE
`CIIE
`
`Substrate
`
`N _
`f
`i
`-
`..‘.’..:'. "‘t.:.:. ".’.’%'.'i?'>“’
`Jm0U-ir/U 9!
`
`AC]:
`(+)-trans—ACTM
`(‘l-‘Tans-ACTM
`
`5
`5
`5
`
`9.2 :1: 0.5
`8.8 -_-h 0.4
`6.2 :l: 0.9
`
`.
`Relative rate of
`.......""“:'.‘*'-.33,
`
`%
`99 8 :l: 5 4
`96 0 :l: 4 4‘
`58 9 :l: 7 9‘
`
`A
`.
`‘£3.35 “t:.:‘.“;‘§° J’
`
`Relative rate of
`,,,,::;:=-33,
`
`fill“/if/U 9}
`33.8 .-.l: 0.6
`20.5 :l: 0.2
`11.3 i 0.3
`
`%
`100.3 :I: 1.8
`60.8 :I: 0.7‘
`33.5 :I: 0.3‘
`
`5
`5
`5
`
`‘ ACTM, 2-acetoxy cyclopropyl trimethylammonium iodide at 5.62 X 10" M.
`3 ACIJE, acetylcholinesterase, 1 U/ml.
`= ChE, cholinesterase, 1 U/ml.
`‘ P > .05 compared with aeetylcholine.
`‘ P < .05 compared with acetylcholine.
`
`(cid:54)(cid:88)(cid:81)(cid:16)(cid:36)(cid:80)(cid:81)(cid:72)(cid:68)(cid:79)(cid:16)(cid:44)(cid:51)(cid:53)(cid:21)(cid:19)(cid:20)(cid:25)(cid:16)(cid:19)(cid:20)(cid:20)(cid:19)(cid:23)(cid:16)(cid:3)(cid:40)(cid:91)(cid:17)(cid:3)(cid:20)(cid:19)(cid:21)(cid:20)(cid:15)(cid:3)(cid:83)(cid:17)(cid:3)(cid:23)(cid:3)(cid:82)(cid:73)(cid:3)(cid:25)
`Sun-Amneal-|PR2016-01104- Ex. 1021, p. 4 of 6
`
`

`
`I969
`
`PHARMACOLOGY OF AGPM
`
`247
`
`centrstion of 5.6 X 10" M for ACb as well as
`
`for (+)- and (—)-trans-ACTM, indicating that
`a high substrate concentration of
`(+}— and
`(—)-trons-ACTM inhibits AChE. The relative
`rates of hydrolysis of
`(+)- and [—]-trona-
`ACTM by ChE were 61 and 34% of that of
`ACI1. The
`substrate
`concentration-activity
`curves showed no inhibition of ChE by high
`substrate concentrations.
`DISCUSSION. It is reasonable to assume that
`the flexible ACh molecule has difierent con-
`
`formations and thus is capable of fitting to the
`different types of ACh receptors. It has been
`suggested that the cisoid form of ACh is asso-
`ciated with its nicotinic activity and the transoid
`form with muscarinic activity (Schueler, 1956;
`Archer et at, 1962; Smissman at at, 1966).
`Based on this hypothesis, it would be expected
`that
`the transoid form of ACTM (fig.
`IA)
`would elicit mainly muscarinic responses and
`the cisoid form (fig. 1B) mainly nicotinic re-
`sponses. The results indicate that this is true
`for muscarinic responses (table 1} but not for
`nicotinic responses {table 2). Therefore, some
`factors other than c1's-trons isomerism must be
`
`involved in determining nicotinic activity.
`Structurally, ACTM is
`similar
`to acetyl
`methylcholine and resembles a hybrid of acetyl-
`a-methylcholine
`(A-ac-MCh)
`and
`acetyl-
`,B-methylcholine
`(A-,8-MCh), both of which
`have been synthesized and studied by Simonart
`(1932) and Major and Bennett. (1935). The pre-
`dominant muscarinic activity of A-fit-MCh is
`presumably due to the 1,3-interaction of the
`,6‘-methyl group with the carbonyl oxygen,
`which is
`required for
`the nicotinic activity
`(Selcul and Holland, 1961a,b; Sekul et al., 1963 ;
`Coleman et al., 1965; Triggle, 1965), whereas
`the predominant nicotinic activity of A-a-MCh
`is probably due to the 1,3-interaction of
`the
`ca-methyl group with the ether oxygen which
`is
`required for the muscarinic activity (Ing
`at at, 1952; Waser, 1961; Beckett at
`£11.,
`1961; Triggle, 1965). As shown in figure 1, the
`methylene group of the cyclopropane ring of
`ACTM would interact with the carbonyl oxy-
`gen but not with the ether oxygen. Therefore,
`the methylene group abolishes the nicotinic
`activity of ACTM. Accordingly, ACTM is
`structurally similar to A-,8-MC}: but not A-eh
`MCh. The studies on cholinergic effects of
`ACTM in the present work support this con-
`
`clusion because (+3-trans-AC'I'M has strong
`muacarinic activity (table 1) but very weak
`nicotinic activity (table 2). In other words,
`(+)-trons-AC'I‘M has predominant muscarinic
`activity (table I} owing to its transoid con-
`formation, which is favorable for proper fitting
`with the muscarinic receptor. In addition, the
`1,3-interaction of
`the methylene group of
`trans-ACTM with the carbonyl oxygen elimi-
`nates the nicotinic activity. The sis-ACTM is
`not a muscarinic stimulant due to its cisoid
`conformation (table 1), nor is it a nicotinic
`stimulant due to the 1,3-interaction of
`the
`methylene group with the carbonyl oxygen
`(table 2). The opposite hypothesis suggesting
`that the transoicl form of ACh favors nicotinic
`activities and the cisoid form rnuscarinic ac-
`
`tivities (Jellineck, 1957; Canepa at al., 1966]
`is unlikely because in the present study (+}-
`trons-ACTM had strong muscarinic activities.
`It is interesting to note that there is about a
`250-fold difference in the muacarinic activities
`between L(+)- and o(—)-A-[3-MCh on guinea-
`pig ileum and cat blood pressure
`(Beckett
`et at., 1961; Beckett ct at, 1963). It has been
`suggested that the difierence in activity is due
`to the B-methyl group in n(—)-A-,3-MCh,
`which prevents its proper interaction with the
`muscarinic receptor. This hypothesis is further
`supported in the present work, as there is a
`similar difference in muscarinic activities be-
`tween (+)- and (—)-trons-ACTM (192-fold
`and 330-fold differences in activities on dog
`blood pressure and guinea-pig ileum,
`respec-
`tively).
`The studies on the enzymic hydrolysis of
`ACTM by AChE and ChE reveal that (+)-
`trons-ACTM is a good substrate for AChE
`since it is hydrolysed by AChE as fast as ACh.
`(--}-Trans-ACTM is a poorer substrate for
`AChE since its relative rate of hydrolysis is
`59% that of ACh. The relative rates of hy-
`drolysis of (+)- and (—)-trons-AC'1‘M by ChE
`are 61 and 34% that of ACh (table 4). These
`results explain the observation that the muses.-
`rinic activities of ACh and (+}- and (—}-trans-
`ACTM are potentiated by neostigmine 41-fold,
`23-fold and 3-fold, respectively (table 3). In
`other words,
`the muscarinic activity of (+)-
`trons-ACTM is potentiated by neostigmine
`more than that of
`(—)-trons-ACTM because
`the former is a better substrate for the cho-
`
`(cid:54)(cid:88)(cid:81)(cid:16)(cid:36)(cid:80)(cid:81)(cid:72)(cid:68)(cid:79)(cid:16)(cid:44)(cid:51)(cid:53)(cid:21)(cid:19)(cid:20)(cid:25)(cid:16)(cid:19)(cid:20)(cid:20)(cid:19)(cid:23)(cid:16)(cid:3)(cid:40)(cid:91)(cid:17)(cid:3)(cid:20)(cid:19)(cid:21)(cid:20)(cid:15)(cid:3)(cid:83)(cid:17)(cid:3)(cid:24)(cid:3)(cid:82)(cid:73)(cid:3)(cid:25)
`Sun-Amneal-|PR2016-01104- Ex. 1021, p. 5 of 6
`
`

`
`248
`
`CEIOU ET AL.
`
`Vol. 166
`
`linesterases than the latter. Since the intact
`animals are much more complex than the iso-
`lated enzyme preparations, one would not ex-
`pect
`that the degrees of potentiation of bio-
`logic activities of
`the drugs by neostigmine
`measured in vivo and the difierence in magni-
`tude of
`the relative rates of enzymatic hy-
`drolysis of these compounds measured in vitro
`would be the same. It should be true, however,
`that the relative rates of hydrolysis of these
`eaters by cholinesterases and the degrees of
`potentiation of
`the muscarinic activities of
`these compounds by neostigmine are in the
`same order and that is the case in this study:
`AC1: ? (+)-trams-AC'I‘M > (—}—trans-ACTM.
`CoNci.usIoNs. The activities of 2-acetoicy
`cyclopropyl
`trimethylaminoiiium
`iodide
`(ACTM) have been studied in a number of
`pharmacologic and ensymologic systems. The
`tram-ACTM had strong muscarinic activities
`but weal: nicotinic activities. The cis-ACTM
`
`had negligible muscarinic and nicotinic activi-
`ties. The possible reasons of
`these findings
`have been discussed. The potency ratios of
`muscarinic activities between (+)— and (—)-
`tram-ACTM were fairly close to those between
`1.(+}- and Ii{—)—acetyl-,3-inethylcholine. The
`relative rates of hydrolysis of ACTM and
`ACh by cholinesterases and the degrees of po-
`tentiation of their biologic efiects had the same
`order: ACh 2 (+1-trans-ACTM > (—l—t'roiis—
`ACTM.
`
`REFERENCES
`
`Aacnca, 8., Limos, A. M. AND Lewis, T. R.: Iso-
`'
`'
`l'l.1 did
`J Med
`ineric 2-ace-to
`tropine met
`0
`es.
`.
`.
`Pharm. Chem.
`: 423-430, 1962.
`Aimsreouo, P. D. Ciwiyon, J. G. imp LONG, J. _P.:
`Conformation
`ri d analogs of acetylcholine.
`Nature (London 2 0: 65-66, 1968.
`Bscitirrr, A. H., HARPER. N. J._ AND Cl..t'rmiiii.ow, J.
`W.: The absolute configuration and the n- and
`mmethylcholine isomers and their acet 1 and
`succiny esters. J. Pharm- Pharmacol. 1 : 349-
`361.1963.
`Bircirirrr, A. H., Hansen, N. J., Cm-rrmow J. W.
`awn Lassen, W.: Muscarinic receptors. Nature
`(London) 189: 671-673, 1961.
`
`Bonn, J. H.: Practical Pharmacology, Blackwell
`Scientific Publications, Oxford, 1952.
`Curses, F. G., Pammo P. AND Boson, 11.:
`Structure of ACli and other substrates of cholin-
`efi systems. Nature (London) 210: HVILH39,
`Cotsim-', M. E., Hour, A. H. MID Houimn, W. C.:
`Nicotine—like stimulant actions of several sub-
`stituted phenyicholine
`ethers.
`J. Pharmacol.
`Exp. Ther. 1418: 66-70, 1965.
`Fmmsv, D. J.: Experimental Design and Its Sta-
`tisticalggsasis, University of Chicago Press, Chi-
`caso.
`-
`I1-to. H. R. Konmi: P. ma Tones Wn.i.nuis_, D. P.
`11.: Studies on the structure-action relationship
`of the choline group. Brit. J. Pharmacol. Chem-
`other. 7: 103-116, 1952.
`of muscarine. Acta
`Jiiinnmscx, F.: Structure
`Crystallogr. 10: 277-280, 1967.
`tion
`MAJOR, R. T. AND Boimirrr, H. T.: Pre
`acetyl
`and properties of acetl o'.eztro-
`leuo-,9-methylcholine
`ride. J. Amer. Chem.
`Soc. 57: 2125-2130, 1935.
`MARTIN-Surrfi, M., Smm, G. A. AND
`J. B.: The possible role of conformational
`isomerism in the biological actions of acetyl-
`choline. J . Pharm. Pharmacol. 19: 5614589, 1967.
`Scnomaa, F. W.: Two cyclic analogs of acetyl-
`choline. J. Amer. Pharm. Am. Sci. Ed. 45:
`197-199, 1956.
`SEKUL, A. A. we HOLLAND, W. C.: Comparative
`preesor effect of certain unsaturated acid esters
`of choline. J. Pharmacol. Exp. Ther. 133: 313-
`313, 19613.
`Saxon, A. A. AND Hoi..L.iNn, W. C.: Pharmacology
`of senecioylcholine. J. Pharmacol. Exp. Ther.
`132: 171-175, 1961b.
`Saxon, A. A., Houann, W. 0. am) House, 1%.:
`Relationship between electronic structure and
`intensity of nicotine like action of choline esters.
`Agigi. Int. Pharmacodyn. Ther. 141: 404-411,
`1
`.
`SIHONAET, A.: On the action of certain derivatives
`sliqfnrgholine. J. Pharmacol. Exp. Ther. 46: 157-193,
`Suissimt, E. E., Nansen, W. L., LAPIDUB, J. B.
`we Dav, J. L.: Conformational aspects of
`acetylcholine receptor sites. The isomeric 3-tri-
`inethylaminonium-2-acetoxy-trcns-decalin
`ha-
`lides and the isomeric «,3-dimethylacetylcholine
`halides. J. Med. Chem. 9: 458-465.1966.
`.
`Sniiioos, G. W.: Statistical Methods, 5th ed.,
`Iowa State College Press, Ames, 1956.
`Tiuooria, D. J.: Chemical Aspects of Autonomic
`Nervous System, pp. 74-165, Academic Press,
`New York, 1965.
`WASEB, P. G.: Chemistry and pharmacology of
`muscarine. muscarone and some related com-
`pounds. Pharmacol. Rev. 13: 465-515, 1961.
`
`(cid:54)(cid:88)(cid:81)(cid:16)(cid:36)(cid:80)(cid:81)(cid:72)(cid:68)(cid:79)(cid:16)(cid:44)(cid:51)(cid:53)(cid:21)(cid:19)(cid:20)(cid:25)(cid:16)(cid:19)(cid:20)(cid:20)(cid:19)(cid:23)(cid:16)(cid:3)(cid:40)(cid:91)(cid:17)(cid:3)(cid:20)(cid:19)(cid:21)(cid:20)(cid:15)(cid:3)(cid:83)(cid:17)(cid:3)(cid:25)(cid:3)(cid:82)(cid:73)(cid:3)(cid:25)
`Sun-Amneal-|PR2016-01104- Ex. 1021, p. 6 of 6

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket