throbber
REVERSE-THRUST TECHNOLOGY FOR VARIABLE-PITCH
`
`FAN PROPULSION SYSTEMS
`
`David A. Sagerser, John W. Schaefer, and Donald A. Dietrich
`NASA Lewis Research Center
`
`During the past several years, a number of tests have been conducted to
`develop the technology necessary to meet the unique reverse-thrust performance
`requirements of a variable-pitch fan propulsion system. Areas that have been
`investigated include the losses and distortion associated with the air entering
`the fan and core compressor from the rear of the engine, the direction of fan
`blade pitch rotation for best reverse-thrust aeroacoustic performance, and
`engine response and operating characteristics during forward- to reverse-thrust
`transients. The test results of several scale fan models as well as a full-
`size variable-pitch fan engine are summarized. More specifically, these tests
`have shown the following: A flared exhaust nozzle makes a good reverse-thrust
`inlet, acceptable core inlet duct recovery and distortion levels in reverse
`flow were demonstrated, adequate thrust levels were achieved, forward- to ra-
`verse-thrust response time achieved was better than the goal, thrust and noise
`levels strongly favor reverse through feather pitch, and finally, flight-type
`inlets make the establishment of reverse flow more difficult.
`
`INTRODUCTION
`
`The short field lengths envisioned for short-haul aircraft operation have
`made reverse-thrust performance a critical part of the propulsion system's de-
`sign requirements. The conventional approach to providing reverse thrust in
`turbofan engines is to use target or cascade thrust reversers to redirect the
`engine exhaust flow in a forward direction. Considerabie study in recent years
`has been directed toward an alternate approach to reverse thrust - the variable-
`pitch fiin.
`
`Noise requirements for short-haul aircraft dictate that a low pressure
`ratio, high bypass ratio fan be used especially for an under-the-wing engine
`installation. For such requirements, engines designed with variable-pitch fans
`for reverse thrust have been shown (refs. 1 and 2) to be superior to those with
`fixed pitch fans and conventional reversers. The primary advantage is lower
`propulsion system weight. An added benefit is faster response times in forward
`thrust which are important for approach waveoff maneuvers. The faster forward
`thrust response times are a result of a variable-pitch fan's ability to provide
`approach thrust at high fan speeds (ref. 1).
`Because of these advanzages, a
`variable-pitch fan was incorporated in the under-the-wing engine of NASA'S
`Quiet Clean Short-Haul Experimental Engine (QCSEE) Program.
`
`7%
`PAGE~~NTENTIoNALLY BLANK
`
`GE v. UTC
`IPR2016-00952
`GE-1029.001
`
`

`

`. .' '
`
`.,
`
`-
`
`.
`i
`
`' .
`
`--;a
`:,?
`, . .,
`..?
`. . . .
`
`,
`
`1 .
`
`I
`I
`I
`i
`
`* .
`, -..:
`
`2
`
`.
`
`
`
`! -
`. . :
`
`I
`. .< 4
`. - 1
`
`, - ..
`, ,
`.
`-. ! ' .',
`. -
`.:j
`i
`,
`; .- i
`
`
`
`
`
`L
`
`i
`
`'
`
`i
`' i
`
`q? -3
`
`..s;z$ .
`
`+ $3
`: <.*.!
`. -*s &
`: %*
`: ;$"-
`b'. s
`-;.
`., ..
`- i:
`
`2 .:- .I
`
`l i:
`
`Obtaining reverse t h r u s t with a v a r i a b l e - p i t c h fan engine involves a new
`mode of engine operation.
`I n norm11 forward-thrust operation engine a i r e n t e r s
`t h e inl+:.t, passes through t h e e n g i t e , and is exhausted out t h e r e a r a s shown i n
`the. uy.p.r half of f i g u r e 1. I n r e v e r s e t h r u s t t h e f a n blade p i t c h i s changed
`s o tk..tt t h e f a n a f r flows i n t h e o p ~ o s i t e d i r e c t i o n . A i r must be drawn from
`t h c r ?.IC of t h e engine; t h e a i r is ro,quireJ t o t u r n 180° from its o r i g i n a l direc-
`.s shown i n t h e lower half of f i g u r e 1. P a r t of c h i s a i r must t u r n
`t'ion,
`near11 180° again t o supply t h e engino core. The r e s t of t h e a i r passes
`t.hrougil the fan and i s exhausted out t h e i n l e t . Requiring t h e a i r t o follow
`:hi s d i f f i c u l t path and operating t h e m g i n e during t h e forward t o r e v e r s e
`t h r u s t t r a n s i t i o n r a i s e s a number of design questions:
`(1') What nozzle shape is required ?o minimize t h e pressure l o s s e s and d i s -
`t o r t i o ~ i n reverse t h r u s t ?
`*Is.) W i
` pressure recovery and d i s t o r t i o n l e v e l s i n t o t h e c o r e compressor
`l
`l
`be sat:% s f a c tory?
`I n which d i r e c t i o n should t h e far\ blade p i t c h be changed f o r adequate
`(:')
`rl :verse - t h r u s t l e v e l s ?
`(41 Csn t h e forward t o reverse-thrust
`t r a n s i t i o n be accomplished i n t h e
`r e q u i r e i time without engine o p e r a t i o n a l problems?
`(5) What e f f e c t w i l l a fltght-type i n l e t have on r e v e r s e - t h r u s t operation?
`
`A n,mber of tests have been conducted ovzr t h e p a s t s e v e r a l years t o
`a n a e r t h e s e questions. The r e s u l t s nf some of t h e s e i n v e s t i g a t i o n s a r e dis-
`cussed i n t h i s r e p o r t t o provide an overview of r e v e r s e - t h r u s t technology f o r
`vbri 3b:l.e- p i t c h fan propulsion systems. To add perspective t o t h e test r e s u l t s ,
`t h e reverse-thrust requirements a r e discussed f i r s t .
`
`REVERSE-THRUST REQUIRkZAENTS
`
`Reverse-thrust r e g u l a t i o n s f o r short-haul a i r c r a f t have not been estab-
`1-ished. However, based on a number of a i r c r a f t systems s t u d i e s , reverse-chrust
`objectiuzis have been defined f o r QCSEE. They a r e compared t o t y p i c a l r e v e r s e
`t h r u s t c;.laracteristics f o r conventional ensines i n t a b l e I. The r e v e r s e - t h r u s t
`l e v e l £0,-r OCSEE, 35 percent of takeoff t h r u s t , is required f o r landing on i c y
`rlmways o r i n t h e ~\ve.lt of brake f a i l u r e ( a s describ2d i n r e f . 3). Although
`t h e QCSEE c b j e c t i v t .'alls on t h e low s i d e of t h e range f o r conventional a!.r-
`c r a f t , t h e resu'rtng a i r c r a f t d e c e l e r a t i o n i s comparable t o conventional a i r -
`c r a f t t~ecausc. *!CSEE is designed f o r an a i r c r a f t with a high thrust-weight r a t i o .
`
`t o reverse-response time o b j e c t i v e , o r t i m e t o reverse, f o r
`The 'orward-
`QCSEE !s considerably more s t r i n g e n t than f o r conventional a i r c r a f t because of
`t h e RhOrt f i e l d operation. However, t h e time t o reverse f o r conventional a i r -
` is longer mostly because of t h e time required t o i n c r e a s e t h e engiaz
`C ~ E '
`r. .leed from a near f'.ight
`i d l e condition a t t h e i n i t i a t i o n of r e v e r s e t h r u s t t o
`t h e design r e v e r c c - t h r u s t condition. Thus, some reverse t h r u s t J s being qener-
`ated durinfi m o ~ t of t h a t time.
`
`Opelacing an engine i n reverse t h r u s t a t low forward v e l o c i t i e s can r e e u l t
`i n cr'laust gas r e i n g e s t i o n , foreign object damagc ~ r o m t h e r e v e r s e j e t impinging
`
`GE v. UTC
`IPR2016-00952
`GE-1029.002
`
`

`

`on t h e ground, and t h e impingement of hot exhaust g a s e s on a i r c r a f t s t r u c t u r e s .
`Because of t h i s , r e v e r s e - t h r u s t o p e r a t i o n i s u s u a l l y p r o h i b i t e d bclcw c e r t a i n
`forward v e l o c i t i e s . A comparison of t h e minimum forward-velocity limits
`( t a b l e I) shows t h a t t h e QCSEE o b j e c t i v e i s more s t r i n g e n t than conventional
`a i r c r a f t , a g a i n because o f t h e s h o r t f i e l d operation.
`
`The importance of low n o i s e i n a l l phases of short-haul o p e r a t i o n r e s u l t e d
`For 1C8 400 newtons of r e v e r s e
`i n a r e v e r s e - t h r u s t n o i s e o b j e c t i v e f o r QCSEE.
`t h r u s t a maximum no;'.se
`l e v e l of 100 PNdB on a 152.4-meter
`s i d e l i n e has been
`e s t a b l i s h e d .
`
`A I R INTAKE CHARACTERISTICS
`
`Exle L Performance
`
`To a s s i s t t h e flow of a i r i n t o t h e tear of t h e e n g i a e d u r i a g r e v e r s e t h r u s t ,
`t h e f a n nt)zzle can be opened t o fona a f l a r e d shape, c a l l e d a n "exlet," a s
`shown i n f i g u r e 1. A number of s c a l e e x l e t models were t e s t e d ( r e f s . 4 and 5)
`t o determine what geometry r e s u l t s i n t h e lowest t o t a l pressrlre l o s s and dis-
`t o r t i o n l e v e l . The e x l e t c o n f i g u r a t i o n s t e s t e d covered £!arc a n g l e s O from
`0'
`from 1.4 t o 2.8, and d u c t s with and with-
`t o 60°, c o n t r a c t i o n r a - i o s bhTIAS
`o u t simulated a c o u s t i c s p l i t t e r s .
`
`The r e s u l t s , along w i t h geometric d e f i n i t i o n s . e r e summarized i n f i g u r e 2
`f o r freestrean! v e l o c i t i e s Vm of 0 and 41.2 metern p e r second and a f a n duct
`Mach number Q of 0.4.. The r e s u l t s i n d i c a t e t h x t a f l a r e angle of 30° gave
`t h e h i g h e s t p r e s s u r e recovery. A t f l a r e a n g l e s o t h e r than 00, t h e d a t a f e l l i n
`a r e l a t i v e l y narrow band showing r e l a t i v e i n s e n s i t i v i t y t o c o n t r a c t i o n r a t i o
`and t h e presence of an a c o u s t i c s p l i t t e r . A f l a r e a n g l e of O0 r e p r e s e n t s a
`nozzle i n a forward t h r u s t p o s i t i o n and would n o t nonually be considered f o r
`I n
`r e v e r s e t h r u s t o p e r a t i o n except i n t h e eve:~t of a nozzle a c t u a t o r f a i l u r e .
`general, t h e e x l e t t e s t s showed t h a t t h e t o t a l p r e s s u r e recovery was high when
`t h e sharp t u r n t h e flow must make around t h e z x l e t l i p is considered. However,
`t e s t d a t a shown i n f i g u r e 2 a r e f o r smooth axisymmetric e x l e t s and c o n s t a u t f a n
`duct Mach number. Therefore, t h e e f f e c t s of d i f f e r e n c e s i n t h e s e c h a r a c t e r i s t i c s
`should a l s o b e considered.
`
`Exlet shapes with V notct.es which more a c c u r a ~ e l y r e p r e s e n t a v a r i a b l e
`a r c a nozzle were a l s o t e s t e d . These t e s t s showed t h a t f o r a c o n f i g u r a t i o n
`s i m i l a r t o t h e QCSEE nozzle t h e presence of notches would reduce recovery about
`0.5 percent ( r e f . 5 ) .
`
`The f a n duct Mach number has nn e f f e c t on recovery, but t o a l e s s e r e x t e n t
`than t h e free-stream v e l o c i t y ( r e f . 4 ) . For example, changing t h e d u c t Mach
`number from 0.4 t o 0.5 reduced recovery l e s s thqn 0.5 r e r c e n t .
`
`D i s t o r t i o n l e v e l s i n t h e f a n d u c t were a l s o measuzed. For t h e e x l e t geom-
`e t r i e s t e s t e d i n referelice 5 (except f o r t h e O0 f l a r e ) , t h e d i s t o r t i o n l e v e l s
`
`GE v. UTC
`IPR2016-00952
`GE-1029.003
`
`

`

`.br
`
`3
`
`were l e s s than 7 percept. Such l e v e l s were considered acceptable f o r a n engine
`like QCSEE.
`
`Core I n l e t Duct Performance
`
`Like t h e e x l e t , the core i n l e t duct o f f e r s a s i m i l a r sharp t u r n f o r t h e
`a i r t o negotiate. But i n terms of pressure l ~ s s , t h i s t u r n is more severe.
`The Mach number of t h e flow a t t h e beginning of t h e t u r n i s t h r e e o r four times
`t h a t f o r t h e e x l e t . Also, t h e f l o v must pass through t h e fan s t a t o r s and,
`depending on t h e core i n l e t design, t h e core i n l e t guide vanes. The l o s s e s i n
`the fan s t a t o r s a r e expected t o be low. However, t h e s e s t a t o r s impart a s w i r l
`t o t h e reverse flow which w i l l r e s u l t i n an unfavorable incidence angle on t h e
`core i n l e t guide vanes. This i n t u r n could r e s u l t i n more s i g n i f i c a n t losses.
`
`Core i n l e t recovery t e s t d a t a f o r two engine configurations a r e presented
`i n f i g u r e 3 from t e s t s described i n reference 6 and from an unpublished inves-
`t i g a t i o n by J. W. Schaefer of Cewis Research Center. The f i r s t engine con-
`f i g u r a t i o n shown ir f i g u r e 3 i s t h e f u l l - s i z e Q-fan T-55 engine and t h e second
`one shown i s a s c a l d moc;el (50.8-cm fan diameter) of t h e QCSEE engine. Both
`s e t s of d a t a show t h a t core--inlet t o t a l pressure recovery is a Cunction of f a n
`duct Mach cumber.
`
`The i m p o r t ~ n c e of core i n l e t recovery is shown by the c c r e l i m i t l i n e s on
`t h i s figure. These p o i n t s a r e operating conditions where f u r t h e r i n c r e a s e s in
`reverse t h r u s t l e v e l cannot be achieved without exceeding a core o p e r a t i ~ n a i
`t h e core operational l i m i t i s the compressor speed;
`l i m i t . For the Q-fan T-55,
`f o r the QCSEE engine, t h e calculated core l i m i t i s t h e t u r b i n e i n l e t temperd--
`t u r e .
`
`The s o l i d symbo1.s i n f i g u r e 3 show t h e point where the reqaired reverse-
`t h r u s t l e v e l i s obtained.
`In both cases the core recovery is adequate t o meet
`the required reverse-thrust l e v e l .
`
`A s can be seen from f i g u r e 3, both s e t s of d a t a a r e adequately represented
`by t h e same l o s s c o e f f i c i e n t l i n e of 1.5, even though the core i n l e t duct con-
`f i g u r a t i o n s a r e d i f f e r e n t . The Q-fan T-55 s p l i t t e r l i p i s more rounded than
`the sharp l i p of thf QCSEE model which would suggest higher l o s s e s f o r t h e
`the core i n l e t guide vanes of the Q-fan T-55 a r e located
`QCSEE model. Howe\:.r,
`i n t h e core i n l e t duct and a r e subject t o unfavorable incidence angles. The
`QCSEE core i n l e t guide vanes a r e e x t e r n a l t o t h e core duct which allows most of
`the core flow t o h y p ~ s s them i n reverse t h r u s t . Apparently, these configuration
`d i f f e r e n c e s have o f f s e t t i n g e f f e c t s which r e s u l t i n s i m i l a r l o s s characte.ris-
`t i c s .
`
`Distortion l e v e l s a t the compressor face were a l s o measured during t h e
`reverse-thrust t e s t s of the Q-fan T-55 and QCSEE models ( r e f s . 6 and 7). For
`t h e Q-fan T-55,
`the reverse-thrust d i s t o r t i o n l e v e l (conbined r a d i a l and c i r -
`cumferential) was about the same a s f o r the forward-thrust l e v e l . This unex-
`pected r e s u l t may be p a r t i a l l y a t t r i b u t e d t o t h e i n l e t guide vanes which a r e
`located i n the core i n l e t duct. This l o c a t i o n may help t o make t h e core flow
`more uniform. Results of QCSEE s c a l e model t e s t s indicated t h e r e v e r s e - t h r u s t
`
`390
`
`GE v. UTC
`IPR2016-00952
`GE-1029.004
`
`

`

`d i s t o r t i o n t o be h i g h e r than i n f o w a r d t h r u s t but a c c e p t a b l e f o r f u l l - s c a l e
`engine operation.
`
`FAN DESIGN AND OPERATION
`
`A b a s i c concern f o r t h e o p e r a t i o n of a v a r i a b l e - p i t c h f a n i s t h e d i r e c t i o n
`i n which t h e f a n b l a d e p i t c h should be changed t o develop r e v e r s e t h r u s t . The
`two p o s s i b l e ways a r e i l l u s t r a t e d i n f i g u r e 4.
`A c r o s s s e c t i o n of two f a n
`blades shown i n t h e i r normal forward-thrust p o s i t i o n is a t t h e t o p of t h i s
`f i g u r e . From t h i s p o s i t i o n , t h e b l a d e s can be turned through f l a t p i t c h , a
`c o n d i t i o n of zero l i f t , t o t h e r e v e r s e - t h r u s t p o s i t i o n a s shown on t h e l e f t of
`f i g u r e 4. Two t h i n g s should be noted f o r t h i s approach. F i r s t , a d j a c e n t b l a d e
`leading and t r a i l i n g edges must pass each o t h e r during t h e t r a n s i t i o n through
`f l a t p i t c h . T h i s r e q u i r e s t h a t t h e biade s o l i d i t y be l e s s than one a t a l l
`r a d i i . This can l i m i t f a n performance, e s p e c i a l l y a t t h e hub. Second, w h i l e
`t h e blade l e c d i n g edge remains t h e same r e l a t i v e t o t h e a i r f l o w , t h e b l ~ : e
`camber i s wrong f o r r e v e r s e - t h r u s t o p e r a t i o n .
`
`The a l t e r n a t e approach is t o t u r n t h e b l a d e s through f e a t h e r p i t c h , pass-
`i n g through a s t a l l condition. This is shown on t h e r i g h t s i d e of f i g u r e 4.
`I n thi.s case, b l a d e camber is c o r r e c t i n t h e r e v e r s e p o s i t i o n , but t h e l e a d i n g
`and t r a i l i n g edges a r e reversed,, During t h e t r a n s i t i o n t h e flow over t h e
`blades s e p a r a t e s o r stalls. The flow then r e a t t a c h e s i n r e v e r s e t h r u s t and
`moves i n t h e o p p o s i t e d i r e c t i o n r e l a t i v e t o t h e blade. With t h i s approach t h e
`blade s o l i d i t y may exceed one, although t h e bl.ade t w i s t and camber w i l l s t i l l
`l i m i t t h e hub s o l i d i t y t o some e x t e n t .
`
`I
`I
`)
`
`!
`
`Thrust
`
`To determine which approach is b e s t , both s t e a d y - s t a t e r e v e r s e t h r u s t per-
`formance and t r a t i s i e n t o p e r a t i n g c h a r a c t e r i s t i c s must be considered. A com-
`parison of s t a t i c r e v e r s e - t h r u s t l e v e l s a t nominal r e v e r s e - t h r u s t blade a n g l e s
`18 shown i n f i g u r e 5. The d a t a a r e from tests of t h e Q-fan T-55 and QCSEE
`s c a l e model (unpublished Lewis d a t a and r e f . 6 ) . Both t e s t s were conducted
`3 4 t h s i m i l a r f l i g h t - t y p e i n l e t s .
`I n a l l c a s e s t h e r e v e r s e - t h r u s t d a t a a r e pre-
`sented r e l a t i v e t o t h e design takeoff t h r u s t l e v e l . The design takeoff condi-
`t i o n , however, was never achieved i n t e s t s of t h e Q-fan T-55 due t o a c o r e
`horsepower l i m i t a t i o n . The f a n was designed f o r a higher horsepower model of
`t h e T-55 than what was t e s t 5 d . This horsepower l i m i t e d t o scme e x t e n t t h e
`maximum r e v e r s e t h r u s t a t t a i n e d . Reverse-thrust l e v e l s f o r t h e Q-fan T-55 a r e
`d i r e c t f o r c e measurements while r e v e r s e - t h r u s t l e v e l s f o r t h e QCSEE model a r e
`c a l c u l a t e d from measured p r e s s u r e s and temperatures.
`
`As shown i n t h i s f i g u r e , r e v e r s e - t h r u s t
`l e v e l s exceeding t h e 35-percent
`goal can be achieved through f e a t h e r p i t c h b e f o r e reaching t h e c o r e l i m i t i n g
`conditions. By comparison, r e b e r s e - t h r u s t l e v e l s through f l a t p i t c h a r e l e s s
`than h a l f of those through f e a t h e r p i t c h and, even a r t h e f a n lin;its, a r e con-
`s i d e r a b l y l e s s than t h e goal.
`
`39 1
`
`GE v. UTC
`IPR2016-00952
`GE-1029.005
`
`

`

`Noise
`
`Noise i s a n o t h e r f a c t o r t o c o n s i d e r when d e c i d i n g which way t o change f a n
`b l a d e p i t c h f o r r e v e r s e t h r u s t . Unsuppressed r e v e r s e - t h r u s t n o i s e level. d a t a
`(unpublished Lewis d a t a ) f o r t h e Q-fan T-55 a r e compared i n f i g u r e 6. The
`n o i s e d a t a show t h a t r e v e r s e through f l a t p i t c h i s a c o n s i d e r a b l y n o i s i e r way
`tl a c h i e v e r e v e r s e t h r u s t .
`
`T r a n s i e n t Performance
`
`The d a t a t h a t have been d i s c u s s e d s o f a r have a l l b e ~ n a t s t e a d y - s t a t e
`c o n d i t i o n s . C r i t i c a l t o which way b l a d e p i t c h should be changed and t o t h e
`whole i s s u e of a c h i e v i n g r e v e r s e t h r u s t w i t h a v a r i a b l e - p i t c h f a n engine i s t h e
`performance of t h e engine d u r i n g t h e forward- t o r e v e r s e - t h r u s t
`t r a n s i t i o n .
`T e s t s t o determine t r a n s i e n t performance have been conducted w i t h t h e Q-fan
`T-55 both a t Hamilton Standard and NASA Lewis t e s t f a c i l i t i e s (unpublished
`Lewis d a t a and r e f . 8). A photograph of t h i s engine a t NASA Lewis i s shcwn i n
`f i g u r e 7. The r e s u l t s of t h e s e tests a r e d i s c u s s e d by comparing a r e p r e s e n t a -
`t i v e example of a through f l a t p i t c h a d :'-rough f e a t h e r p i t c h t r a n s i e n t .
`
`Considering f i r s t r e v e r s e through f l a t p i t c h t r a n s i e n t s , time h i s t ~ r i e s
`For f a n b l a d e a n g i e , t h r u s t , f a n speed, and f a n b l a d e s t r e s s a r e shown i n f i g -
`u r e 8 f o r a r e p r e s e n t a t i v e t r a n s i t i o ~ ~
`from a l a t d i n g approach t o a r e v e r s e -
`I n t h i s f i g u r e t h e t r a n s i e n t i s i n i t i a t e d a t time e q u a l s
`t h r u s t c o n d i t i o n ,
`zero. The b l a d e p i t c h was changed a t a r a t e of about 100° per second s t a r t i n g
`from t h e design a n g l e i n forward t h r u s t and moving t o t h e r e v e r s e a n g l e , 80° i n
`t h e f l a t p i t c h d i r e c t i o n . The t h r o t t l e wa: held c o n s t a n t i n t h i s t r a n s i e n t .
`T h r u s t , presented a s a p e r c e n t of measured t a k e o f f t h r u s t , responds t o t h e
`b l a d e a n g l e change and f a l l s o f f smoothly. The f i n a l r e v e r s e - t h r u s t
`i e v e l i s
`reached i n somewhat l e s s than 1 second. The f a n speed d u r i n g t h i s time a c c e l -
`e r a t e s q u i c k l y a s t h e load i n t h e f a n b l a d e s i s reduced. A s t h e b l a d e l o a d i n g
`i n c r e a s e s a g a i n i n r e v e r s e t h r u s t , ths f s n speed p:.aks and t h e n converges on
`t h e f i n a l r e v e r s e - t h r u s t value. Fan b l a d e v i b r a t o r y s t r e s s e s g z a d u a l l y b u i l d
`up d u r i v ~ t h e t r a n s i e n t and reach a l e v e l s l i g h t l y over t w i c e t h a t i n forward
`t h r u s t . This l e v e l i s w e l l w i t h i n t h e limits of normal b l a d e design.
`
`The primary o p e r a t i o n a l problem cncountered i n t h e r e v e r s e through f l a t
`p i t c h t r a n s i e n t s is t h a t t h e f a n tends t o overspeed. There a r e two ways t o
`h e l p reduce t h i s e f f e c t . F i r s t , t h e t r a m i e n t can be i n i t i a t e d a t a reduced
`fan speed t o a l l o w more overspeed margin :s was done i n t h e example of f i g u r e '
`This could reduce t h e e n g i n e ' s forward-thrust
`r e s p ~ n s e time f o r waveoff manue-
`v e r s . Second, s t a r t i n g from a h i g h e r i n i t i a l f a n speed, t h e f u e l flow can
`i n i t i a l l y be c u t back i n an attempt t o reduce t h e a v a i l a b l e e l g i n e power w h i l e
`t h e fan blades p a s s through f l a t p i t c h . This r e q u i r e s c a r e f u l c o n t r o l of t h e
`f a n b l a d e p i t c h and engine t h r o t t l e d u r i n g t h e t r a n s i e n t t o reach t h e r e v e r s e
`b l a d e p o s i t i o n w i t h t h e f a n speed a t t h e d e s i r e d l e v e l .
`
`A somewhat d i f f e r e n t sequence of e v e n t s o c c u r s d u r i n g a r e v e r s e through
`f e a t h e r p i t c h t r a n s i e n t which i s shown i n f i g u r e 9. The t r a n s i e n t was i n i t i -
`a t e d from t h e same approach t h r u s t l e v e l a s t h e t r a n s i e n t i n f i g u r e 8 but a t
`
`4'
`
`39 2
`
`GE v. UTC
`IPR2016-00952
`GE-1029.006
`
`

`

`a higher f a n speed f o r b e t t e t waveoff response c a p a b i l i t y . The f a n b l a d e
`p i t c h was changed, i n t h e f e a t h e r p i t c h d i r e c t i o n , a t about 130° per second.
`T h i s change i n i t i a l l y i n c r e a s e s t h e aerodynamic l o a d s on t h e blades. A s t h i s
`happens, t h e f a n speed is lo!rer;?d a s t h e f a n r o t a t i o n a l energy i s converted
`i n t o a t h r u s t i n c r e a s e , The t h r o t t l e i n t h i s c a s e was immediately r e s e t t o t h e
`f i n a l r e v e r s e - t h r u s t l e v e l . As t h e b l a d e p i t c h c o n t i n u e s t o change, t h e f a n
`e v e n t u a l l y s t a l l s and t h e t h r u s t f a l l s suddenly t o zero. This unloads t h e
`blades t o some degree and causes t h e f a n speed t o i n c r e a s e . S h o r t l y a f t c r t h e
`b l a d e s r e a c h t h e i r xeverse p o s i t i o n , t h e flow r e a t t a c h e s and r e v e r s e t h r u s t is
`l e v e l i s reached about 1 second a f t e r the
`obtained. The f i n a l r e v e r s e - t h r u s t
`t r a n s i e n t was i n i t i a t e d .
`
`During t h e t r a n s i e n t , t h e f a n b l a d e s t r e s s e s b u i l d up and peak a s t h e
`b l a d e s t a l l s . A second peak, g e n e r a l l y somewhat h i g h e r than ,be f i r s t , o c c u r s
`as flow r e a t t a c h e s t o t h e b l a d e s i n t h e r e v e r s e d i r e c t i o n . These s t r e s s peaks,
`w h i l e high r e l a t i v e t o forward-thrust l e v e l s , d i d n o t l i m i t t h e t r a n s i e n t t e s t s
`of t h e Q-fan T-55.
`Even thougt t h e s e r e s u l t s a r e e.ncouraging, f u r t h e r t e s t s of
`h i g h e r p r e s s u r e r a t i o v a r i a b l e p i t c h f a n s , such a s QCSEE, a r e needed b e f o r e
`more g e n s r a l conclusions can be drawn-
`
`INLET BACKPRESSURE
`
`?: 1
`
`. .
`
`T e s t s of tho Q-fan T-55, a s w e l l a s t h e QCSEE s c a l e model, showed t h a t a
`. f l i g h t - t y p e i n l e t can produce a backpressure on t h e f a n which t e n d s t o prevent
`t h e establishment of r e v e r s e flow. This can occur when t h e f a n i s s t a r t e d from
`r e s t with t h e b l a d e s i n i z i a l l y i n a r e v e r s e p o s i t i o n o r , more i m p o r t a n t l y ,
`d u r i n g a f o r ~ a r d t o r e v e r s e t r a n s i e n t through f e a t h e r p i t c h . T h i s e f f e c t can
`be explained by n o t i n g t h a t when t h e fan is s t a l l e d , flow i n t h e d u c t i s p r i -
`marily t a n g e n t i a l and tends t o r o t a t e with t h e fan. When t h e f a n is u n s t a l l e d
`and producing r e v e r s e t h r u s t , t h e flow i s n e a r l y a x i a l . Photographs of t u f t s
`i~ t h e f a n i n l e t i n f i g u r e 10 show t h e s t a l l e d and u n s t a l l e d flow f i e l d s .
`
`I n o r d e r f o r t h e s w i r l i n g flow i n t h e s t a l l e d c o n d i t i o n t o be exhausted
`o u t t h e s m a l l e r diameter t h r o a t of t h e i n l e t , t h e flow v e l o c i t y must i n c r e a s e
`t o ccnserve a n g u l a r momentum.
`Since t h e s t a t i c p r e s s u r e a t t h e f r o n t of t h e
`i n l e t is ambient, a h i g h e r t h a n ambient p r e s s u r e a t t h e f a n f a c e is implled.
`The f a n must, t h e r e f o r e , avercomc t h i s backpressure t o c l e a r s t a l l . The magni-
`tude of t h e backpressure w i l l depend on t h e i n l e t geometry.
`
`Test d a t a showi.ng t h i s e f f e c t a r e presented i n f i g u r e 11 f o r t h e Q-fan
`T-55 a t a r e v e r s e through f e a t h e r b l a d e a n g l e . Wall s t a t i c p r e s s u r e s divided
`by ambient p r e s s u r e a r e compared f o r a bellmouth and a f l i g h t - t y p e i n l e t both
`i n s t a l l e d and u n s t a l l ~ d c o ~ d i t l o n s f o r t h e same f a n speed. Of primary i n t e r e s t
`i s t h e u t a t i c p r e s s u r e a t t h e f a n f a c e . A s can be seen from f i g u r e 11, a higher
`p r e s s u r e does e x i s t L L L ~ I t h e f l i g h t - t y p e i n l e t i n a s t a l l e d c o n d i t i o n . The
`n e a r i y i d e n t i c a l s t a t i c p r e s s u r e s f o r t h e two c o n f i g u r a t i o n s i n t h e u n s t a l l e d
`c o n d i t i o n demonstrated t h a t t h e i n l e t backpressure e f f e c t is due t o more than
`j u s t t h e 0r.e-dimensional d i f f e r e n c e i n t h r o a t a r e a s .
`
`GE v. UTC
`IPR2016-00952
`GE-1029.007
`
`

`

`A technique t o overcome t h e e f f e c t of i n l e t backpressure and promote quick
`establishment of r e v e r s e flow was demonstrated during r e v e r s e through f e a t h e r
`t r a n s i e n t tests of t h e Q-fan T-55 (unpublished Lewis d a t a ) . With t h i s tech-
`nique, t h e fan blades a r e moved beyond the f i n a l r e v e r s e p o s i t i o n , held t h e r e
`f o r a shor:t period of time, and then returned. This temporarily reduces t h e
`angle of a t t a c k on t h e blades which allows r e v e r s e flow t o be e s t a b l i s h e d .
`This technique was shown t o be e f f e c t i v e without i n c r e a s i n g response time.
`
`CONCLUDING REMARKS
`
`The t e a t s conducted t o develop reverse-thrust technology f o r variable-
`p i t c h f a n engines have done much t o demonscrate t h e v i a b i l i t y of t h i s approach
`f o r powered-lift propulsion systems. More s p e c i f i c a l l y , these tests have shown
`the following:
`1. A f l a r e d erhaust nozzle is an acceptable reverse t h r u s t i n l e t .
`2. Acceptable core i n l e t duct recovery and d i s t o r t i o n l e v e l s i n r e v e r s e
`flow have been demonstrated.
`3. Adequate reverse-thrust l e v e l s can be achieved.
`4. Forward- t o reverse-thrust response times b e t t e r than t h e goal have been
`demonstrated without any s i g n i f i c a n t o p e r a t i o n a l problems.
`5. Thrust and noise l e v e l s strongly favor reverse thraugh f e a t h e r pitch.
`6. Flight-type
`i n l e t s make t h e establishment of r e v e r s e flow more d i f f i -
`c u l t , but moving the f a n blades beyond t h e i r normal r e v e r s e t h r u s t p o s i t i o n f o r
`a s h o r t period of time was e f f e c t i v e i n overcoming i n l e t backpressure.
`
`Areas where v a r i a b l e - p i t c h fan technology f o r r e v e r s e t h r u s t needs t o be
`expanded include t h e following :
`1. Effect of forward v e l o c i t y on t h e establishmerlt of r e v e r s e flow
`e s p e c i a l l y with f l i g h t - t y p e i n l e t s
`2. Fan blade s t r e e s l e v e l s f o r higher pressure f a n s during r e v e r s e through
`f e a t h e r t r a n s i e n t s
`3. A i r c r a f t i n s t a l l a t i o n e f f e c t s - flap-exlet I n t e r a c t i o n and r e v e r s e - j e t
`ground impingement
`
`GE v. UTC
`IPR2016-00952
`GE-1029.008
`
`

`

`1. Neitzel, R. ; Lee, R. ; and Chamay, A. J. : QCSEE Task 2: Engine Installation
`Preliminary Design. (General Electric Co. ; NAS 3-16726. ) NASA CR-134738,
`1973. (FEDD dtstribution.)
`2. Helms, H. E. : Quiet Clean STOL Experimental Engine Study Program, Task 1 -
`
`Parametric Propulsion Systems Studies. (Detroit Diesel Allison; NAS 3-
`161 27.) NASA CR-135015, 1976. (FEDD distribution.)
`
`3. Howard, D. F.; et al.:
`Quiet Clean Short-Haul Experimental Engine, Prelimi-
`nary Under the Wing Flight Propulsion System Analysis Report. (General
`Electric Co.; NAS 3-15021.) NASA CR-134868, 1976. (FEI)D distribution.)
`
`4. Dietrich, Donald A,; Keith, Theo G.; and Kelm, Gary G.:
`Aerodynamic Per-
`formance of Flared Fan Nozzles Used as Inlets. NASA TM X-3367, 1976.
`
`5. Vier, W. F.:
`Quiet, Clean Short-Haul Experimental Engine (QCSEE) Test Re-
`sults from a 14 cm Inlet for a Variable Pitch Fan Thrust Reverser. (Gen-
`eral Electric Co.; NAS 3-18021.) NASA CR-134867, 1975. (FEDD distribution.)
`
`Quiet Clean Short-Haul Experimental Engine, Aero-
`6. Ciffin

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket