throbber
United States Patent
`Stem et al.
`
`[19]
`
`[54]
`
`[75]
`
`COAGULATING FORCEPS
`
`Inventors: Roger A. Stern, Cupertino, Calif.;
`Richard M. Soderstrom, Seattle,
`Wash.; Vincent N. Sullivan; Robert L.
`Marion, both of San Jose, Calif.
`
`Assignee:
`
`Vesta Medical, Inc., Mountain View,
`Calif.
`
`Appl. No.:
`Filed:
`
`106,601
`Aug. 16, 1993
`
`Related U.S. Application Data
`Continuation-in—part of Ser. No. 877,567, May 1, 1992,
`Pat. No. 5,277,201, and Ser. No. 46,683, Apr. 14, 1992.
`Int. Cl.5 .............................................. A61B 17/39
`U.S. Cl. ......................................... 606/51; 606/52
`Field of Search ..................... .. 606/41, 42, 45, 46,
`606/48-52
`
`References Cited
`U.S. PATENT DOCUMENTS
`4,655,216 4/ 1987 Tischer .....
`.. .... .... .. ..... 606/51
`5,122,137
`6/1992 Lennox
`. 606/49 X
`5,190,541
`3/1993 Abele et al.
`. 606/48 X
`5,277,201
`1/1994 Stem ..................................... 606/41
`
`FOREIGN PATENT DOCUMENTS
`2573301
`5/1986 France .................................. 606/52
`
`llllllllllllllIllIllll||l||I||||llllllllllllllllllllIllllllllllllllllllllll
`US005443463A
`
`[11]
`
`[45]
`
`Patent Number:
`
`Date of Patent:
`
`5,443,453
`
`Aug. 22, 1995
`
`OTHER PUBLICATIONS
`
`Sugita et al., “Bipolar coagulator . . . thermocontrol", J.
`Neurosurg., vol. 41, Dec. 1974, pp. 777-779.
`Primary Examiner-—-Lee S. Cohen
`Attorney, Agent, or Firm—Oblon, Spivak, McCle1land,
`Maier & Neustadt
`
`[57]
`
`ABSTRACT
`
`A method and an apparatus for selectively coagulating
`blood vessels or tissue containing blood vessels involves
`the placement of the blood vessels or tissue containing
`blood vessels between the prongs of a forceps with the
`jaws of the forceps containing a plurality of electrodes
`which are energized by radio-frequency power. A plu-
`rality of sensors are associated with the electrodes and
`in contact with the vessels or tissue in order to measure
`the temperature rise of the tissue or blood vessels and to
`provide a feedback to the radio—frequency power in
`order to control the heating to perform coagulation of
`the vessels or tissue. In a further development,
`the
`upper prong of the device is split into two parts with a
`cutting blade between the two upper parts in order to
`provide for cutting of the coagulated vessels subsequent
`to the coagulation. The cutting may be accomplished
`either mechanically or with an electrosurgical cutting
`device.
`
`6 Claims, 5 Drawing Sheets
`
`ETHICON ENDO-SURGERY, INC.
`
`EX. 1015
`
`1
`
`

`
`U.S. Patent
`
`Aug. 22, 1995
`
`5,443,463
`
`SOURCE
`
`CONTROLLER
`
`ELECTRO SUHRGICAL
`POWER SUPPLY
`
`SOURCE
`
`CONTROLLER
`
`2
`
`

`
`U.S. Patent
`
`Aug. 22, 1995
`
`Sheet 2 of 5
`
`5,443,463
`
`ELECTRO SURGICAL
`POWER SUPPLY
`
`SOURCE
`CONTROLLER
`
`3
`
`

`
`U.S. Patent
`
`Sheet 3 of 5
`
`5%;E5
`
`zoamwazm
`
`E28E
`
`mmézg
`
`mam
`
`mE»_$>z8
`
`8.5
`
`E_
`
`wmaazaQ}
`
`WEEES
`
`4
`
`

`
`U.S. Patent
`
`Sheet 4 of 5
`
`5,443,463
`
`EHEE
`
`mzaazza
`
`m._§_E:zEm12.5Em2323228_E..53as2%-
`
`53$zo:<._om_
`
`somash.“E...................................................................................................................................
`moromzzoo
`
`E...
`
`%§_am§,.
`
`Eéa8%2%
`
`N2wészm§s8_
`
`
`
`m%§E§E28E35
`
`.mmasaé
`
`
`
`._2.,§E_m8_,_
`
`5
`
`

`
`U.S. Patent
`
`Aug. 22, 1995
`
`Sheet 5 of 5
`
`5,443,463
`
`6
`
`

`
`5,443,463
`
`1
`
`COAGULATING FORCEPS
`
`CROSS-REFERENCE TO RELATED
`APPLICATIONS
`
`l0
`
`15
`
`20
`
`This is a continuation-in-part of application Ser. No.
`07/877,567,
`filed May 1, 1992, now U.S. Pat. No.
`5,277,201 and Ser. No. 08/046,683, filed Apr. 14, 1993.
`BACKGROUND OF THE INVENTION
`1. Field of the Invention
`The present invention relates to a method and an
`apparatus for an electrosurgical coagulation and cutting
`of regions of tissue or blood vessels over relatively large
`areas with temperature control.
`2. Discussion of the Background
`Surgical procedures and particularly electrosurgical
`procedures often require the complete cutoff of large
`regions of tissue, or the complete cutoff of the blood
`supply through a main artery before such surgery can
`be performed. A typical example is the requirement that
`the uterine artery be closed off before the uterus can be
`removed during a hysterectomy. The cutting off of the
`blood supply through the artery is accomplished by
`suture ligation, staples or clips or electrosurgical desic-
`cation. Obviously, for large arteries, suture ligation is a
`difficult and long procedure which increases the time
`required for anesthesia resulting in an opportunity for
`complicating factors to arise. Aside from an increase in
`the length of time, there is an obvious increase in the
`expense of the procedure. Furthermore, when such
`arteries or vessels require their blood supply to be cut
`off during an emergency surgery, the amount of time to
`control the bleeding from the large vessel is more than
`just an expense or a complicating factor: it is a life— 35
`threatening period of time required before the actual
`surgery may be accomplished. Obviously, there is a
`need for an improved method for ligation and the cut-
`ting off of larger vessels.
`Although the above example addresses the cutting off 40
`of a main artery, in many instances the blood supply
`needs to be cutoff to large regions of tissue containing
`many blood vessels and also in many instances the cut-
`ting off of the blood supply to these tissues is all that is
`required. In other words, in many applications, what is
`required is only the stopping of blood supply to a region
`of tissue containing many blood vessels.
`In a similar manner, when cutting through large re-
`gions of tissue containing blood vessels, considerable
`time is expended ligating the individual blood vessels
`into tissue. There is a need for an improved method of
`cutting coagulating of such type of large regions of
`tissue.
`
`25
`
`30
`
`50
`
`One of the approaches in the electrosurgical proce-
`dure to reliably seal off large areas is the utilization of a
`device which can accomplish the cutoff of the blood
`supply through the main artery or a plurality of smaller
`vessels. Current electrosurgical devices face severe
`problems which either make their use inconvenient or
`severely limit their application or, in certain instances,
`entirely rule out the use of such electrosurgical devices.
`Prior art devices are inherently difficult to use over a
`large area or an extended linear region because it is
`difficult with current electrosurgical devices to produce
`coagulated tissue over such a large area or over such a
`long linear region. Furthermore, it is extremely difficult
`to know the degree of completion of coagulation be-
`cause there is no feedback mechanism to determine
`
`55
`
`60
`
`65
`
`2
`when the coagulation is complete. Therefore, with the
`present electrosurgical devices it is entirely possible that
`the application of the device will have been stopped
`before completion of coagulation resulting in continued
`bleeding. It is equally possible that the device was ap-
`plied for too long a time which, at best, is a waste of
`time and, at worst, could have caused other damage to
`adjacent tissue or could have burned the tissue intended
`to be coagulated, resulting in compromised sealing of
`tissue and the risk of continued bleeding.
`Yet another difficulty with the present electrosurgi-
`cal devices available for coagulation is the requirement
`for the use of multiple devices. That is, once coagula-
`tion has been completed, another device is necessary to
`cut the tissue.
`
`Uniform coagulation over large areas of tissue using
`standard electrosurgical techniques is extremely diffi-
`cult to achieve. This difficulty is due in part to the fact
`that it is not known how to determine the proper rate at
`which to apply energy or how to determine when the
`desired amount of coagulation has been achieved. If the
`energy is applied too rapidly, the superficial layers of
`tissue may desiccate too quickly and insulate the deeper
`tissues from further application of electrosurgical en-
`ergy. If insufficient energy has been applied, the desired
`depth of penetration of the electrosurgical energy may
`never be achieved. The only feedback currently avail-
`able to an operator of the prior art electrosurgical de-
`vices is the visible inspection of the surface of the tissue
`which is being coagulated or monitoring of the level of
`RF current. Surface inspection is no indication of any
`effect achieved in deeper layers of tissue. Similarly, a
`drop in RF current does not differentiate between the
`formation of an insulating superficial layer as complete
`desiccation. Thus,
`the application of electrosurgical
`procedures to cut off blood supply is a developed skill
`based upon experience which either requires separate
`training in this field or a stop-and—inspect procedure
`with even such procedure failing when the energy is
`applied too quickly because the deeper tissues may have
`become insulated from further heat application.
`There thus exists a long-felt need for a rapid, efficient,
`safe and sure method and device for completely cutting
`off the blood supply through an artery for vessel and
`the subsequent cutting of the artery or vessel in order to
`prepare for a further surgical procedure.
`A similar need exists for an efficient, safe and sure
`method and device for sealing or coagulating large
`areas of vascular tissue such as mesentery, bowel, meso-
`appendix, lung, fat tissue, lymph nodes, fallopian tubes,
`pedicles and the like.
`
`SUMMARY OF THE INVENTION
`
`Accordingly, one object of the present invention is to
`provide a novel apparatus and method for performing
`safe and rapid blood supply cutoff through an artery, a
`vessel, or other tissue in an efficient and sure manner
`without the need for visual inspection.
`It is a further object of the present invention to pro-
`vide a generic line of electrosurgical tools capable of
`supplying temperature-controlled electrosurgical en-
`ergy over large areas.
`It is also an object of the present invention to provide
`a single device which allows for both stoppage of blood
`supply and the cutting of the artery itself subsequent to
`stoppage of the blood supply.
`
`7
`
`

`
`5
`
`10
`
`3
`These and other objects are accomplished by using a
`plurality of area electrodes and the individually control-
`ling the energy delivered to each electrode by means of
`a switchable temperature feedback circuit.
`It is a further object to provide a feedback means for
`monitoring temperature, impedance and power to pro-
`vide a control algorithm for operation of the device.
`The objects of the present invention are provided by
`way of a forceps including split jaws and having a plu-
`rality of electrodes as well as a plurality of temperature
`sensors wherein operation of the device is accomplished
`by a scissors-like movement of the forceps.
`It is a further object of the present invention to pro-
`vide a structure whereby the split jaws of the coagulat-
`ing forceps have an intermediate cutting blade com-
`bined with said forceps in order to sever the ligated
`vessel in the center of a coagulated area.
`It is a further object of the present invention to pro-
`vide a coagulating forceps with electrosurgical genera-
`tion energy applied through a switching circuit.
`It is a further object of the present invention to pro-
`vide bipolar delivery of energy to the coagulating for-
`ceps.
`
`BRIEF DESCRIPTION OF THE DRAWINGS
`
`A more complete appreciation of the invention and
`many of the attendant advantages thereof will be
`readily obtained as the same becomes better understood
`by reference to the following detailed description when
`considered in connection with the accompanying draw-
`ings, wherein:
`FIGS. 1A and 1B show a general view of a coagulat-
`ing forceps according to the present invention, with
`FIG. 1B showing a close-up view of a compressed ves-
`sel being clamped by the forceps;
`FIGS. 2A, 2B and 2C show a construction variation
`with FIG. 2A illustrating the clamping of a vessel by a
`forceps having split upper and lower jaws, FIG. 2B
`showing the addition of a cutting blade to a split upper
`jaw and FIG. 2C illustrating a side position cutting
`blade for a single pair of upper and lower jaws;
`FIG. 3 illustrates a schematic structure for a power
`source controller system;
`FIG. 4 is an illustration of a schematic of a monopolar
`construction of the power delivery system;
`FIG. 5 is a schematic of a bipolar/monopolar con-
`struction of the power delivery system; and
`FIG. 6 is a coagulating linear patch.
`DETAILED DESCRIPTION OF THE
`PREFERRED EMBODIMENTS
`
`Referring now to the drawings, wherein like refer-
`ence numerals designate identical or corresponding
`parts throughout the several views, and more particu-
`larly to FIGS. 1A and 1B thereof, there is illustrated a
`coagulating forceps in accordance with the present
`invention.
`FIG. 1A and FIG. 1B show that the forceps 10 hav-
`ing handles 11 and 12 forming a scissor-like arrange-
`ment by which the jaws 20 and 30 are brought into
`contact with the compressed vessel or tissue 17 as
`shown in FIG. 1B. A plurality of electrodes 21 are
`shown on the upper jaw and a plurality of sensors 31 on
`the lower jaw. Although four electrodes 21 and four
`temperature sensors 31 are illustrated, any number and
`any arrangement or size of electrodes may be used de-
`pending upon the type of vessel or artery, vessel or
`other tissue which is to be cutoff. That is, for different
`
`5,443,463
`
`4
`types of operations and for different types of arteries,
`vessels, or other tissues, different devices or forceps
`may be configured to conform with certain areas of the
`human body or certain access areas which are used in
`normal surgical procedures may be utilized. As an ex-
`ample, the forceps may be extended to form a needle-
`nose configuration or the size of the forceps may be
`reduced and accordingly the shape of the electrodes
`may be changed to take into account the size of the
`forceps. Furthermore, the configuration of the scissors-
`like arrangement is for purposes of illustration and the
`jaws may take the form of a clamping structure having
`either a straight head or an angled head as is normally
`used in any of a variety of clamping devices used for
`surgical procedures. Additionally,
`the scissors-like
`structure may be replaced with any other mechanism
`that will cause the forceps jaws to be brought together
`when activated. In particular, various types of mecha-
`nisms typically used in devices for laparoscopic surgery
`would be available.
`When the forceps of FIG. 1 are used, a two-step
`procedure is involved in order to cut the vessel. That is,
`first the forceps 10 are clamped across the vessel as
`shown in FIG. 1B and the tissue is heated for a predeter-
`mined period at a predetermined temperature in order
`to ensure the coagulation of the vessel. Then, the for-
`ceps is removed and a cutting device such as a knife or
`an electrosurgical cutting is used. This requirement of
`two devices in the two-step operation can be eliminated
`by the single device of FIG. 2B.
`The FIGS. 2A and 2B illustrate a bifurcated top jaw
`with the electrodes 21 on the top jaw being divided
`between each of the two parts 38 and 39 of the top jaw.
`The bottom jaw 41 is a flat surface having a groove 42.
`The bottom surface contains the sensors 46 identical to
`the sensors 31 in FIG. 1B. Also shown in the FIG. 2B is
`a cutting blade 49 schematically shown as attached to
`an electrosurgical unit power generator 50 of the type
`generally used for electrosurgical cutting procedure.
`With the arrangement of FIG. 2B, the multi-seg-
`mented electrodes are powered and the tissue is heated
`by the power source controller 150 until the com-
`pressed vessel is coagulated and then the cutting blade
`49, which slides between the upper jaws 38 and 39, cuts
`through the tissue into the lower groove 42. With the
`embodiment of FIG. 2B showing the connection of the
`cutting blade to the electrosurgical power unit 50, such
`cutting can occur by way of a normal electrosurgical
`action which involves a cutting by an are between the
`blade and the bottom of the groove 42 of the lower jaw
`41. Electrosurgical cutting requires less mechanical
`force and more completely assures the cutting of the
`tissue. Thus, a two-step operation is carried out using
`the same apparatus with the first step of the heating and
`coagulation of the tissue taking place separate from the
`actual cutting of the tissue. The cutting of the tissue is '
`completely independent of the operation of the multi-
`segmented electrodes which have already accom-
`plished the coagulation. When the cutting takes place,
`the power is no longer supplied to the multisegmented
`electrodes. Subsequently, the cutting blade either di-
`rectly by mechanical force or through the action of an
`electrosurgical cutting accomplishes the actual cutting
`through of the tissue whose blood supply has been cut
`off by the prior coagulation. Essentially, this amounts to
`stopping blood flow on two sides of an area and then the
`subsequent cutting in the middle of the area with the
`stopping of blood flow and the cutting is accomplished
`
`8
`
`

`
`5,443,463
`
`5
`
`15
`
`20
`
`30
`
`5
`by a single device. The FIG. 2C illustrates a side blade
`cutting structure with a single pair of upper and lower
`jaws 38 and 41. The lower groove 42 still retains the
`cutting blade 49 after passing through the tissue in a
`manner similar to FIG. 2B. The cutting action of the
`blade 49 can also be accomplished by an electro-surgi-
`cal action in a manner similar to previously described
`operation of the cutting blade of FIG. 2B. The excep-
`tion to the operation of the instrument of FIG. 2B is that
`the device of FIG. 2C has a cutoff of blood supply or a
`coagulation on only one side of the area to be cut. Side
`cutting would be accomplished by the operation of the
`device of FIG.‘2C is useful in particularized areas of
`surgery which either do not require cutoff of blood
`supply on both sides of the tissue to be cut or require or
`prefer continued blood supply flow adjacent to one side
`of the cut area.
`The FIG. 3 is a schematic representation of the
`power source controller 150 of FIGS. 2A and 2B and
`the switch matrix for the multi-segmented forceps dis-
`cussed in conjunction with either FIG. 1 or FIG. 2. The
`electrical
`leads connect
`to the electrode-thermistor
`pairs of the forceps by way of connectors 138. The
`thermistor leads of the thermistors 31 (46) are con-
`nected to the matrix switchbank 134 and the electrode
`leads of electrodes 21 are connected to the switchbank
`136. Each thermistor 31 (46) is sampled by means of a
`temperature measurement circuit 128 and the isolation
`amplifier 126 before being converted to digital form in
`the converter 116 and fed to the computer 114. The
`temperature measurement circuitry compares the mea-
`sured temperature with a thermistor reference voltage
`132. The electrode switch 136 is controlled in response
`to the output of the computer 114 by means of the opto-
`isolators 130. Input power from the RF input passes
`through the overvoltage and overcurrent protector 110
`and is filtered by the bandpass filter 122 before being
`subjected to overvoltage suppression by the suppression
`unit 124. The voltage is isolated by means of transform-
`ers 139, 140 and 142 with the transformer voltages V; 40
`and Vv from the transfonners 142 and 144 being con-
`verted by the RMS-DC converters 118 into an RMS
`voltage to be fed to the converters 116. Prior to conver-
`sion, the signals V,-and Vvare also fed to the high-speed
`analog multiplier 120. RF control from computer 114 is 45
`provided through interface 112.
`The FIG. 4 provides a schematic representation of
`the connection of power source controller 150 of FIG.
`3 to a multi-segmented electrode forceps having an
`illustrated four electrodes. The illustrated embodiment
`of FIG. 4 shows a monopolar construction having a
`connection to a patient ground pad 120. The electrodes
`121-124 may correspond to the electrodes 21 in FIG. 1b
`and may be located on the upper jaw 20 in line or they
`may be located as shown in FIG. 2 with two of the
`electrodes being on one of the upper split jaws 38 and
`the other two being on the upper split jaw 39. Although
`four electrodes are shown in the FIG. 4, there is no limit
`based upon the principles of operation. Neither is there
`a limit on the arrangement of a particular number of
`electrodes on a particular portion of the jaw. The nature
`of the surgery to be performed and particularly the
`nature of the device for performing such surgery will
`provide the impetus for the size of the electrodes and
`the number of electrodes and the positioning of the
`electrodes on the forceps.
`In the illustration of FIG. 4, there is a voltage from
`the controlled power source being fed to one or more of
`
`60
`
`50
`
`55
`
`65
`
`6
`the electrodes 121-124 depending on the condition of
`the switches 111-114. This is a monopolar operation
`and the grounding occurs by way of the patient ground
`pad 120. The temperature sensors 31 are not shown in
`the FIG. 4 embodiment for purposes of simplification
`but would be clearly positioned in a manner similar to
`FIG. 1 and FIG. 2 and the outputs would be fed to the
`device of FIG. 3.
`Any large tissue area or vessel which needs to be
`coagulated can be covered by a number of electrodes by
`segmenting the large area into a number of smaller area
`electrodes of the type 121-124. With this type of struc-
`ture of smaller area electrodes, individual control of the
`energy to each electrode through the switching circuit
`of FIG. 4 is available in order to achieve controlled
`coagulation over a large area of tissue. The temperature
`sensors 31 or 46 are employed to sense the tissue tem-
`perature. Allowing the tissue temperature to reach a
`desired value and maintaining that temperature at that
`level for an appropriate period of time provides the
`physician with feedback concerning the coagulation
`process which would be impossible to achieve with a
`visible inspection of the surface tissue of the vessel
`being coagulated. This temperature feedback ideally
`provides for the control of the depth of the treatment
`and uses what is known as a “slow cook” of the tissue
`over a period of anywhere from several seconds to
`several minutes to achieve the desired therapeutic affect
`of cutting off the blood flow.
`'
`Studies of thermotolerance of cells indicate that
`maintaining cells at 43° C. for one hour produce a cell
`death. The time required is halved for each degree
`centigrade increase above 43“ C. Cell death occurs
`because cellular enzymes necessary to support metabo-
`lism are destroyed.
`The multi-electrodes/temperature feedback concept
`for coagulating large areas or linear regions can be
`improved with respect to the delivery of energy to
`particular points by way of the switching arrangement
`of FIG. 5 which provides for the ability to use either a
`monopolar operation or a bipolar operation. FIG. 5
`utilizes the same four electrodes 121-124 and a similar
`voltage source 150 with the same patient ground pad
`120 as used in FIG. 4. The essence of the FIG. 5
`monopolar/bipolar switching arrangement is that the
`physician or operator has the ability to provide either
`monopolar or bipolar operation. When switch 220 is
`closed and the switches 216-219 remain open, the de-
`vice functions essentially the same as the FIG. 4 em-
`bodiment. That is, it provides monopolar operation. On
`the other hand, if the switch 220 is opened and if pairs
`of switches, with one of the pair being selected from the
`switch 211 to 214 and the other being selected from 216
`to 219, are operated in proper conjunction, the elec-
`trodes 121-124 will provide a bipolar operation. As an
`example, if switch 214 is closed as well as switch 218,
`then the current will pass from electrode 121 to elec-
`trode 123. In a similar manner, if switch 213 is closed as
`well as switch 219, there will be a bipolar operation
`with current flowing between electrode 122 and 124.
`Bipolar operation is not limited to these 121-123 and
`122-124 pair couplings because if switch 214 and switch
`217 are closed there will be bipolar operation between
`the electrodes 121 and 122 with current passing from
`121 to 122.
`
`The embodiment of FIG. 5 not only provides a
`choice between monopolar and bipolar operation but
`also provides a flexibility within the bipolar operation
`
`9
`
`

`
`5,443,463
`
`7
`so that any two or any combination of pairs of elec-
`trodes 121-124 may be utilized together. Obviously, if
`switch 214 were thrown in conjunction with switch
`216, nothing would occur because there would be a
`short. The operation in a bipolar mode provides the 5
`additional flexibility whereby some of the electrodes
`may be positioned on the top half and the bottom half
`respectively of the jaws of the forceps 10. That is, in-
`stead of the forceps having the electrodes positioned in
`line on the top jaw 20 as shown in FIG. 1, they may be 10
`positioned with two electrodes 121-122 on a top jaw
`and electrodes 123 and 124 on the bottom jaw. Of
`course, the same remains true with respect to any num-
`ber of electrodes other than the four shown in the em-
`bodiment of FIGS. 4 and 5.
`The FIG. 6 illustrates an embodiment utilizing the
`electrode arrangement concept and the temperature
`sensor feedback concept to provide effectively a patch
`which may be used to control or stop surface bleeding.
`The patch contains multiple electrodes 330 and an asso-
`ciated temperature sensor 340 with the size of the patch
`350 being dependent upon physiologic considerations
`and desired area of coverage. The same is true with
`respect to the choice of the number of sensors and the
`number of associated electrodes. The feedback mecha-
`nism control by way of the FIG. 3 power source would
`function in the same manner except that a physician
`would control the operation of the feedback mechanism
`to provide temperatures which would correspond to
`the requirements of the injury on the surface of the
`person receiving this patch. Although the operation
`would be dependent upon the type of injury or the type
`of surface to be controlled with respect to blood flow, it
`provides a slow cooking process at a stabilized and
`controlled temperature so that all areas underneath the
`patch 350 may be treated in a uniform manner without
`“hot spots” which would cause either injury or undesir-
`able and uneven control of bleeding while also unneces-
`sarily cauterizing tissue.
`The use of a coagulating forceps provides uniform
`coagulation over large areas of tissue by providing the
`proper application of energy to provide the desired
`depth of penetration without reliance on a visible in-
`spection of the surface of the tissue or vessel being
`coagulated. The ability to segment the large area elec-
`trosurgical electrode into a number of smaller area elec-
`trodes and individually controlling the energy to each
`electrode through the multiplexing circuit of either
`FIG. 4 or 5 provides a degree of flexibility beyond the
`state of the art as well as a degree of assurance hereto-
`fore unknown. Thus use of many small electrodes is
`generally preferable to a single large electrode. The
`advantage of many small electrodes is better control
`such as the ability to cause tissue to reach a therapeutic
`temperature with a small amount of power.
`The temperature sensors provide the feedback mech-
`anism which allows the tissue temperature to reach a
`desired value and be maintained at that level for an
`appropriate period of time. This provides necessary
`information concerning the coagulation process which
`would otherwise be unavailable to the physician. The
`
`8
`monitoring of the tissue impedance and the actual deliv-
`ered power provide the ability to control the coagula-
`tion precisely. Once this coagulation is controlled to the
`satisfaction of the physician and the coagulating job has
`been completed, the cutting mechanism, either by way
`of electrosurgical cutting or manual cutting, severs the
`ligated vessel in the center of the coagulated area as
`shown in the embodiment of FIG. 2. Any number of
`sets of electrodes can be utilized depending upon the
`area and the location of the area to be coagulated and
`the head of the forceps can be angled or otherwise
`maneuvered using many of the same physiologic con-
`siderations provided for the selection of any surgical
`tool subject to electrical connection to the power gener-
`ation source and the number of wires and space re-
`quired for such connection.
`Obviously, numerous modifications and variations of
`the present invention are possible in light of the above
`teachings. It is therefore to be understood that within
`the scope of the appended claims, the invention may be
`practiced otherwise than as specifically described
`herein.
`What is claimed as new and desired to be secured by
`letters patent of the United States is:
`1. An implement for selectively coagulating blood
`vessels or tissues containing blood vessels, comprising:
`at least two opposable members and a means for per-
`mitting movement of said at least two opposable
`members toward and away from each other;
`electroconductive electrode means positioned on at
`least one of said at least two opposable members for
`effecting electrical contact with said vessels to be
`coagulated,
`said ' electroconductive
`electrode
`means includes a plurality of electrically isolated
`separate electrodes positioned on at least one of
`said at least two opposable members; and
`radio frequency power means connected to said elec-
`trodes for selectively delivering radio-frequency
`energy to each electrode to pass current through
`and coagulate said vessels positioned between said
`at least two opposable members,
`2. The implement according to claim 1, further in-
`cluding a switching means for providing individual
`control of energy to each of said electrically isolated
`separate electrodes.
`3. The implement according to claim 2, wherein said
`switching means includes means for selecting at least
`one of monopolar and bipolar energy to be delivered to
`each of said electrically isolated separate electrodes.
`4. The implement according to claim 3, wherein said
`switching means includes means for providing bipolar
`energy to said electrodes.
`5. The implement according to claim 1, and further
`including temperature ‘sensing means positioned on at
`least one of said at least two opposable members for
`measuring the temperature of said vessels in close prox-
`imity to said electrodes.
`6. The implement according to claim 1, wherein elec-
`troconductive electrode means are positioned on both
`opposable members.*
`*
`*
`Ik
`*
`
`10
`
`

`
`UNITED STATES PATENT AND TRADEMARK OFFICE
`
`CERTIFICATE OF CORRECTION
`
`PATENT NO.
`
`:
`
`5 ,443 .463
`
`DATED
`
`5 August 22, 1.995
`
`INVENTOWS): Roger A. Stern, et. al.
`
`It is certified that error appears in the above-indentified patent and that said Letters Patent is hereby
`corrected as shown below:
`
`item [63], under Related U.S. Application Data:
`Title page,
`11;, 1992" should‘read—-April 14, 1993--.
`
`"April
`
`Signed and Sealed this
`
`Twenty-first Day of November, 1995
`
`flaw“
`
`BRUCE LEI-IMA.\'
`
`Arresting Oflicer
`
`Co/7rIni.r.x'ir2Iz:.'rr1f Ptuenlx and Tradcnxurlm
`
`11

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket