throbber
edited
`1LevenJ. R:afi2ie§ms1E<i1
`‘Department 9-? 1% 51:35;
`1New Maxi-Q9 state 1
`A
`
`L35 Crates,
`isfiexzas
`
`.
`>
`:3?!
`
`
`C‘hemicai and Laser S<:ier1;:es.‘[3i'v%sion
`L03 Mamas Nat’ia3Ana,¥ ‘L3i3t3'Fa‘tt3rv~
`L03 Atamos, New Maxim
`
`
`
`MARCEL DEKKER, INC.
`
`New York" and Base!
`
`i
`i
`
`,
`
`ASML 1117
`ASML 1117
`
`

`
`
`
`
`
`Li%::ra.ry of CongressEafalggagix;g4i§141§n}3iit;ati(2n. Data .,
`
`;:‘§z§isi¢;a:1'i;, cixexnigzal, and hioicgical appficaii0ns.f e..c2ite-:3
`Lasexmiusze-ti V,;;1asm-as ::
`by Lewis
`Réxxiziemski, ’33a’x«’id 23;. iiremers.
`>>
`
`>
`‘
`
`.1." Rhdziexnski, Leon 1., ’ §9;'z3.s'3§
`
`’:‘;3awer.iasers.. ’
`
`0'13?
`
`This baak is prizwzd on sreiiiafree ip’:e2;:«e:r.
`
`Qopyrigh’-t © 1939; 1*:iARC.BL.DEKI{.ER. me. A1: Rights Reserved
`
`Neiiher this book no: any part may b,a_rep‘mdw:ed Q1‘ transnaitted in any form
`in by any means, eiexxtronizi or mechanicai, including plmtucopying, microfilming,
`and recording, or by any .inforrnation storage and retrieval sys-fem, without per
`mission in writing from the publisher.
`
`MARCEL .DEK}{.B'R, INC‘
`
`270.Madisim Avenue, Nexv York, New York 10016‘
`
`Current printing (last c¥i.gif):
`109876543321
`
`PRINTED IN THE UP41I’I’ED STATES OF AMERICA
`
`ii
`ii
`
`

`
`Céntents
`
`
`
`iii
`-xi‘
`
`36
`
`6]?
`
`6.Ԥ
`
`'33
`
`72
`
`7,5
`7’?
`
`88
`
`§2
`
`93
`
`:95
`
`99.
`
`I00
`
`101
`
`101
`
`105 M
`
`105
`
`110
`
`
`
`
`
`3 {ntro»duc£ion to Laser Piasma. Diagnostics
`H _ Allan A. Hans; and Hector A. Baldis
`
`?»1
`3.2
`
`Introduction
`
`Introduction to Optical Diagnostics
`
`ix
`
`fLaser-Infl11c=efl.. ’Br-eaiyfkzwzzz Au U‘§1sdat£:.
`
`;I§;;t;a:iu»c't:i;1n
`of Eicctrons
`.
`Eiemran €§'r{::§v£E1 in -.Ga$e»s
`Lasér~I:a;&.u::.:w;'z.',Eneraizzgmwxtx mi Solids am Liqzms
`.. {fim::»aiu.s:i:iz3g 'Rem_ar_i<s
` R:a:fm’*en:¢:.e:s
`
`{!(1€1iI}‘g.1§'f .P?us£—Br=eakti.ox&In Phenomena
`abexf
`Ki)-Qt
`
`Z’5:it.f<3»§i¥;:<:3;iiz:s:1
`Ciifizsatpifin 0f 21 ’P’mpagating flasma
`Absmrptian {Zhafanteristics Bf Hcatsni Gases
`Figattgrgs cf 1?fi:opagati.n_g Plasmas
`$3312.-~I}i1X1.Ensi0n.a} L:aser~S'u';3po1'1.ti:€3 ’CB1‘£fl3’H$1i0n Waves
`C3I.1e~Di.m.ensi0naI ’La.se:r~Suppcarted Detonzxtican Wave
`*One»13irj11.ans.ira’na} Laser~Suppin“te-d Radiation "Wave
`j:’i.‘ransi¥t'it3'r1 Regicms
`Radiai Ex;§arz.si:3‘n
`Thezfmal. Co;up1i.ng.
`523.3. Other Factors‘
`S’umn1a;fy
`References‘
`

`

`
`

`
`
`
`x
`
`3.3
`
`In_tmdu{:t_i_on to X—ray Diagnustics
`References
`
`4 I'.a3.se‘r#-Sxzstaixled P'¥as'}fias
`Dennis R. Keefe:
`
`4.1
`4.2
`.4,-3
`4.4
`$5
`
`Intmduction
`?r.incip1cs {sf Gpcratian.
`£&'1'm!;ylica1'MQdcLs
`Eagmrimental-S£13dii8S
`AppIi£.=atic;m.s of ‘fink: La_scr«S;:s£ai_t3_;$d P1351113.
`R-c{cr'e;nc£:_s
`_
`
`‘
`
`-
`
`5
`
`Infléftiailly-Ciuniinaifi Fusion
`Rat::e;rt- L. McC§{31'3_: angjcg. 3911;:
`
`'S0_1‘1'r'es
`
`-
`
`,
`
`I*Iisi_orica'i Oiverviexxg
`5.1
`'Laser—-'I*‘us'iorz Scaling Laws
`5.2
`$5.3 Camnal Physics
`5.4
`Xé-my‘ Genex‘-ati'orx by L-a_st:r«Pmduced Piasmas
`5.5
`Lam-<r—'Dzivcfl A'£1}'a:ti<_§:i
`,$_.§
`fiydrodyiiamio Stabiiity -afifiléiaiiveiy Dri=sz:_e'2:z._e$1_;1'¢II:r:
`5",‘?
`.Zr:.t‘atiiati_o11 Unfiifatirziiy}§ie>£g'1z3i&1Z1If:iitS'
`5.8-
`Impiosicén Ezxjgrerimeats
`Rtzfsarexzées
`'
`
`'
`
`6 Laser-Based Si2.zx1i€{m_é!11£f'i£tr 1%§>rimt.i;_:n
`;Iaseph'}E{. Wachteir
`
`6.1 Aspects of Semicandncter Fabrication
`6.2 Appiigations of Lasers in-the S<:mi__co£'1'dncto_r Industry
`6.3
`Research Areas
`6.4 Outiook
`Rcftarcnces
`
`'
`
`7 E S1m:_trochen1ical Anaiysis Using Laser }’}asma. Excitation
`Leon J. Radzian1sk'i and David A-. Cremers
`
`7.1
`
`Review
`
`-Methods. and Properties of Analysis Using Laser ?iasm-as
`7.2
`7.3 Analysis of Gases
`7.4 Analysis of Bulk Liquids
`7.5- Analysis of.Particle-.3
`7.6 Analysisbf Solids
`7.? Advances in Instrumentation
`
`
`
`Cements
`
`131
`161.
`
`.169
`
`169
`1_'??2.
`- 182
`139
`19.6
`20,3
`
`_
`
`_
`
`20?
`
`207
`2211
`217
`224
`227
`239'
`.243
`251
`260
`
`269
`
`269
`276
`283
`299
`291
`
`2.95
`
`295
`
`296
`302
`306
`309
`3 13
`318
`
`

`
`xi
`
`321
`.323
`
`.32?
`
`32?
`312.’?
`
`33%}
`
`335
`"341
`
`3944
`
`343
`
`347'
`
`34-’?
`350
`-
`353
`
`2363
`"365
`369
`3'22 _
`"376
`376
`
`385
`
`385
`
`386
`413
`
`
`
`Prognosis
`References
`
`-
`
`m'1g§a'men};3{s=of.A§§1ysis {if Sniiés by laser-Produced
`Iasiizas
`_
`
`flrrgzinimzitian
`I'mr'o'::meti.<.:in
`
`'
`
`
`
`. fiwmmmyy
`..
`9561?}: Sz1e(ifiaI.:__, Pats: Mitchell, and .Nichn‘las .-S. Nogar
`
`Clonvzniisfinai gdiid -Samgie ixitroéuetian fer Atomic
`Spe_cir£}sei3py
`Laser. Ablafibn £3f'St3iid Sampies.
`fi_L_b1at__f_'<:>2j1 -fur Sarx1j_§_1a‘_Z‘,-:_z_1‘r..'~*;2'::'Z:__:<:'1'i';'.7¢1;1 in Atomic.
`-Spgwaetzfsasntsgky
`Rgaiatis/Q NfIi‘:i'1’it;:3f;' GHQ.-a&?!:.3'f‘ Kbiaiifin fur Sa.n'.I'pic 1'n£r<3x:¥.u<:£'i'021
`in Atso':31iz_: Spfictmssopy
`-
`Laser S::su_rce.sf{3r Mass Spectrometry
`Applications :'_of Laser 'M§crap-robe
`Appligatirms of'1..3ser Des<'3r'ptic'm and Postionization
`Conclnsion
`Rcfeftmces
`
`Current New Applications of Laser fiasmas
`Allan A. "I-Iauexglfbavid W. Forsiund, Colin J. McKinstri.e,
`Iustin S". Wark, Philip J. I-Iargis, .I'r., Roy A. Hamil, and Joseph
`M. "Kinda!
`
`10.1 Introduction.
`10.2 Appfications -of Laser-P'Ias1na-Ge.nerat‘ed Xvrays and
`Particles
`10.3 Laser~Pfasma Acceleration 0fPartic1es
`
`7
`
`-
`
`'
`
`'
`
`
`
`

`
`xii
`
`_
`
`b
`
`.
`
`=£3;:m'teri{.s
`
`1114 Lasem-Puistad Power Sxvitching
`Refierances
`
`Index‘
`
`%
`
`-
`
`1»
`
`£324
`432
`
`437
`
`
`
`

`
`4
`La%§eriii?Susteaine Pleesmas
`
`
`ifienzfzis R.
`Carrier"far Lzaser
`Univeeizy of';Teze2£§3*e¢ 59¢: iérstiktzfe
`'3.¥I:.I{§i?t‘e:'ix'£3; Yéiznéssee
`
`4-.1
`
`INTROIJUCTION
`
`fi!.."’-SI -033-=
`’%?%¢'3€»
`Piasmas created -by the .raéi.ie£_iui;iff:Gfia ;fQ:<jZmS%13 =1a$fi'1:
`served with the .a£ivt_:'nt' 431:’ “Lgiiant guise” £2;-mvitehed, riiby lasers by Maker
`et "a3. (1963). These piaemas
`.‘h:y_gas breakziowrz at
`the focus oi 21 fees and. were -:s'I'1?.%§ti*~..iii,1..‘~§.:‘;'I.;I*>“1:_.t'i_}'4*' .§er‘-
`.‘di%fafi.en'ef iyhelasfcir
`pulse. Piasmas w'ere- also G5;S$f?fi%?i in farm en the -szvrfaties oi 1.1'&aiér3aT¥s:ir¥
`radiated by'higTh~p£1*wer pulsed or :cem?tim_iox;es.}aeer'3'aft1£¥ ‘fie greyagaie into
`the imzziciem ‘Beam at see:s=eniz'. z.:r':s_:;pez.s_9fi.¢
`the advent of
`
`mnti.nuous, high-power mt§_:><':'n=ti3iie,:::'.ifie 1 _ei.:'£, i§¥;h§éa2:1e_;pe;ssiib.iie tie‘ siistaizt
`a pzasma in a steatiy-state ::o::<5I'iti{m
`the f.£’&..i?5.!;1§ cf a=..2aee_;r
`and’ £116
`fi¥3t.experin1.e.Iita1 ebsexivatigjn cf 21 -"‘-eeniinuous 'ep_t’iea1 tiisehaege” was r_e~
`ported by Generaiov et el. (1933). -’I.‘ii"e- centixxucms, laser-sustained gpiasma
`(LS1?) is often referred to as a ce:z_fi;1';x;<>j;1$ epticai disc_I;‘2_a1*ge (C(31)) anti it.
`has .3 Irumber of unique 'pr0p8rtie£- 212:3: n§a1;e;iz=an'in:.erestin_g candidate fer
`a variety Uf applicatiens.
`_
`'
`The laser-sustained plasma shares many characteristics with other gas
`discharges, as explained in dezaii by Raizer (19813) 1‘n his compreh ensive. re.-
`view, but "it is sustained t11ro-ugh a't_§s.orpt;i'on of power frem an "optical beam
`by the pmcessof inverse brems'strahIung.- Since the optical frequency of the
`sustaining beam is greater than the piasma-frequency, the beam is capableof
`propagating well into the interior of the piasma where it is absorbed at high
`intensity near the focus. This is in contrast to plasmas sustained by high.»
`frequency electrical fields (microwave and electredeiess discharges) that
`operate at frequencies below the plasma frequency and sustain the plasma
`through absorption within a thin "layer near t-heplasma surface. This funda-
`mentai difference in the power absorption mechanism makes it possible to
`
`189
`
`

`
`‘I70
`
`_
`
`Keefer
`
`£3
`
`genome steady-Etazcu pia'smas.1?.a.v.ing .rx1ax.im.:i.'m temperatures of IGQOOOK or
`xnore-in '21 #1331 «name near-:zhc--Edens oi a ism.-far -away from any tic-nifining
`strum.-ixxm. A photo of.a._p1a33_;I;a. sustained by 3 “Ease; beam focused with a lens
`3% shown in Fig.
`I‘ A EEOW fiaussian beam from a. carbon dioxide
`
`:_3_._ 19
`1215:? was f;'G£’£‘.3_.‘I_‘$4'§-‘:3
`'I':'1___f<_3czi3 [3e.n_'gt"h ‘1o3‘2_s into 2 aitm of flowing at»
`gon. Fig; 4..1(b§_):s}i=oivs _s'c'h_er:1_a:icaZiy how tm piasrna forms-vdtliin t11c.fI'3.'f:81'
`rayon.
`3 Vania‘-ty of
`$i1£3,s;_‘_Q_aS ._hav.€: been produced
`(3-..¥33?£.t'i§2t13£3'x33}‘,f6'.I..’:$‘i3;S
`é.;trn'11§i.t?g!Ea£¥>€3z1 t_'3i.0dtido1a$ers'operati11g‘a_'t
`_‘g"3l$;€‘;;S at
`‘1 ti¥_L1
`£i%o§.2:1.25 W to several 1:-ilaiwatzs. Most
`;of‘1.(3‘_.6
`:4
`of these rcxpefiriiexiié-were-pcifozmcd;.i_n Qi;.'3.€:'I‘1..aii"
`cr.1_a.2:ge_ -chambers-wim
`_l'_i$:_i3¢..floi:sz, for iI1=a'_t‘ gr-ovideszi by naiural afmveéciion, hm recon!‘ ox»
`;$éc—‘_§:_}3$i'I_r;z§=£}§;€Q $1‘-ail. (19873)? Wells; ‘ea -31,.
`98‘?)_,_ and. Cross-‘and
`mics» -dezaioirnitaiaéd 't’E;:at. the LS? can be <7.;3t":*2*'.fit€2d
`'sI1;;<*J:'c%ss*
`-ccfixrcctivg
`'i:iiS$?éi¥é£z"'g"e;$ iiaaz operate" zizii -ia? _f£iwi:::;g
`fully in 2:
`environment have been caiied “'fp‘2$i5mj£;§r-fins” in t1‘1_c_ Soviet fitoratura, and
`the laser-sustained p'}a'x_'z_n'a..is_ often referred to as an "optical p1asmatro;1_.”'
`'Z_-‘$119,362
`'?xa‘&*§-de,n:Ioz2sirat_ed ihai p'Iasma..coxaditions arc stxéongiy
`
`dgpahdcnt on
`._ifi;€:3I:' of‘-{ho ~;21a;ns:r'iaa Mtiiiiz t‘he- s.i'zstaii1in'g Imam, -and
`that .t}1£%:'¥;>ifii§i2:9;_-
`Egcocgroigcigd .3 xsriiie. ranjge of c;ondi:tions 1';s—
`ing-.aip§ropri_a£o..;;£$133}:ii1a;tinns n'f"1é‘s_er powcr-,_ flow, and optical configura.
`tion.
`-
`..
`_.
`.
`.
`_fIfia«ie;z1::i§gn&.:zai:I::‘Iit;g% to stzxstain a;::1as.:n_a wiiiliia -ac.---small. i_soia:te'<i VOIIXIR6
`a§r;¢1_?1Kf3Yé‘;Iy '
`;31ii‘5§$'?v‘§j11‘B$- and'_-;«ton}pc:atu':e5:.h:as s1'zg_geSt_cd =21 zn2:nbe_r of
`poicaiiai -3-‘153;I3.iQ§\_2i1£?$§$ for £h&_1a$.§f~suS'.£ai2i€fi piasma. since {kc
`can
`operate. in porn hydzngcn and the
`<:_az1 be beamed remwcciy, it has.
`been '.pxopnso'_cj_§ that tho. coziid be used for high specif2c—.=impulse- space;
`propzfisidrx; .g9g_';;g;;';1b81' of papers h'a"v'ode'a2t-with this opp2i‘cation_, and “it was
`the. snhjcct of a jr-oqicsv bjy Ginnii: a:v:1"K_rier (1984). Thompson at al. (19%)
`described oxporimonts in which "laser energy was converted into c¥_cctrica'i'
`cncrgr using a -Iascr~sustainod argon. "plasma. Cromers at a}. ('19_8_5) have
`sixggefiied the L8? as a. source £01’. s;3octro£-éhenzicai analysis and given some
`experimexzta} result; Cross and Cromers (1986) fiavc sustained "pl-asrnas in
`tho throat of a small nozzle to produce atomic oxygen having a directed
`velocity of sevoral km/sec for the laboratory study of surface interactions at
`energies and particle fluxes similar to those experienced by satellites in" low»
`egarth orbit. Other applications are suggested by anaiogy to other plasma
`devices including light aourccs, piasma ch cmistxy, and matcriais processing.
`The physical proccsses that determine the u_niq_ue characteristics of the
`LSP will bodiscnsscd in Sec. 4,2, and the theoretical analyses that have been
`used to describe the LS1? will he a'ddress_ed in Sec. 4.3. Experimental results
`obtained will be presentod in Sec. 4.4 and compared with the theoretical
`predictions. Sec. 4.5 will consider some possible applications.
`
`€
`

`
`Laser-sustainegs Piasmas
`
`‘
`
`171
`
`(:3).
`
`(3) Fhotogr-aph of a plasma sustained by in 600 W _ca.rboz_z dinxittie iascr
`Figure" 4.1
`beam {unused with a 191 ‘mm fecal length lens. (13) Schematic representation shew-
`ing haw the plasma forms within. the focal volume.
`'
`
`
`
`

`
`‘:72
`
`Keefer
`
`4.2 PRINCIPLES OF {JPERATXON
`
`:_.;;. ';:cms;:_._i22
`
`iasers {,‘(a;_£i ht‘.' génerate:j,_in._a variety
`Plasmas that are created 0:‘ st-3sta_i_r£et:1'
`of ‘farms-, <1lc:{2t:"I3](i'irIg,.-eat!‘th%i1'ara£:t§;§;i§£ics Bf ftha laser and optical gimme.
`1:}; used to generate theméi F.ii'gh»»finéjf§Y-pn-3S€:d_l2'1sn'rs can ge11cra£e_p}asma
`breaicdtawn d_ir$ct;iy wiziiég;-aigas'§§:;a§__rw1.iliSi.n atransi{zntexpa13din'g';§}'asma
`similar to an expiosian._-1:52
`1£!}§_e,r _3'_jI.1.t€;:;3siiie5 and lvrzgar puIs£_°- timezs,
`-piasmas may 1>e'i:1iti'atcii__3_£i7t_
`Q .$I3x‘i'ix£‘Lt%$;an:i than 'prnpaga;te'into the gas.
`t"ai'ni::g "ht-.a'm a.t—.sn;:er3oni'?¢‘§vé1;:;;_ tics as-:2; _a{&€"r~s'n$taihad detonatian (LSD)
`wave or snhscxzic ve1ox:i_i;ix=:s_as‘ "'Ta___1.__:»3_’_;:%"'<=:£-'ar.'ia'3§:aiiz:2:t;i ébzfihustibn (ESQ) wave-.
`These transient plasmas Imvai Baez:
`Rafzier {$950) "and xvii} not
`be tmazed _here_:. If the 1338? is
`and tI'1"_¢_ a§tiié'a}
`
`
`
`figéamfitry, flaw,
`:a.%m,;% iézgaétykéfétata 1.3.?-may
`The :;:on.ii_n;n‘ensiy- maiihtainjagéi-at_ =‘a'1_'p§1‘:n§téi;:i'3z n_;:a£r_‘tfiej_'.fi3eu$ of the beam. The
`intensity that ié -availaifiie
`a"'cGiit3:zuo‘u;£;1ast:t-is‘ insufficient to cause
`breakdmem in thagaa, _.‘:2owever, and an..axm_iiimf3z semrce must‘ 133-233;}. to 3m.
`flats thepiasma. .& skstch -of a—St;£aZ€iy-.stata'.1a.st:.t~—si1sta'incd gaiasma is shown
`in Fig. _4.3(b). The plasma -may-he siminecz vziilhiii an xxmfining cizamber tr‘:
`ccnxml {I16 flaw and prmysi:re- at in 993:1 air-'01‘ a large. chamber where the
`fiQw"i_$ cI:etEi‘mine'db:y tlrzgrmgafi buexfincya
`.
`_
`in many ways, 'the3asex«suszaingc_:2.p1asma is si11:.1i}_aI'. ta direct current 01'
`law-frzquaizcy e3ec§rx;}d§I¢s§_='=a:_;'gs and ':ni§.::i:9.vax_re, :§is§:§1arga_s't¥3at-are apar-
`ated in simiiar gases
`'2tfi51a'r-_pra$snx;e$..-Htisvexasr, the LS? vsriI1.g¢ner-
`any ha _7':_xt:£::r{;e- 'c£3§i‘.i}2aci5 and
`Ifighér
`'¥;.<:'t1‘;'1fa€:r_atIz;ra
`'t11a:;1.o't§1er
`-czmtinmaus arc -s£$n'{c.¢$-iiiidl Q-‘an-.135 susitainaé in a steady Mate with away fram.
`containing. boundarics. A fnn_d'an1€:f£ii‘a1difi’eI'6nce in the way in which en-
`acrgy is absorbed by the p}a_sma.is r6sp£3;15§b.2€'>.f£3£'i§1c$f3'11ni:£}'iIfi characifirifififis
`c.f'the LSR
`
`4.2.1 Basic I’hysicai i’ro(-(«asses
`
`In a direct current (dc) arc or in an inzinctivciy c-cmplcd pkisma (ICP‘), en-
`ergy is absorbed through ohmic heating produced by. {he low-frequency or‘
`direct currents flowing in the plasma. The eim'.':£rical Conductivity of an ideal
`plasma is. given by -(Shka1.'ofsky at al., 1966)
`
`neg
`
`If —Eu)
`
`°' “ 32:; (V2 +3")
`
`(4-13
`
`where :1 is the electron‘ density, e the electronic charge, m the electron mass,
`as the radian frequency of the applied electric fieid, V the eifective collisien
`frequency for electrons, and i the'squarc root of «1. In the. dc arc (LG = 0),
`the currents are‘ transmitted through the plasma between electrodes and
`
`

`
` §
`
`:3;:3
`:2:3
`iii
`-35"-53‘H
`2:“
`-3:?125-8.3-l‘S
`
`av
`.33.:
`35%
`
`3:55:2»!
`2;'1!5:1!5.?!
`2-,»:
`
`.;.g:;§
`:55
`‘:3aa
`23
`E3
`
`
`m{m'm=o-.w¢-4m...-.2«
`
`
`Laser—$.z-malned Wasmas
`
`'
`
`-.
`
`.
`
`1'2‘-3
`
`the size of the plasma is deiorrnined by the Sim and spacing of the olectroflo
`and t.¥1e.£:<:'n.fi'12ing' bO3lI.1da-fi§:'S_.
`In the ICP? the currents are induced. in._';.o
`the p}ai3flfi.a from aitornatiiig cuzrents flowing in. a surrounding soianoiiial
`coii. The are is su§g§ino;3._3gsvi'thin a container ‘that determines the _pIaSiIia
`diameter, wheroas tiie lenfifla of the piasma is detormined.'hy the. iength of
`£133 soieizoid,
`In
`’I'i1e..I§:3P operaios at-freqoenggies. woii beiow the piasma frequency
`
`1%W
`
`_
`
`_ (4.2)
`
`'-‘fl-116176.60 is-the of fkoo-.s_pace. In this frequency range», the 613%
`tro'm'ag:'1etic= 'fi£§I.Ei does :;-go‘? progziaggito as‘ a wave. 'witt2'ih the plasma, but is
`a..::3n.;ia:§d. as;
`avanesomi-:wave'(Ho1tand Haskéii, 1965) avg: dis'£a;11c£:s
`c'a.f:;1.a.:e m:c'{e.r <':f~t:he skin fifijfith
`'
`-
`-
`
`
`
`(4.3;
`
`whom 6 is tiara. s-peed. of lights "I‘}:u.s, z}:¢'...pIasma is. sustained by exam’--afia
`sorbed within a.5r;na§1.iay£;r "near its outer surface that produces a r_athcr:f1at
`temperainie '§r;ofi;i§¢ wiih'i'1_1__ t'ho_p‘§asmja_ and limits the maximum. temgera.»
`taxes that ::;a:é'be;-:i.}a:a“ij::e:i.
`-
`_ carbon tiioio
`'
`The f1‘€£}‘§l§§Ii6;{ of this-;op‘tioBi fielfis (2-8 ‘EH3 for the: 1846-
`ido iasor) used."-.f0r'fhe. LS?-.is.-gre.a'tcr than -the 'piasma'£rcqnoncy,- and-t§2e*re~
`"fore 2:113 ir'zci"-d"e;r1£ 1353:
`Ii‘;-an "propagate weii into the interior‘ before
`it is s'ignii‘ii:aI3..’£1.34’ -ifi3§QI¥§i.5d' E}1r€!'i!gh the process of inverse bromsstrahlxmg
`(Siikatofsky -set. a}., 1956). Sincothe focusing of the laser beam prodxicrsd
`by a lens or mi£'.ro'r is e-ssomialiy preserved as tho "beam propagates into fiche
`plasma‘, very largofiolcl strengths may be produced within the piasma near
`the beam -foc1i$..- It is ilxejsie large field strengths that lead to peak _io_1npera-
`turcs in't11e_ LS1’ that are generally groator "than those obtained with either-
`dc arcs or the ICP aizdmake it ‘possible to sustain a smali V0i'1III1f3 of plasma
`near the focus, well away from anyconfining walls.
`Inverse bremsstrahlung- is a process in which the plasma electrons ab~
`sort) photons from the laser beam dur.ing'ine1a_1s.ti'c collisions with ions, new
`trals, and other electrons. The collisiohs between electrons and ions are
`‘tile _doii1in.a-nt. process for the LSP and the absorption Coeflicient is 'given'1'a.y
`(Shkarofsky et 3.1., 1966')
`
`M ms‘ 3n.S[,G 1—e“”"’”‘T
`
`Q-(.9) "ET
`
`(“<3
`
`

`
`374
`
`’
`
`,ij<.e»efer
`
`where E is Planck’s constant divided by zar, k B0i:am.a:§.:1’s c»£3*n»St23Iil?a 8137
`-the t£:mp€’:.r.alure ofl:hee1e.c:rons. T113 factor G‘ is the Gmmt faster and the
`Easter 3:59 isgiveu by
`
`
`A. 3
`3
`15;.
`.22
`
`. L‘
`.
`.
`.3133 "~'-’—" *“** nflfin
`3 H1203’
`.47n°.g
`
`112
`
`I
`3kT_.j
`
`.
`
`‘
`
`I
`
`(4-5).
`’
`

`
`-.
`mg "‘iw imam.
`’-
`32.32:’ i
`;i§’gi-v“c.m» by ear’: law
`
`£acmr,.is. a
`T where Z is the ionic cha:rge and 3,, the ion -dezxsilzy. ‘The
`mecfiaaniclail currectioxi tea the -::.1as.si.c.al theary,-_’amil aztiensiire ”!.:£i’xhies
`
`have} been given "by Karzais and Latter
`Fdr f
`‘
`"
`"
`’ ” " ’
`the phgtofn energy is ’mm.:.h lass than than
`’
`bmzzketalzi term in
`(4.4) is zmarily .in<3e.;§e:1 \.
`.
`cIc:=efiieient:"ls ess.enl;ial2y»pmpz3r:i:mai "t=G”l:ha.$§;1;2a£::. :3.
`size ef the
`will Clepefld an several féctflfis
`_2g;:;a:a.n:et:y;, 1aser»:pcs:ver, and a}}s£2rp.ti»c3’:x cnefifieiant.
`szaf. the-..1aser ‘imam as it prupagrates v2i:thin the
`
`_
`
`
`
`.
`
`“~=«' -val’
`
`‘
`
`..
`
`(.4-E6)
`
`F.EE3‘: abaargzl
`’
`~ where s is tha distance alnng the local :i.i.rex;:.ian £§i’5_;3:’:iii3
`.
`tinnifiength Life: is a daminantlength scaia fc:r’t}'.1s‘3.
`,,
`. 288 it :c§.e=;:rl-:‘*;r’. ma-..s .
`"H133 r:§'is_t;anc=e.-oyggr xvhigah tE:’a’p~{3w€;£,iS absGx*beé¥ frgm {?h:e’bai:am., F&r'tFhis’r:§caa
`2:
`:59-n,»t"1%m dimension Qftha»§ii’gii~:a3It1;}a£aI£iifa ;é2£¥2s:>3éb§i:z_.‘
`"<2:
`piiaatxza
`
`alcmg tha laser beam will he of the cider’ taf ;h:¢;»a¥3sar;):t:»c:n itzzzgiiz. ésiihaiigh
`it is {he absorption 3.Emg1:h that determines ‘tlilailangtii ief-tha»;3}asma»a1:an;g the 7
`Exam fixigs, :1. is the laser beam »cI.iarmeter amt. diziezmiizxes ti-1:2: galasma ’§fi33.I§§?e¢'
`tar; ’I”i1e’;31£1s:11a expands to fill the. begin £:i3.11”eI .ui§:'1.”ti:r:e it
`able fie «21?3$*c«fl3
`pawar, than rapicliy ciaszzmazscs in tenzperazure. m:tsi.:§::: tihes: lsaam ti1rau1_gTh
`thermal <:a.n::1uction.a.nd radiativs lass .machan.isms..
`The pnsition‘ 9f the
`relative to the facal paint is tiriiicai in deiermirb
`ing its sitruciure andilie range cf para.mcters far which it ‘cat; The .maintaine€1.
`Whan the plasma is initiatad near the beam foam, it pmpagataa into. the
`sustaining beam and seeks a stable. _position. The pasitidn nf stability will be
`.locat»e»d‘wher:: the imam intensity is ‘just sujffizziimt t11at.1:.ha ‘a’bsm“ba»x;l power
`will balance tlxalosses due to convection, thermal ccynfiuctinn, and.therm.a1
`radiation. A _number of factors cmnbine to determine this pcssiilcm of sta-
`bilitylncluding the transverse pmfile of the incident beam, t.hefoca1.leng-tl1
`and aberrations of‘ the focusing lens or mirror, the plasma bprassura, and the
`incident flow velocity (Keefer at 211., 1986; Walla at 211., 1987).
`The power per unit volume that is absorbedby the plasma is given by
`
`
`
`P == crl
`
`V
`
`(4.7)
`
`

`
`.=.:-(7-::.-'-av:-;-.:;£
`:\\:9<s<’.s<o,~;z;.z:¢§%<‘?‘}-§4::>.n.:.s-\?»>'.2.e-t~}:-2;:2z:§3<za§iz<;;$=§§§3i§t%§&%%o2&2uz;::zEEi£E§.iii:zii:.zné$.:fi$'a.$i:$;£¢L$:2£i.i$2
`
`s:$::'-3-5:55:53-.:sa\m:«\.
`
`i.aser«$u3'xainet! Plasmas‘
`
`375
`
`where I is the. local irradia1,1C€. of t1:1fi..1aSe.I boarn. Since I depentia on -the
`transverse profiie, of the-‘incidfimz
`as W833 as tho focal Iongth and aber-
`rations of the lens, these ohametcrisiios wi}l.infi:1_£:11_ce theiloraation within
`the focai region at wh_;§;_x ihggzahfimnm sus£ainin,g' i'1.1tensit_y is located. For
`exampie, far a small. f{:iumb£§f‘:3§‘éi1$».$13.6-'-iz1£f=Ii$it3i éiecreaaes _r.ap'id_1y'wi£h in-
`creasing distance £2-um..zhe-=fos:x:s-.anci't1,a¢: gsiaisma-will smbiiize:-nc'ar the focas.
`‘For a larger .finum‘ber system?
`1335 ¥a_p"Ed1y‘aIid the-
`plasma will -stgbifizc ai .a::po's§fiia<:r ';fu_1;‘iih¢;r ;aaazay:fiiTr£é3.:%ix.t:E1a£_ocx;;§. Izideoxzi, for
`
`fiiifiicienéiy 1m'3g=-"fecal ._1:s1.:2.g'-th._S axis?
`Kasai:
`j
`ob-
`served to p1-op'a_ga;te many-:meters {Raz§§£;.;1§39.)=as “lasaresnpgxqnad cam-
`'bu51ion waves" at sumqnio
`r:¥e;;;6:z:1i3‘1:‘m§.i':I9‘y the. intarm
`The éetaiiad sgéatial
`fgrmaijc of
`iafioxrss betwaan-iheogfiicai
`piafiina,
`I11‘: gas; and the flew-'t'hmugii ¥21;e»fi._;ii'9«sza;B.:a.;. 1% W322 ‘pain:--wiiisin
`absorbaé.
`th6teI.3IP$‘6i;r;"aturé§.an;df fims: ':a':i%_:t£:=a}:3§_uat.:fi
`that
`from the‘ laser
`with -the ins: tfirongh zzammizion-, zwzzduzation,
`and thermal :adiati't:m. file position :i:1.t}m“§béea;§2__re;_1atiyo to {lag focal point
`at which the 'p}asma siabflizos
`the structure
`of tho plasmamat-,.-in tum fietorninitew am ggmfiifinns txf__p£:"w;::3 grcssurg,
`ai1<3.fiW'£hjr'12?11.i.c:h a st.a.ih§¢'p'1:as'fi1a
`out inside-large
`Most of tho eariy
`was: detzsnxained
`chambers or £1: gzpen-a"it§'W§1ef!E8
`by the effects of thermal} bnnganay, ZI?‘_‘meé_.f'€?3£.:=Eii geoinjetriaass mm naezi and
`thy; 13ri?;‘;s'S2'1te- and laser
`ééfiiié f$3§,i1€3i$i$ of
`aixd
`Wheté-it was poxsiléiié to s:z:zm'i11.t21“£s.;I;;SP=..ii: aéwariexy -of gases _(;:-kn-
`eidaiov ct-£1}.-, 1912;. xcmav at _ai.,--
`'*Fhasé.. mtpezimmts
`indicated that ‘there were nppar ané
`iimits ffirfhoifi _powe.r and
`pressure at which the 1.5? -coifiti
`susminéd.
`.
`Genoralov et a1. (1972) suggested that tho upper limit for power was a re-
`sult of forming the LS? .w.i.th a hotizonzai beam. In this gemixetzy, thermal.
`buoyancy -induces a flow transverse to £1123 optiaal axis, The induced flow
`carries the piasma up and out of the beam when.'hig'l1er'1asiér_p.t3w&r muses
`the plasma to stabilize f'art'_}1cx from the. focus. They were unable to estab-
`Iish an upper“ power‘ f_limi£-when tho experiment was oper_ated with the beam '
`pro_p'agatinTg -vertically upward. Kozlov et ;a'{. (19%) deyelopoéi a radiative
`mode] for the [SP and explained the upper power limit on the basis that
`the plasma must stabilize close enough to'th'e> "focal point that the geomet-
`ric increase of Iaser beam -intensity going into the plasma was greater than
`the loss of intansity due to absorpfiion. They specuiated that the failure of
`Gcneraiov at al. (1972) to observe this limit -in a vertical beam was due to
`‘rapid extinction and reignition of the plasma.
`It is clear from the experi.men't_s of Generalov er al. (1972) that flow can
`have a large effect on the range ‘of pressure andlaser power that will support
`
`

`
`‘W6
`
`Keefer
`
`
`
`Fiastxnas sust-a.i.nsd in tho frat: jot issuing from a nozzio have
`a szabio
`boon studied by Gerasimenko at 31. (198.3) who n1aa'.sured the discharge
`’%;s*f&3e%?i‘3 nnincigy alozxyg {ha bean: andxannges for the existenizn of a $toa€iy~st=ate'
`
`d;‘is's»;:h
`..Rn;:::nn1.%i§»
`y
`nonts’ havn been oozxcixxctnd in confined tubes
`
`:.vha1%e’=»£.0i1:ced nnnyactinn :1 :ni'nat€-ni nu: flow (‘Wane oz 211.,
`:£9{87_). 1:; was
`.:f0’unr?: ihaifi-n addition. in power and §}f$S.Si1f-£3, both the flow and nptiycai ge-
`OYII.
`in ”
`' gvg-:2:pi”GfBfindinflnen'c:-3 on the cfharactmisiicsyof tho =
`
`
`
`
`tho L-SP <:s:;:;.:icif2_:»’c=;, susta.i-nan are ya}
`y
`_y
`._
`o~:nIy:.;Eor the gmriicziiar.-experimental’ gjeomntrynsed to obtain ithkem.
`
`
`
`when tho pins
`inn ‘ iasma -
`
`
`
`
`
`
`thnft itiho ’3=1e-2* absorbed fmm £235. tzeoam, given byis balanced-’
`‘fine: convective; con§’uc'§i9<7.o, .a‘nd irafiiation Ioiss-es. -Sincies, in generai, "the ‘in,
`
`
`' _ T, the B33122, the p1asma.wi11 a.<:ijust.._;i‘z"2 size, snap»
`
`
`
`
`
`
`2!; rBs:1x‘F:...nf‘E3onn3i4h:o:nn:i iransitinns,» rosniting in lino ’rar}ia£,ion am: absnr
`tion, =and..frno;~?§:onn£i amzi fies-afrose téran:si‘tions’that resin}: in .m'ntin'unzn vraciz
`a’iiQn»-afifi: ahsoafpt
`Qve; §I1e.op£_ioaI§_y thinportion of the spectrum, ‘chi
`ran.1.am>.n xvii? : stmngiy ;i?::$i:rbaii by the plasma or sn:‘ronnr3ing nifinm.
`regions and wii} sinxpiy osc;ap»c from the plasma. (Ether Iportions of the spec» b
`mam will
`sirongiy absorbed, 1‘e2:'uking in a transport of energy within the :
`plasma. In the oniiizaiiy ii1ick1'imiI:,_this resu1‘ts;in a diffusive energy trans“
`p-Cart that is similar to thermal coimtiuction, but may be significantly larger.
`Detailed cn1Acui.ations. of the LS? (long and Keefer, 1986) indicate that this
`radiative trzmsporz is a szionxinant factor in the determination of the stmo
`turn and position of the LSP. In particular, it is the radiative transport that
`’ determines the t7ompe'ratur,e gmdiont in the upstream .fr.ont of thoplasma,
`thereby determining the position in the beam for which convection losses
`are balanced by -absorption.
`The position of stability for the LSP also depends on the plasma px'os~
`sure, The absorption coefiicientis a strong function of plasma density, as
`soon from Eq. .(4.4).. If the pressure is inczroasocl and the absorption ooe:ffi«
`cient increases, than the plasma can absorb more power from the beam and
`will move away from the focus to a lower intensity region in the beam. At the
`
`
`
`

`
`f‘.-aser=~Sust\a_!ne£i Piasmas
`
`'
`
`1‘???
`
`same time, the plasma lengt-h along the beam decmases "because ‘cf the dd»
`£;1f$as‘a in abs<3rptia11-icngth, but the diflmfiifli increases ta fill the-la:-gar -crgssg
`sectiegm (if the ‘heath. Thus-, for the same. laser beam co2zc¥§tio¢’!'$,- "a .h.i'g“hex.-
`pressure LS1"-’ will stéfiilizc _a_ point farther away -from the focal _poi3::t and
`have 51 sift}allfir.-length-1o»dihme1e'r ratin than a iower~pres.$ure
`iI'I£:idant.'ia_se'r pawn":-,_. as well as the ffnumher and aberratio'_ns.{1f the ff.)-
`mssing t:3pt.ir:s_,- will -(flax: infiuance the ;':,_<,3;sIi_i.'-5.911 at which the: LS? st;rib_i}izes-
`"within.-me .ftm'a'::t2, ,F3':m':'1 jzfie forégqing éiiscussian, iris‘ aim that -as the-'b_ea.a1:
`}3.!3W£:2"." is incxeased, the plasma -wiflmavc up the
`away from the £6331
`T5113 distance ihatxit masses is ciatcrmiaed fir the flnmnbgu‘ (ztatiimf
`fq«ns1.‘im.1g;3:.2- to tixt:
`diézinvzerz 'ine.i:3'$m_1m thaj-f:m::.:~:éi:_g §;!e‘ftI.1ar1£3- 'f8;f'i31.13
`;3pt§€:’E§I
`sings the rate <'>f_ch.;a:ige: in main -fixtensiiiy
`iimixzai
`axis
`xvii?! ah iz1{;:ea,s<~3':in fffmmhtzr;
`aihmifflfliflnse '¢a,I1.-83$£#'§1s&’V3-
`cm _p13;sma pcasii'i'orz (Keefmf. et 31.,
`In pill!’-'¥':i'£‘.‘1_I__l&x, syhm-an an-
`:1tI1;a'r mm {mm an ugstabze laser izfiéiil-3:3: is. -fézusfea by 3 syn-atical lens,
`it.pr§3£diti€>_t?is an annular piiefoczzs region hafdre -reaching thefacai
`azni
`_ £1t€:. intensity $31
`r:'egi'_r;:n xzaagr "be. $x1ffii:.iL=:.n‘£' t_o snstaifi an .=a:;-§;_m2'a.z"
`Efrem-t§§1e.£3l3sanratians discussed aibme, fit is Eifiiai‘ ihai"'§-hfi':f):ji3Sii3€3f1 9f
`the: glasma relaiivs in the {ma} win:
`E1".piflffilind-Eiff£§t§i'£}31"'§}1§'}§La8111a
`éizazafiiéziristicsa fiat tffle ‘apps: i.1'i2*n'.im pf-s_ta7bi¥i1y fer
`'iasaw'_r-=
`ana-
`-,p:£‘a3X*£Iii"£*:_; '-it‘ a§5.'§J%éi"2*-S that £33332 pl:;~'3$_n1a Baeebmes .11xista'iiZe.'w}m'n i3t"mmes-
`f8f'f}'.‘§3£££ ifhé fi:3.GaZ'p{3§I1_t. T111‘; mayba due ta‘-{ha fat-:1, as ;_;:gpp3ad;hyf§<§I€S$1Qv
`6% a1. {-19%}, that as the priasm-a maws sufficiently far-away
`film
`file" ram {sf incraase of the beam .i1'}.£821S§__ty in £231: é1j§r_ac;t;i_c3;1 Qf-ygfiyggfiigxg.
`snaialifir. Sizzce £;h"e. tfinapéiétizra <35 ihé p31a;*s;ijrxa1.:ni;;:s:,-fat:-irea:ze..ca:s.tI::e
`prqpagam into the ;'zp.str'c.a1I'I1 ezige £}_5f‘theé"}}las;;;iai t;ii'3- ixstensizy nf--the.
`’beam='mns'£ 3359 increase. At-some paint, ihe;_dccreas'<: of tlzehfiam intensity
`éizzes tC:=-aifistirptiem is greater than the itzcreeasa due {<3 focusing, 33 the plasma
`Imsiahle and exzinguishes. Rcceni izaiczflaticans by 3'_cng.and "Keefer
`(198-?a), hawavcr, infiicate that there. may exist local regiszns wititin the LS?
`where the-‘bazim .intensi'ty dec:re3se,s.'as it psnetraies the plasma.
`. A'£:£3:1s§'(ierabic dagree 01’ control of the structure. and positing‘ of the L3?
`can be gainzd throllgh both optical geometry and flew, in additian to 1353:
`pnwcr and "pressure. Utilization of these: addétional parameters makes "it
`possible to successfully operate the LSP over a wider range of experimental
`conditions, enabling a wider .range of potential app'iicati0.ns.
`
`
`
`4.2.2
`
`§’ias.ma Characteristics
`
`Laser-sustained plasmas "have been operated in a variety of molecular and
`rare gases at press'_u1'e5 from I to more than 200 aim. The resulting plasmas
`have characteristics that are similar to are plasmas operated at similar pres-
`
`

`
`177:8
`
`-
`
`-Keefer
`
`am usually somewhat highs:
`sures, {mt the pcak tenupcraturcs in the
`than these for the ccmparable arc, Ra:¥iati=on "item the plasma can be a Sig-
`nificant 'fI‘aCiiO’I1 of the total pzawar ,iz?:pI.1.t, and .rar3.iaii0n transp.r;:2r!: plays 2.-
`majcr tale in t:‘ctctminin_ the structure‘ of thc plasma. Co1::tinuu.rn —abscr-p—
`tion processes are cf13attici3lar,1’mp0.ttatzce in these ;plasm.as since thcpower
`to wstain the plasma is aiascrbati -tlzrctzglz these. me.-chanisms,
`The» .caniin1mm ahccttzztizm putiizccss iinyclvcs both l:}{)'i3I1fi.~fi‘€f3 trans.ition.s
`('p}:»0tci£>nizatii}n) anti ft'.6c».f£'cc transifticns (invcrsc bt‘fimsst.f’ahluéng) in
`wlzich phm:tmjs are absorbcd. fmm the»»l.a4scr’l::eam. Thu .fr<w-ices. transitions
`iI1?t:tlv6=»‘:flectron ccllisicms with 56:13, Gthfif éclcctrcns, and .’ncutr:al particles’
`{siziiaamfslfty c: .31., 3;’9‘§S-;;; £3:r.i‘c:m, ’19fi4}..
`i39mi'nan:t abscrption process
`
`for than is fiiiffliligli cc?ll§3_ion.§ ihctwcteti
`.
`..
`;xft.s 3-m3”icns, ,ar1d*t,hc a_b%m:p~
`-tiozt cccfiicicnt far this ptcccsa: is» given by Eq.
`For the usual Case in
`the 'LSP, kw ~.»:<:::k:'1’~and the ~a'?bs£33.fpii<:;I1’ is; appraximatcly‘ garcgtortianal to the
`sq’na’r=t-: of the la$.er- tvavclcxzgtjlgl
`ta
`’$irs3z:g,'xvavelcr;=gtIl ticpcncicrtcc,
`.311. cf _t.h’c_ rwcrtcci. e?£P€£i;ma.n'.t£2l
`{ES'i3Il.-.€Ii»if£}i" 111.8. LSP"h,:aw'c» beer; cbtaincd us«
`ing thc 1-9.6 gm w.avcle,;ngfl1 carbmn Ciiflxidc laser; Si-ace the length scale
`far the plasma is of 1:he—:*::.rdcr»cf the abserptian .lcnjg¥;Ih;, thc» length cf ‘the
`bplasma and .1113 pm;-er mqttired ti) ’s*us'ta1”:It it iworxld be cxpcctecl in increase
`dramatically .fm'shx:3’rter aaiia’vel;c:1*:gth_ lascrs Ctyggrcntly, -tfité. cnly other lasers:
`-zliztt are manly canciidams ta sustaizt £;{it1I?i122'{1§i}11§‘1 gzlajsxztast-arc» the itysilrcgczi
`€11‘ denicri'um.fluc.riid.c chcmical lasers mat cpcratc at wavclettgtjhs cf 3’ to
`4 ;.&m..
`'
`'
`'
`.
`Tltcrttzal r,a>di:a>fi!>01Et>..iS iizaiiilie cf thfit ::1}I£:st.’.i;2:;§c:’ta:z’1 c'ha:;acterisiics of the
`LSF. Thermal -rad_.i.a1:ion jO3t.ffG1'3Il.’ih3}313$'ifi3 can ai_:c0’nnt fer nearfzy all
`that ;;=t3wc1' abimribcd by the 'f3l’a,s.Ii”1a what} £115:- flow througlz the plasma is
`small anti. will account for :a s.igx.1ilicant fmciie'n of absorbed pews: even
`whcn thc ccnvcctlvc lcsscs are large. Thjc thermal rradiation. consists of
`continuum radiation resulting from _reccx1il3i1*;ati0n (free-bound transitions)
`and bramsstrahlnng (fffifi-’fI‘-fifi tr-ansitionfl) as well as line radiation (:bC}1.,1I1(3*
`buund transititms). Calculatitzn of this radi.atit::n is straightfcrward, ab
`though rather tctiieus, when the plasma is in local thermodynamic equ£~
`librimm (LTE) (Gricm, 1964).
`‘Local tltcrmcaclynamic equilibrium is es»
`tablishcd when the clcctmn colclisional rate proccsscs dominate the pro-
`cesses of radiative decay and recombination. When LTE is c~st.ab.lishcd
`in the plasma, the density -in specific quantum states is the same as a sys~
`team in complete thermal -equilibrium having the same total density, tern»
`peraturc, ancl chcmicalv.c_ompc3iti0:1.
`It should be emphasized that this
`does not imply that the radiation is similar ta a blackbody at the plasma
`temperature. In general, that: spectrum of the Iadiaticm from the plasma
`will have a complex structurc consisting of the superposition of relatively
`narrow spectral lines and a continuum having a complex. spectral struc-
`ture.
`‘
`
`

`
`
`
`
`
`
`
`.-..................,,....,.......¢..\.....a.a..‘.....a...a=m:.wn<M:-w"-ec-ee-«we-a¢<:<4m-eva4+se<+Mc».+-9-a++a-''I+ ''Jam-ac«av:mwmwwmhwuxzwutuzxamem22:2mum>2:22we>2»:2mm:2»anré2;;iks:>2$9:>>>2::2:-m:::-;:-.-:;:'-.§\:'-'::_-_.'::a-j-j:::'i!:';-.:1-:"-:';:;-":.=-.'='-‘i"".7*-".'.’-:
`
`
`
`
`
`
`
`Laser»-SuszaIn'e<i Piasmas
`
`‘
`
`‘W9
`
`Tho a’tisor;;;tiozx- cooflicient in the plasma depends on the waveigcngth, and
`for the o}tr'avi_€$1e12--portiian of the spectrum below the wavelength of the 35350-
`nancio-iines (trans-iiions iiwqiving the ground state), the raciiazion is strongly
`absorbed. by the pizififizxa
`the: cooler s_u:rozmdi.ng. gas. This rosuits in a
`sat-onjg radiative far-{3.:1$port“m

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket