throbber
edited
`Lean J. Rafi2£e§ms§< :4
`‘Department 9-1” 1% 51:35;
`:New Maxi-:9 staitge,
`“
`
`
`Las Cruties,
`£%a%e2<:s:<&3
`
`
`
`Chemicai and Laser S<:ier1;:es.‘I3i'v%sion
`L03 Mamas Nat’ic3na,¥ ‘L3i3t3'Fa‘tt3rv~
`L03 Names, New Mexiico
`
`
`
`MARCEL DEKKER’, INC.
`
`New York" and Base!
`
`i
`i
`
`%
`
` ASML1315
`ASML 1315
`ASML 1017
`
`

`
`
`
`
`
`Library of Congress ?(3afa1;_jc_:a’giggéinéifnbiisatian. Data. .,
`
`;>j‘§z§éisi¢;a{;, cizexnigzal, am: biological app1ications.fa..aite-:3
`Lasex.§ndu;:e-tiV,;_;1asm-as ::
`by Leazi
`Réxxiziemski, ’33a"vi:i 23;. (framers.
`F“
`..
`
`
`‘
`
`.1." Rhdziexnski, Latin 1., ’
`
`’:‘;3awer.iasers.. ’
`
`é<;.7a.s%3i
`C13?
`
`This baak is prizitsd on aaiiiafree ip’3,t;«e:r.
`
`.C:0pyrigh*-t © 1989; 1*afiARC.BL.DEKI{fiR. me. A1: Rigizts Reserved
`
`Neiiher this book no: any part may ba_rep‘mdw.:ed or traxixsmitted in any form
`in by any means, eiectronic or mec:h.ani::ai, including phmucopying, microfilming,
`and recording, or by any jnfoxmation storage and retrieval sys-fem, without per
`mission in writing from the publisher.
`
`MARCEL .DBK}{.B'R, INC‘
`
`270.Madisim Avenue, Nexv York, New York 10016‘
`
`Current p.rinti11g(last c¥i.gitA):
`109876543321
`
`PRINTED IN THE UNITED STATES OF AMERICA
`
`ii
`ii
`
`

`
`Céntents
`
`
`
`iii
`-xi‘
`
`$6
`
`6.}?
`
`69
`
`'35}
`
`72
`
`7.5
`T?
`
`88
`
`92
`
`93
`
`:95
`
`99.
`
`100
`
`101
`
`101
`
`105 M
`
`105
`
`110
`
`
`
`Z’5:it.f<3»§i¥;:<:3;iiz:s:1
`Ciifizsatpifin of a ’P’mpagating flasma
`Absiarptizsn Characteristics sf Heatsd Gases
`Figattzrgs sf 1?:mpagati.n_g Plasmas
`C’311B~}f}i17£1.iE3f1Si<3i1.2i} L:aser~S'u';3pori.ti:<3 ’C9m}:ms1i0n ‘Waves
`C3ne~I3i.m.en’si0naI ’La.ser~Suppcarted Detonzxtican Wave
`*One»I3ir-;1tms.i0’na} Lasensupparte-d Radiation "Wave
`j:’1‘ransi¥t'it3'n Regicms
`Radial Ex;§arz.si:3‘n
`Thermal. Co;up1i.ng.
`523.3. Other Factors‘
`Sumnraxfy
`Reierences‘
`

`

`
`3 Aintroduciitm to Laser Plasma. Diagnostics
`H _ Allan A. Hans; and Hector A. Baldis
`
`?»1
`3.2
`
`Introduction
`
`Introduction to Optical Diagnostics
`
`ix
`
`{Laser-Ind11c=efl..Breaixfimvnz A11-Upsdata.
`
`}§;;{;o:iu»c't:i;1n
`of Eicctrons
`.
`Eieczran €§'r{::§v£E1 in :Ga$e»s
`Lasér~I:a;&.u::.:w;'z.',Eneraizzgmwxtx of Solids ami Liqzms
`.. {fim::»aiu.s:i:iz3g 'Rem_ar_i<s
` Rc:f<~:~ren:¢:es
`
`{!(1€1iI}‘g.1§'f .P?:3s£—Br=eakt3.ox&In Fhennmena
`abexf
`Rn-at
`
`

`
`
`
`
`
`x
`
`0
`
`Contents:
`
`3.3
`
`Intmdumion to X—ray Diagnostics
`References
`_
`p
`
`4
`
`i;;;s’e'§r;S1:st.aine£1 Piasntas
`Dennis R. Keefer
`
`0
`
`4.1
`
`4.2
`4,3
`4.4
`4.5
`
`I’i1t{'0th.§¢2IiiOIi
`
`Principles cf C}pera"ti£3n.
`A31a1’ytic,aI Medfr-.}.s
`Bxperim:en.t:a1 Studies
`Ap;31,icati£3n.s of the Las-e.r~S1:.s£a;ix:ed Piasma.
`Rcfcrances
`V
`b_
`
`5
`
`i’nértiz§liy Confined. Faisinitt
`Robert L. Mcflmry anfi, Jnhn’
`
`’Sou.res
`
`‘
`
`-
`
`A
`
`.
`
`’
`
`131
`161
`
`169
`
`169
`
`1.131
`1182
`189
`196
`203
`
`287
`
`20?
`2-11
`217
`224
`227
`239
`243
`251
`2&0
`
`269
`
`2:69
`276
`283
`290
`291
`
`295
`
`295
`
`296
`302
`306
`309
`313
`318
`
`V
`
`.
`
`5.1 Histaricai Overview
`5.2
`Laser~*Fus’ion Scaiing Laws
`Car-anal Physics
`Xaay ‘Genaraiiien by L;ase'r»1’mdx3ced Plasmas
`Lam-:—'Drivan Aiziafixziii
`i%i}ydr¢:::3y:;a:x11:ic:Stabffity»gf:A¥;>IE¥£i$*¢1y I3:-iszen.:
`.1I‘m::iiaii,::sI1 U'n’.i’formi£y}'§?,r&£3_i:i1:v:‘%:1:?:m}.tS’
`Impiositm Experiments
`Rafemnces
`
`51.5
`
`5.5?
`5.8
`
`6 Lasebflasefil:8’;2.n1ici1n.i311£:t£1r‘fiifiriiziitiiiix
`
`Iaseph "R. ’Wachte’r
`
`Aspe-c:s of Scmicondmztor Fabrication
`15.1
`6.2 Applications cf Lasers in-the Semiconductor I.ndu3t1'y
`13.3
`Research Areas 0
`0
`_
`6.4 Outlook
`Refarences
`
`‘
`
`7 0 S-pectmchemical Anaiysis Using Laser P1asma.Exfiit.at:im1
`L-eon J. Radziemski and David A. Cremers
`
`7.1
`
`Review
`
`-Methods. and Properties of Analysis Using Laser 3?1asrnas
`37.2
`Analysis of Gases
`7.3
`7.4 Analysis of Bulk Liquids
`7.5 Analysis of.Partic1e.s
`7.6 Anaiysisbf Solids
`7.7 Advances in Instrumentation
`
`

`
`X3
`
`321
`
`323
`
`32'?
`
`327
`
`327
`
`331.?
`
`33.5
`
`341
`
`344
`
`345
`
`347
`
`347
`
`35!}
`
`353
`
`363
`
`365
`
`.369
`
`372 %
`376
`
`376
`
`385
`
`385
`
`386
`
`413
`
`§¥¥§€‘fl¥$
`
`'Prcgn::::.si‘s
`References
`
`
`
`’un‘t}a'n2cnia¥;fi:)f 2%u.£z2i’1y$is of Solids by.‘Las-e1?—i’t‘od1zc»etl
`3.:-15:13:13
`
`fang W. Kim
`
`=0}:-a:pt:e'r C!:rganiza'tion
`.I’11:riaii‘ueti0n
`’?ihcno.mcnalag’y cf .Lase1:- Eieatring of Condense..d~Phase
`Yargets»
`
`’t%i_v.c;.3§pe-céftriiascopy
`lhiteiisi y Zvicaswrcments and Ei'e.mcnta1..Anaiysis
`’ .Scm.mary
`Refe:ra.nc:es
`
`Laser Vap£11'i.z2itin11 far S£3’mp1e Inirodzxctmn in Atolni-cimxd
`ems »$13iE:?:tr'£¥$;:§3p:y
`cscph 3.l’I.€d.§3G13,, 133:5: Mitchell, and Nic'ho1as Nogjar
`
`.:£’3cvnvcn_ti1:j;n,3i Scfiid 8an1;;iic intr-oii'uction "fox Atomic
`8pec?t,rcs»ccpy
`Lasa.r.13gi3Iafi‘8n. r;2f’S:::fi:¥ Sampics
`'L:a.ser .A1:i1a'ticn far =Smr11r;%3i?» Iixtriccincticti in Atomic
`S';2ectr:3.:~:.m;>py
`iicizztixrzz Merits’ af Lag-at Abiatian for S‘am‘p2c: Intrcduction
`in Atomic Spectxcscopy
`-
`Laser »SQ1lIC.»{iS for ’Mass Spectrometry
`Appiicatians of Laser ’M;icr=0p'r»obc
`Appl.icatio.ns of Laser De;s»or_pti0n and Postionization
`.=Conc1usia:n
`
`References
`
`
`
`Czxrreni New Applications 0fL21ser Plasmas
`Allan A. Haves‘, David W. Forsfund, Colin J. McKinstrie,
`Justin S; Wark, Philip J. Iiargisc, Jr., Roy A. Hamil, and Joseph
`M. Kinda!
`
`10.1
`
`Introduction
`
`10.2 Applications of Lassr~P‘1asma~Gc.nerated X«Iays and
`Particles
`10.3 Lascr~P1’asma Acceleration of Particles
`
`

`
`xii
`
`_
`
`b
`
`.
`
`=£.3;:m'terat.s
`
`111.4 Laszzm-Pnisvad Power Switching
`Refierences
`
`Index‘
`
`%
`
`-
`
`1»
`
`424
`432
`
`4:37
`
`
`
`

`
`
`
`
`
`Ffiasmas
`
`{mania FL. ifieefer
`Cimter for ,£££h5':er.g§}9pff£:a¥3%2rz5
`Zkzimrisigz .9f'It?é::;2é.-mag »:,_SjIg:«;w:: Izzszimte
`'Yi£Z§::}za:é:’a, Tennessee
`
`4.1 XNTRODUCTION
`
`-first 611:»
`Plasmas created by the .ra::.imian%..fram ;£:;s:m:i .:ass::: beams
`served with the .ac'ivcnt‘ {sf “Egiani ptflsfi’ Q tchezii, ruby» iasexzs by Maker
`
`
`at 213.. (1963). Thm~:e";31Ia§m§is £32-’:’
`hey‘ gas‘ ’b.re:akdown at
`the fo-axis of 3 leans and Weft:
`file :fi1::ration ‘of’ £ha'I’aser
`..
`:3 L
`_
`..
`puisfe’. Plasmas were aim aizservesi in .- arm: {}!1‘£11(3»$T”i1.r‘fa1?}i’éS Gfitzat-eri2i1s:ir~
`radiate-d by ’h=ig’1a-gpzjwer pulsezi or »:<::cx:minu::us iaaesrs ansti “ta 11.i.”iE3j§fig 8.t6 into
`-the in<.:.i£3arj1't ‘beam at .s’t3§:£:mnic
`’Vsz;:;1’;33r”’
`1;:’vt;iI<3;;£{;ies.
`flat’: advent of
`
`:c.m_3jt:inuQ’ns, high-pézmier £2-arbfin
`‘
`i,
`_
`I
`i2i§éB1ii$A,§?BSS;i'i3.§E‘« iii} 5133?-Siifl
`a plasma in a s'teady—stata éc1:1.tiiiticm., ii; *1? i'¥§Jf§ fiwizzs of a.1assr"b¢am, 3.21:3 £116
`first ezxperimcntal observatizm -0? a “egxnzx-muons’=optic=a1 {3.iS{2}mIl'.;g%'” was 1‘.i3:~
`_ported by Generaicw. at .211. {1§7fi). This mntinuons, }aser-sustained vpiasma
`(LS3?) is often raferred to as an coniixzuzms eptical ::§i.sc,1f‘:.a.rge (COD) and it
`has a number of unique prapartias»t11?at make it an ”int::,restir:g c.a‘nd.idat’e. far
`a variety of appiicafions.
`,
`The laser-su.staim:d plasma shares many azharaateristics with mixer gas
`discharges, as explained in detail by Raizer (1980) in his coxnprehensivre. re-
`view, but it is sustained threugh .at3s0rpt’i0n of ‘power from an optical beam
`by the pm.cess.of inverse bremsstrahhmg. Since the optical frequency of the
`sustaining beam is greater than the p1as111aA-frequency, t}1’e‘beamis capable of
`propagating well into the interior ofthc. p1asma.where.iti.s absorbed at high
`intensity near the focus. This is in contrast to plasmas sustained by high»
`frequency electrical fields (n1icmwave and electrodeless discha.rges) that
`operate at frequencies below the plasma frequency and sustain the plasma
`t'hIo'ugh absorption within 21 thin "layer near theplasma surface. This funda-
`'ment21.I difference in the power absorption mechanism makes it possible to
`
`
`
`"i 69
`
`

`
`170
`
`V
`
`Keefer
`
`gonozmw 5’£oa;c1y~sta:o;}iasII3§s,lzaving .n1aximo*m temperatures of 10',€}O'01{ or
`1nt3ro~ii1 a .sma§I soisma zooar’£h.o=foe11sof%akins», far away from any cosnfiizing
`str'ucim*o. A photo of.3.-.p1as:;na. sustained by ;a ‘iasor beam focused with a lens
`8 shown in Fig.
`‘
`"
`’
`S.»
`V
`:
`J
`iasar was
`%
`goo. Fig; 4.:i( .).;s}io's;vs schom
`region.
`”€2o‘::tiin'2oos
`
`
`
`
`3
`
`,
`
`,
`
`<2 been ’pr::§£%inced in a variosy of
`isosz. t_iiioXi€ioIase31's.ope'ratihg at
`"
`. 21 25 W to so-vor:a1 k~i1owat:s, Moist
`it _.
`a 12:: ozmosi, o
`air or.ia.rgo. =chamb.sxs’with.
`grovifiafi. by ix-z=a*t‘u:::-ai» ooovoction, our recent‘ oxs
`’ " £3 7o’t,_‘»?s’z;l.:. b’{:3;9%3}, Woéiio max, A{198'?’).,, and =Cros2s»ia11d’
`
`
`
`’
`
`-
`
`.
`
`
`
`
`
`__
`
`1733. within tho./ssustaining boam, and
`offs
`
`ow:-do. range of conditions »os~
`:o:of£;.
`1 o
`Ls.
`is .<*-.:;:m;1‘£_::::;za;4:i£>.a::s -of 122.5-or gjowor, flow, and optical :configur;a~
`
`
`
`‘
`
`.a-srnall, isolated volume
`‘til? sassaisna giiasroa
`._
`H» aggci,»
`p«or%as21ros..has siiggested 2. somber of
`sons for '£ho>1asor~sos3taioo:d plasma. Since the LSP can
`,§r£3.jr:*ogon and iho» power can. be beamed rem.o_to_1y, it has.
`operate in pox‘
`been prioposeti .t11.a;1: t;ho=co1;z!d ho us-ed for high specifimimpnlso. space
`propx§3.sion:. A nunib-or of ;7a}_3=Br.Si '12ova -deal": with this ap‘p1ic~ati0n_,. and it was
`the Subj’oot of a resisw by Gioiiib andifinior (1984). Thompson et al. (19%)
`described oxpotimonis in whioh "Laser energy was converted into €:1..eotrit;a}'
`‘energy using a -Iasor~.susitainod argon. plasma. Cromers o: 211. (’19f85) have
`suggested tho
`as a source for’ sp-ootr-ochemicai analysis and given siomo
`experimental resulss. Cross and Cremoxis (1986) have sustained plasmas in
`the throat of a .s1.naI1 I1»ozz"io to produce atomic oxygen having a directed
`‘vofocity 0f’soyera1—.k.m/sec for the laboratory study of surface interactions at
`energies and pamicie fluxes similar to those experienced by satellites in’1ow~
`garth orbit. Other applications are sugges-ted by analogy to other plasma
`devices including light sources, piasma‘ chemistry, and materials processing.
`The physical procossos that determine the ‘unique characteristics of the
`LSP will be. discussed in Sec. 4.2, and the the.ore'tica1 analyses that have been
`used to describe the»LSP will be addressed in Sec. 4.3. Expe1iin1ental results
`obtained will be prosontod in Sec. 4.4 and compared with the t’heoretic.a1
`predictions. Sec. 4.5 will consider some possible applications.
`
`

`
`La3?er—$us¥ain‘e-£1 Piasmas
`
`‘
`
`W1
`
`(1?)
`
`(3) Ph-c>t<:igfaph of a plasma sustained by a 600 W carbon dioxide iaser?
`Figure 4.1
`beam focused with a 191mm fecal length lens. (I2) Schematic representatian sh0w~
`ing how the plasma forms within. the focal vtmume.
`'
`
`

`
`“£72
`
`Keefer
`
`4.2 PRINCIPLES Q33‘ -i)}r3’ER.ATi{}N
`
`Plasmas that are c.re.at=ed 01* sustained by lasers can be g=enerated_i_n a variety
`of forms, (lcpeniiingé-<_::n"tl1b £1132-avc:£§;:ls’£ic;s cf the laser and optical ge:3me~
`
`try used ta generate ilaetm;
`' zgi1«’§:n£%f_g§I»’p13§3‘€:'c3.
`,las::.rs can gencrata plasma
`bmakdowrz dirc.{:tly :wi_ilé'i_13 a gas iljrazrfisnlis ix} 3 transient expanding glasma‘
`similar to an explesiortxg
`Image? §a§.fi.r intensiiies and longs: pulstii times,
`plasmas may be}in.iti:att3iia’£ 5:3
`.$uff_3€'€=3
`1311 ‘that; ;3rujpagam’.into the sus»
`'t'ai:zi_ng lzaeaizn €{i».S!i§}t3f3{31?§;{§ val
`itiss as:
`~
`fr-~s::s3;£;izr;x<:s.t3 detm1az;icm (LSD)
`wave or snbsonh: valocifias asia, lgfitsé
`nesd éiéxnbnstifin (LSO) wave.
`These tramient plasmas have Beef:
`sad by Rainier {I-980) anti will not
`
`be treated here,» If thie: iiaseris’

`~e_'1‘a1:xv.:l i§”31€*#,»£3§[f§{tf1i5E1.3b
`:w:z;:-
`
`lgeomatry, flaw, BI1£.TI’§§fi3s§Si13€T€«’aX§§§
`__
`.rz’_:§3«,..»
`3» aa%:¥y»»:§;%a:s
`may
`’
`
`
`be c<3n’ti_m10usly'm3§fitaifi.§:§:at‘313313531”
`11.;:.2t‘1"tI2aj_ was cf the 'bea.m. The
`inI.fens.ity that is axzailaiziliz iffimiz abfitlfltiixuoflallasslr -is insufficient to cause
`braakdtnwn in the gas, }’l1€§‘£V-€.=’?E:I‘, and an .auXiIiéa:'_y ;<'>¢;m.rc8 must be useivd. to ini-
`tiate theplasma. A sketch of 5: steady-s'tat‘.r;.la.se.r~sus’tai'ncd plasma is shown
`in Fig. 4.’i£(§). 'I.‘h;<:. _plas'm1a’~ .-m.ay"be» szz.stai;:ie£3
`Ia cmnfining chamber £6
`control the flow‘ and pr:-iizssixre or in -apex}. air wt £1 Iarg-e, chamber where the
`flow 3,5 ldete-rm-i.ne;i by thgrmm i:3u»z;3_yancy;.
`V
`,.
`In many ways, tl1£=;3a£er~s‘u;siain;3d. glasma is si’z.3:xi}.ar its direct current 0.1’
`lowfiaqtiancy -eiec;r§;}::I{;l;3*3
`anii iI1.i£i£i:3xv;avg.dilsc11m°gxi:s’tl§.at are {apex-
`.
`ated in similar .gjase-s an
`at p:a=.:ssm;:€=s. Hmyever, tits 11.33? will gamer»
`ally be; xnmte mm act: 313.6 mzaga lfiigher:maximum.te1npe:aturc: t21.a:x.n-t3ze:
`»§:.£3ntin120u.s arc s::i'm*.ce§ aizdi
`biz: :s’u::'t;;21:lI1’€:éi in it stavady sztatc well away from.
`coniaining boundaries. A fin:x}.£3afi18f£iir35I Cliiffilffintfi: in the way inwl.1ich en-
`-ergy is abscrbed by the plasma is re.s;30fl§’£fi3la .fs0_r ‘£31633-. xxiizique» charactizristics
`-of the LSF.
`-
`
`
`
`‘
`
`4.2.1 Easic Physical Prncesses
`
`In a £ili1"(3£:t current (dc) arc or in an intiulctively coupled plasma ‘(.ICI’), en-
`ergy is 'ab.s0rbecl thr0ugl1 ohmic .heating produced by. the l0s.v~fmc_;uer1cy.0r’
`direct currents flowing in the plasma. The electrical conductivity of an itleal
`plasma is. given by(Shka’1t0fsky at 211., 1966)
`
`J
`
`neg
`= M
`
`1/~—~iw
`
`in (z22+w3)
`
`4.1
`
`(
`
`)
`
`where n is thfl electron’ density, 8 the electronic charge, m the electron mass,
`to the radian frequency of the applied electric field,‘ :2 the effective collision
`frequency for electrons, andi thesquarc root of —~»‘l. In the do are (as 2 0),
`the currents are transmitted th1‘0u.gh the plasma béztween electrodes and
`
`

`
`Lasebfiustalned Plasmas
`
`'
`
`-.
`
`A 173
`
`the size of the plasma is determined by the ‘size and spacing of the alvactrocle
`and the c-:mfi.r:in:g boundaries.
`In the ICP, the currents are i.nduce€:i.
`inta
`the plasma fmm alzernaiing »cur,rents ficnwirxg in a surro:undi.ng .so1enoidal
`
`<:;c3ii.. The are is sag;
`inmgl
`' "thin a container that deztermines the plasma
`dian1eter, ‘whereas fine Ian
`of the "plasma
`determined by the length (iii
`U
`the sblenaid.
`'I‘l1€*-.,I'{T3P apergtes 2;; frgguencies wfsll belflw the Vplasma frequency
`
`p
`
`.........
`
`_» 1;’?
`
`::..—~
`
`W?
`
`4
`
`.
`
`7
`
`
`
`9
`p
`< >
`~4.,2
`
`whe1'e..¢9 i.sé-fin: ppiérmittiviiijg ef fi?ae~$pa<:e:.. In this frequemiy range, the 616:8-
`irama:g‘na1ie.’fieljdT, Clims inoi ’pr¢a{p'.a1gata gss a ‘wave. xvit’hi‘n the ;11.agma,’bnt*is
`.gg:~;¢;;n;x_ate;i, agan ¢”a.ne$i;enti»wave (Holt and Hask-en, 1965) aver dis-tagnces
`
`(‘#3)
`
`is iaihespe-e:i;of1ighz:.» ’l§hu.s, tfmaplasma is su.s~tai.ne::ii by e:w;,rgy»Aab~
`-whet-3»
`scsrbeti within a_.small..ia;,:.e.r near its miter surface. that preduccs‘ a r‘athm*:flalt
`temperature ’pr;afi§l;e w“'“
`thgpllavsma and llimits the maximum tzmgaera.
`t11r&:$ that ::a:i“be<3§3taines3.,
`V
`-
`The freq-ugncy of the pptieaz fields (23 'I‘_¥~Iz for the 1&6 gm ca;r'b*c>n_. éiax»
`ide Zascr} nsgedlbr-{ha
`is greater than the plasma frequency, and there~
`fare the .i'nei’d’en'£ laser. ¥:>ea.m nan -propagate well into tl1el'nterim‘ before
`it is s:i,g£xifi<3anft}l,y »a.;bs-Qrbtzd’ ’t}n;‘QiIg.h the _pIOG6SS Of .invarse ‘nremsstralxluzlg
`(Shkarofsky at 211., 1966)‘ Sine-e the facusi'ng‘ of the law: beam pmducsd
`by a lens or ‘mirmr is essentially preserved as the "beam propagates into the
`plasma, very largeJfie}z:l. strengths may beproduced within the plasma near
`the beam focus. It is £12833 large field strengths that lead ta peak tcinperas
`tures in the LS1’ that are geneirally greater than those obtained with either»
`dc arcs or the K31’ and make it possible to sustain a small Volume of plasmla
`lnear the focus, ‘wel'l away from any confining walls.
`Inverse bremsst.1'ahlung— is a process in which the plasma electrons ab~
`sorb photons from the laser 1363111 during inelastic collisions with ions, neuw
`trals, and othsr electrons. The collisions betwew electrons and ions are
`‘the _domlnant process for the LSP and the absorption coefficient is given by
`(Shkamfsky et al., 1966)
`
`W
`
`“‘
`
`(La)
`
`ICT
`
`(
`
`we 3n.S.0G 1~e'”“’/"T
`.l
`-.
`
`Fzw/kT
`
`>
`
`V
`1.4.
`
`O )
`
`

`
`374
`
`’
`
`,§(e»efe»r
`
`where 5. is P1anck’s canstzmt divided by 271*, k B0i§zm.an.:1’s c»£3n»S,iaIifs 8I1€3;T
`-the temgm.r.amre of the electrons. ‘T113 faster G is the Gaugnt factor 322:! the
`Eactor 3:59 ‘isngiven by
`
`
`A. 3
`3
`16;.
`.22
`
`. L‘
`.
`.
`.3133 "~'-’—" *“** nflfin
`3 H1303’
`.47n°.9
`
`112
`
`I
`3kT_.j
`
`.
`
`‘
`
`I
`
`(4-5).
`’
`
`facifliis. a.
`T where 2,’ is the ionic cha:rge and n,;,. the ion -density. The
`mec1;anic»ai£ currantinn to the -::.1as.si.c.ai theary,-_’an£i axiensive téixhies
`have} been given by Karzas and Latter
`Fiifif f
`‘
`"
`"
`"
`the phntnn energy is ’mm.:.h lass than than
`’
`bracketmzi term in
`(4.4) is m%:a:ri}y .in<3e-nail \.
`
`c.n=effit*:ient:"is ’e:ssen’t§aIiy *pi?(}p’D2‘ti£3Iia51 "tn nu: sqnnm. :3.
`.
` I
`sang’ "ha ‘beam.
`_
`.
`size (313 the
`win Ciepend on sencrai féc-‘ms
`g:;n.metry,,1a5er*pmver-, and n}}sarp.ti»n’n cnefliciant. *
`nf. the-..1aser ‘imam as is; prapagratas ~.~2i:thin the
`;i:9gi-van by e€:r"s.1z.inr
`
`
`
`til
`
`_
`
`“*"*‘ “iii
`
`A
`
`..
`
`(.42-E5)
`
`?.EE3‘
`: ai>sa:n~~
`’
`- where s is the: distance along the iocai di.tex;z.iczn nf ‘pin
`.
`tizanifiength lfnr is a .d0minant».iengxh scaia f:c:r’t.}'?as‘3.
`,,
`. 288 it ,ci.ntér’.
`jnas .
`‘the’ r:§'is_t;ance.-oyggr whigan the’p»nwnz.,is absGx*beéi fr-pm {?h’e“b¥3{am., Ft3r'tFhis’}-."=na’r
`2:
`:59-n,»t"n.¢ dimension nftna nigimamparaznre ;é2£¥2sn:éb§i:z_.‘
`"<2:
`fiifasma
`
`alnng the laser b.3am'wi1i in-, of the nrder’ n£ ;h:¢;»a¥3snr;):t:»nn inngiiz. Aiihnfiigh
`it is {he n'bsorption3.engx11 that determines ‘tlixfsilangtii inf-thn»:p}a.s£na»a1:nn;g the V
`Imafm fixigs, :1. is the kzser beam cI.iameter_1;hat. dnierxniizxes HIE: gafasma ’di33.I !LE-’¢'
`tar; ’I‘i1e’;31zisn1a expands to fl}! the begin ;:n.n’e .néh”ti:r:e it
`an}: in absmb
`pawns, "then rapifiiy c¥az;1‘e=a:ses in teniparaiurit m:tsi.<§e tines: ’?:se.am ti1mu1_gTh
`thertznai <:Q.nd11cti0na.nd radiative: kiss .gnachan.isms..
`The pnsition‘ 9f the
`‘relative to the facai paint is £:1‘iiic.a1'in deierminw
`ing its ntructure andfiie range of para.mcters fnr whicih it {tan be .maiI’3taine€I.
`When the plasma is initiated near the beam foam, it prnpagatea into. the
`sustaining beam and seeks a stable. _pnsition. The pnsitidn Bf stabiiity will be
`1ocat»e»d‘where the imam intensity is ‘just stnjfficinnt that~.1:.ha ‘abs+:n“ba»x;i power
`will baiance thclosses due to convection, thermal canfiuctinn, and.therm.a1
`radiation. A _number of factors cmnbine to determine this pnsiticm of sta-
`'bi1iiy.inc1nding the transverse pmfile of the incident beam, t.hefoca1.leng-th
`and aberrations of the focusing lens or mirror, the piasma bpressura, and the
`incident flow velocity (Keefer at 211., 1986; Walla at 211., 1987).
`The power per unit volume that is absorbedby the plasma is given by
`
`
`
`P == cu’
`
`V
`
`(4.7)
`
`

`
`Laeer~$usta’ined Plasmas‘
`
`3?5
`
`where I is the local irzadiaznee of the laser beam. Since I depends on -the
`transverse profile of the "incident beam a’sIwe¥.I as ‘the focal length and aber~
`’rations of the lens, these -chamet-erisiies will .:influenc-e £i1e’Ioca’ti0n within
`
`the focal region at
`the.
`inimm:n.sus1:ai.ni::;gi’n.tensity is located. For
`example, for a small flnnmbexh '“n;s,. the.::i:z2:ensitg; decreases rapidly with hp
`cre.asin_g .dist.arfxce fro::'n..1l’1fie»’focus;’an€¥»the p.ia‘$nf2.a will .s’1;abi.iize:near the focus.
`‘For -a larger effnumber system., ii1;s,i':».,i.:3'e=:1$?i£y’ tiecreaees 138$ rapidly and the
`plasma will ;stabi.1i2e .a£.2§:-position fill,
`awe:
`$6.. ..
`oezzfi. I’:i<’3‘e=ez¥., for
`
`-
`gszgzifieienily 1ofxgf’*foc.aI.1e13§glEh§f :an;t.;1 be
`s:
`p=oWer3 §z1ae:nas..h:eve’be=en 0b~
`’
`’
`”
`'
`’
`v2§aeier1;.i1fi§3£})»a,s “’I.a:seIfzs;;pp;Q2*tec3 com-
`
`
`
`
`
`,
`b
`’
`:
`The. detaiieazi ;~r;;>.a.t.i,,2::.l
`’la5tfons betweendme opiieaigésgemg, 9.
`
`'
`
`”
`
`sizitaiis »3§,§’14E*.e.t*€$1?I2:i:§1fi1l“.:s:_17'¥._3r§It.1I1%:'i.nterxe~
`’
`’
`-
`.2. m‘g»ee-.-_,.§. epressefeief
`
`convection, condu-ction,
`1 11:’
`» 1
`
`and thermal radiation; '.F§.1e poo.
`’
`"
`63.133 zteia’
`E: tcH;13e.fo-cal point
`’ :§sx2e 1.
`at. which the plasma stabiliz ’
`
`a s::ah.Ie -;:‘iaxm:a
`a.nd.flow .fT«:3f.r.
`Most of theeairiy exp moo
`chambers or in f,:pen»air,w?E1efe»t11’ " xii.
`by the effects of thermal buoy
`‘
`
`the pr.esear:e .and laser
`.
`pressure w11.er;:»i:»was I}fi3Esib}g’tG .
`- These. -experiments
`.
`.
`eraiov et »a1., 1972;; ’Ko.zlo‘v ee a‘{., 1494:
`f¥31r”l:z£>3:%h5};z1serl}:§osver and
`vindicated that there were np}::»’er ami loxé.-tea‘
`.
`.
`pressure at which the LS? =eoi:}€i be silfitixifxeéié
`Generalov et al. (1972) suggested that the u}1pe,2*l.imi,t.for p-owe’: was a re-
`sult of forming the LS? with‘ a hori'zonta1b.ea.m. In this geomet:ry, thermal.
`buoyancy ‘induces a flow iransvers-e to the =o}§t::ieal axis. The imiuced flow
`carries, the plasma up and out of the beam 'w§1en.h.iglf;er laser poxver causes
`the plasma to stabilize farther from the focus. They were u‘nab1.eyto estab-
`lish an upper power limit when the experiment was operated xzrith the beam '
`propagating vverticallyl upward. Kozlov et_;a'1. (1974) deyeloped a [radiative
`model for the LS? and explainerd the upper power limit on the basis that
`V the plasma must stabilize close enough to-the ‘focal point. that the geomet~
`ric increase of laser beazn-i1}'ten.sity going. into the plasma was greater than
`the loss of intensity due to absorpfi-on. They speculated that the failure of
`Generalov et al. (1972) to observe this limit in a vertical beam was due to
`rapid extinction and reignition of the plasma.
`It is clear from the experiments of Generalov et a1. (1972) that flow can
`have a large effect on the range of Apxfessure and "laser power that will support
`
`

`
`
`
`me L-SP cs:;::§d}_2»e susta.i-nan are val
`._
`_»
`b
`oinIy:.£;:u‘ the gmiicziiar.-expnrimsntal’ gjeomotry»»nsen to obtain them.
`
`
`
`when {ha pins
`iizb ‘ iasma -
`
`
`
`
`{bait :t}1;&’3¥6i' absn:rb:e=d from £335. beam, given byis balanced.-’
`fi1Bic£¥n1?I3Cii?§’F£§', con§’nc'§i9w,» .a‘nd rafiiation Ioiss-es. -Sinoes, in generai, "the ‘in,
`
`
`' _ T, the 1333222,. the plasma. will a.<:ijust.._;i‘z"2 size, shag
`
`
`
`
`
`
`a £331.31-:’:.. .9? bonnrbhsbzunii fiansitinns,» msnitin-Vg in lino rac}ia»£inn and absnr
`tion, =an£1;fr£:c:e?ii:onn£i amzi free-afrae transfisionsbthat resin}: in .cz3'n£:in'nuzn rad}
`3’iiQI}’-£{X1§.‘&}3S{}3f13I
`0%; §I1e.opzicaI§_y thinportion of the spnctrnm, ‘chi
`rmi.1.annn xvii: : Sfibxigiy ;i?::$i:rbaii by the plasma or sn1‘r0i3fidin§,¥ niééim.
`regions and wii} fiimpiy swap»: from the plasma. {Ether Iportions of tho sp€:C~
`trnm will
`sirongiy absorbed, resulting in a transport of energy within thxi
`plasma. In the oniiizaiiy thick1'i1niI:,_this resu.1‘ts;in a diffusive energy trans“
`port that is _-similar to thermal conciucnoxz, but may be signifmantiy larger.
`Detailed ca1cui.ations. of the LS? (Ieng and Keefer, 1986) indicate that this
`raé3.ia*tive transport is a donxinant factor in the determination of the strut:
`turn and posi.t.io.n of the LSP. In particular, it is the radiative transport that
`’ determines the ternperature gmdiont in the upstream .front of thcplasma,
`thereby determining the position in the beam for which convection losses
`are balanced by -absorption.
`The position of stability for the LSP also depends on the plasma px'eS~
`sure, The absorption coefficientis a strong function of plasma density, as
`soon from Eq. .(4.4).. If the pressure is incroased and the absorption <;oe:ffi«
`cient increases, then the plasma can absorb more power from the beam and
`will move away from the focus to a lower intensity region in the beam. At the
`
`
`
`b
`:
`
`‘W6
`
`Keefer
`
`Fiastxnas sust-a.i.nsd in the free jot issuing from a nozzle have
`a stabio
`bean studied by Gerasimenko at 31. (198.3) who n1ea.sured the discharge
`*2vn’vn wincigy nZo:1,g ma bean: andxanbges for the existencn bf a steaciybtate’
`
`d;‘is's»;:h
`..Rn;:::$n£E’»
`’
`}3§.*’;{1tS’hi'1_Vs‘3 been noncixxcted in confined tubes
`
`=s.vhare=»£.0i1:ced nnnvaction :1 :ni'nat€-,d, {be flow (Wane et a1.,
`:£9{87_). It was
`.:f01unr?: ihaifi-n addition. to power and ;3rass11r:a, both the flow and optibcai ge-
`"
`”
`' avg’-:2:’pr0fQz3ndinflnen'c-e on the <:'I1aractt31'isiicsVofti1n =
`
`
`
`
`
`

`
`
`
`§;,=a»s.er~'S'usta’¥ne»d Ptasmas
`
`' 1??
`
`861% '’£i1116. the :p.iasrz1a:3ength aiong the .beam deer-.a.a-ses b.ez:aus-e {‘.!f the. de:~«
`£;1‘£:as’e in absarptimx Iength, 13111 the d.iamet=e.r i.n»creasa3 ta iii} the .Im*ger :c.m;s’s
`secti;3.n 0f the beam, Thus, far the s.ame1ase.r beam stars:-niititizis, a ihig?he.r-
`
`px‘t:ssuir?e
`wii} stzififiizc
`a, 'po.i_nt farther away frmn the ma: gixaint arzci
`have 3zsmailer.}engt11~'1o~C%1am;:1er ratio ’tha.rz 3 }-msv;:r:pr£:ssu.rc
`.
`,1-z’1cide21tiase’r pzpwer, as wail as t:i1ef/nuznber and absrraiirsms cf the fez)
`Qusixlg c3pt;ies,» will also .ir’:.fiuenc»e the ;3;3si,£iz3n. at which the
`St:ab.i}izes
`iihe .2bsa’m., Fmm {me 'f0r:agoi1:1g <3ii5£:us.£i€31}., it is clear {hat as the}:-e.a.m
`paw: is increassgiv, the piasma xvii! mme up t11e’bean1 away ifmm the fiizezal
`iyciintg. Thia distsance that it mmzes. -is tisterminegi by ‘the .f1n.umb=:;£ (zajtia mi
`
`‘ ”
`’
`‘
`is in tiéhe: 33€:a::I1.Ciii£ti1x€t'£e2f:i'I1£:i£i81:1tb£3:1fllfiffi-izizfiizfig
`”
`”
`.
`nee vtjhe rate:»of‘,ch,a11ge»~in beam 3?nte’i15‘i’i§'
`.
`_-
`mi
`
`:22 at: incmasein ffnumbe-r; Lens ai:er;ra§:ions:.can-.aisc>..§1arska
`axis {:1
`Va _e:£:.é‘t c;f11p}asma p=o-aitkan (iieefmf at 31., 198$}. Tn part;icu13r, Wfh:fi1'ifii1 an-~
`2i1Iia't Eaea-:2; frem a’n.n.nst;.abie1a¢ser <>:si:.i*_£3at:>r
`:5Ei}s:u$:€:g€§
`133:3 sghericai Ivans,
`'it..pr£:§-Ch:-ccs an am’nu’iar’pmfQc,us region. befimr reachirxgfhéfm1aI.p?t3i.Iz£;, and
`_ the
`’
`t_§i1i$ ragion 'n1.ay’136»su.ffi:£:im1‘i’to »sz3.st.aiz1 an zmI1uiar" 2131.3;
`
`».::1;£ize: z:»'bs;é:rvat:iAn.:1.s :c}is<msscd. above, it is cigar ti1.ai’£h*a;$%:>sii»i£§I: 0f
`the: plasma reélaiive in ‘the £003} paint has a: ;)}:‘=Gf£}1i}:1d»E§ff{i3{fi’(}1‘i’ii1f3fp1§}8ma
`risticsi. Aime ’upjpi:f.1im.iis Qf:at3%t*.i¥i2y fgr bath i1.asr:r= -ptczwer ml»
`,;;ha.ra:.--tie
`
`@173
`V
`a}i§§’=i§€£r's
`that {ha piasn1.a fiecizmes xxzmzible whan it ixnavasvma
`far’fm?11_1;
`fi>~Ga¥. paint. This may be due to the fat-‘xi, as ggreposedihyfbiitfizfiizv
`at 32. :(3‘§§?¥-Q, ihmas ‘iihepiasma .maves sufiicifen£1y’f.ar‘a’wa3?
`fiiia-£’.:u:s:..,
`i}§e- ztaigte af infiease of the beam .ime;nxity in ihsa :iir_e.céti<2h a:.f‘2;::c>pagi1atie£n
`’ zsyim-s sma.}Ier. 8’ir:c.;e the. temperexture €if't}1€f
`pi.a:srr:a .m::,st 3 "
`ease.-tax:-ttxe
`
`hr-mm grgipiagates into the upgsmzarzi edge itixietpj-’Iasmai_ .:ifiiensi:y*I0f-the
`’bt:am’.mnst 3715:: increase. At some paint, ii1e;dmsre.as’e -of i}za.’b»eam iI1.;tz3n,s.iiy
`due-ti} »abé;f:§rpti0n is greater than the incrieéases due in focfisizig, Sc! the piasnaa
`Esecomeéa xmstabie and extingui-s'hcs. Recent <:.a1cn}atit:ms by Jéng. gm :1, Keefmr
`(198?a},i1mvav€.r,
`indicate: that there may exist 1.00211 're:gi£3-213. =withi2: {ha LS?
`where .the b-eam intensity c§:1cre.asAes'as it penetraies the piiasma.
`. Aconsidarabie xziegtee of control of the structure and position Bf ihe:’LSP
`can be gained though both optical geometry and flow, in Vadditian ft) .1353:
`p-mver anti. ’prcss;ure. Utilization of thss-e additional parameters maisze-.5 ‘it,
`p’0ssib1t:’to successfuliy 0pc:ra'te the LSP ever a wider range of exptzriniemtal
`conesiiiierzs, enabling a wider range of potential appiications.
`
`
`
`'
`
`13.2.2. Flasnux Characteristics
`
`Lasemustained plasmas have been operated in 21 variety of molecular and
`rare gases at pressures from 1 to more than 200 atm. The resulting plasmas
`have characteristics that are similar to are plasmas operated at similar pres-
`
`

`
`113
`
`-
`
`-Keefer
`
`are usualiy somewhat higher
`sures, but the peak tampcraiures in the
`than ‘these for the comparable am, Ratiimon "from the plasma can be a Sig-
`nificant fI‘actioI1 of the total! paws: ,iz?:pI.1.2, a:n.ci .r21:3.ia£ion 1:ransp.r;:2rt plays 2.-
`major £0.13 in £:‘etez:minin_ ghe structure of tha plasma. Continuum —abs0r-p—
`{ion processes are ofyam?-tzifziar,1’3n“zp0.1*ta:zce in these plasmas since thepower
`to sustain the piasma is aiasarbazi -through, these. me-cham‘-sms,
`The» .caniin1mm ahsargzzizan pxtmrzss =i;:sz:31w;s both bmzn.d.~fxe»e trans.itio1}.s
`('p}1»0t0iDnizatit}n) and fi'.6t3».f£'efi transiftions (invarsa brfimsstrahimig) in
`whirsfh phmxmjs are absorbad. frram the»»3.a4sa.r1?::eam. The .fr<w-free. transitions
`inmiva =~‘:}ec&;roz1 caiiisicsns with Eicms, other éeiectrizéns, and.neutr:a1 particles
`gfihikarafsicy 2: .31., 3;’9‘§S-;;; £3r.i:e:m, ’19t54)..
`:éi9mi'nan:t absarption process
`
`for the: };S?’is £1:-:s:ugh ;m'iiiaion.§ ihcéimen
`.
`.. as a-nciiens, .ar1d‘t,.ha a_5smp~
`-tiozx ccmfiicient far this pxocrasa: is» given by Big.
`For the usual case in
`the 15?, km <<::;ic'1’~and the ~a'?bs£33.fpii<:;I1’ is; appraximatifiy‘ j;3m;3ortiana} to the
`sq’na’r=::-*, of the 1as.€.r- xvavgisxzgtiigg
`to
`’$irs3z:g,'xvaveier;=gtIa tiepsnéerigms,
`mi. «sf the. r;6'§3=$:rté:£§. e?£P€:i.m.:an'ta1 xii-:;s';'i3I},;tsf£}i*’ thfi LS,P”hav'a» been ebtainad us«
`ing thfi 10.6 mm w.avek°,;ngfl1 carbon ciiflxiiie laser. Si-nae the Iength 592136
`for the plasma is sf the ’:::xrder of {he»absorpt:i<3n,1enfgtIh;, the length ref ‘the
`bpiasma and .1113 ptiw-er .rc:q§::k-ed tD’sus'ta1”31i.tw0n1d be axpeetcd in increase
`dramaticaiiy .for'sh::::rtjer xsiiair-e1;::1:gth_ lasers Cmjgrgntiy, -thé anfiiy other iasezrs:
`-ziiat are fikeiy eanciidams ta suszaiz: £;ti1I;t1iz'21§€n:s1 g:1ajs::2as¢-aria» the iiyfirsgen
`€11‘ denteri'umfi1u:«:rid.e ahamicai iasers mat Qperate at waveiengzjhs (if 3’ to
`4 ;.sm..
`'
`'
`'
`.
`Tfismzal radi;atiQ13’.is’i§i1l6 czi thfi :rxI£3s:.’.i_x:;pi3:’ta:x;t c'ha:;acteris:ics of the
`LS1’. Thezmai -rad_.i.a1:io1n I0s.t.ffG2i£1.’£iif:~;’3IaF:§'ti:a can acccmnt fer neariiy :31:
`the ;;=aw::r absaribed by tiihe 'p3’as1fna wizcn thce flow :1’1.ro_ug?h the piasma is
`smaii ant}. viii} amount for :a s.ig1.2,if‘want f.mciie'n of absorbed power even
`when the canvectiva. 353.8335 are-’ large. The thermai :rad.iatican. consists of
`continuum radiation resuiting from _rec0xI£binati0n (free.-‘bound transitions)
`and bramsstrahhxng (free-fr-ea tr-ansitions’) as well as line radiation (’boun<i~
`buund transitiims). Caicuiazian of this radi.atic:n is straightforward, aI~
`though rather tetiieus, when the plasma is in 10031 thermodynamic equ§~
`librimm QLTE) ‘{Griem, 1964).
`‘Local thermeadynamie equiiibriurm is as»
`tablished when the eiectmn collisional rate proccsses dominate the pro-
`cesses of radiative decay and recembination. When LTE is e~st.ab.1ished
`in the plasma, the density -in specific quantum states is the same as a sys~
`team in complete thermal -equilibrium having the same total density, tern»
`perature, anti chemica1v.c_ompositi0n.
`It should be amphasjzecl that this
`dues not imply that the radiation is similar ta a biackbody at the plasma
`temperature. In general, thus spectrum of the radiaticm from the plasma
`will have a complex structure: consisting of the superposition of relatively
`narrow spectral lines and a continuum having a complex. spectral struc-
`ture.
`‘
`
`

`
`s.ss
`S55
`
`§ ,
`
`Laser-Sustaine-ti Piaamas
`
`179
`
`
`
`.
`
`_
`
`The absorption: c-oc1ficient.in tho plasma‘ depends on the wavcicngtli, and
`for thc o'i:r.avi.o1ci."portion of tho spec'tr’um below the wavelength of tho rcso»
`nance’Iin.cs (-trxansiti
`:13 in ‘wing the groom state), the r.ac:’iia2_io.n is si'mrLg.iy
`
`absoirocd by 233:: pk:
`’
`_
`the coo1cr.su.:roxmdi.ng gas. This rcsnits in a
`szrozzjg raciiativc 'ira,os{3ort”'mecha’nis’m that is imgortant in :?:etcm1.i.o;in_g the
`st:ru.c.:it:i::'e ’of“t]he p§asma.. Qitr.-an, 'rad;iative tr-ansport for strongly .absor3:in_g
`gases is :moda:%§.cd as a -ziiffosivc energy trans-port simiiar to thc.nna1..conduc~
`izion.
`£}1o’.3£rooIg’iy ioni2ed.rcg§on5 -o:f"thc piasma, the r.adiativc 1r;ansport_.is.
`many fimos larger moo the ’i=mr.ins§c ihcrmzii conduction and is the. dofifinaxzt
`hjcat~transf:cr
`This -is cspcciaiiy tone in the ugsiroam rcgzoxz of
`»whcro
`et;e~;:1:p:»ar§i£=21r[o grafiiont is iiargc, mad .ra£i.ia£io.x_1 transoott
`fiaot
`sfzozwcf
`i‘£?:371Q$;:ifi$ of»-the inciident "flow.
`titoioiigorcwavcioogth region above the resonance transi:ion_s, flrxs..ab~
`,,
`sorption of'ii1e.,rafii.at’iofl by ciao piasma anti the surrounciing gas is much.
`smafilcrt. TI:1c=abscrptionIczxgihforthis radiation is after; largo -com
`6
`
`{some cha'rac’teriisiice::Ii.o:zen;sio11s -of the 'pIa§m3,, and -muc11»o£’thc,rao1a_,:oo
`ESL >963.
`rcgiozi of ti;he.:spectrm:r2, tho ’pias"ma may be considered g:sp~
`/zioaiiy thin, anti iftho piasfmax is in ’L'.E‘B, than the €:sc:aping:;’:a3;iiatiOn eanfbo
`’us':eo ‘to characterize the tempcratutc within the LS? {£{e=e:£cs at 31,, ’1?§86;
`
`987).
`
`
`mic §??i‘§f1zii.1 to-o piasma is far from miform, as
`
`mod
`to o*::£.’aiji1 {ho oxp»orime:nta3.3 tcmperatoresshown
`in Figs. 43-2, 4.4, and 4:.}(}..i,s: =:¥cscribc<3, in Ci-otaii i’z'1S»oc.. 4.4.2). Ti1:is.’§igo.m
`shows an is:ot%za:m4:;pic:t of me» ta:n;::«cr.at::umc czzzcemred in .an.LS?sz.:sa:a ct:
`in 2,5 aim of =’ gozxizy .a.o&rbon’c1iox-idc laser »o§;er*a£’ing at 3. wiavelcogfix
`19,5 cm. ’f1?i1e’,;5i=asi:aa Iozigifh, ago diameter, as ciotcrminccl by the ::o;.5o§K
`"is-otimrm, are 311 311:1 émto’, rocpectivcly. flo

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket