throbber
edited
`Lean J. Rafi2£e§ms§< :4
`‘Department 9-? 1% 51:35;
`:New Maxi-fin statga
`“
`
`
`Las Crazies,
`isziemacié
`
`
`
`C‘hemicai and Laser S<:ier1;:es.‘[3i'v%sion
`L03 Mamas Nat’ia3Ana,¥ ‘L3i3t3'Fa‘tt3rv~
`L03 Atamos, New Maxim
`
`
`
`MARCEL DEKKER, INC.
`
`New York" and Base!
`
`i
`i
`
`%
`
`ASML 1215
`ASML 1017
` ASML1215
`
`

`
`
`
`
`
`Li%::ra.ry of CongressEafalggagix;g4i§141§n}3iit;ati(2n. Data .,
`
`;:‘§z§isi¢;a:1'i;, cixexnigzal, and hioicgical appficaii0ns.f e..c2ite-:3
`Lasexmiusze-ti V,;;1asm-as ::
`by Lewis
`Réxxiziemski, ’33a’x«’id 23;. iiremers.
`>>
`
`>
`‘
`
`.1." Rhdziexnski, Leon 1., ’ §9;'z3.s'3§
`
`’:‘;3awer.iasers.. ’
`
`0'13?
`
`This baak is prizwzd on sreiiiafree ip’:e2;:«e:r.
`
`Qopyrigh’-t © 1939; 1*:iARC.BL.DEKI{.ER. me. A1: Rights Reserved
`
`Neiiher this book no: any part may b,a_rep‘mdw:ed Q1‘ transnaitted in any form
`in by any means, eiexxtronizi or mechanicai, including plmtucopying, microfilming,
`and recording, or by any .inforrnation storage and retrieval sys-fem, without per
`mission in writing from the publisher.
`
`MARCEL .DEK}{.B'R, INC‘
`
`270.Madisim Avenue, Nexv York, New York 10016‘
`
`Current printing (last c¥i.gif):
`109876543321
`
`PRINTED IN THE UP41I’I’ED STATES OF AMERICA
`
`ii
`ii
`
`

`
`Céntents
`
`
`
`iii
`-xi‘
`
`36
`
`6]?
`
`6.Ԥ
`
`'33
`
`72
`
`7,5
`7’?
`
`88
`
`§2
`
`93
`
`:95
`
`99.
`
`I00
`
`101
`
`101
`
`105 M
`
`105
`
`110
`
`
`
`
`
`3 {ntro»duc£ion to Laser Piasma. Diagnostics
`H _ Allan A. Hans; and Hector A. Baldis
`
`?»1
`3.2
`
`Introduction
`
`Introduction to Optical Diagnostics
`
`ix
`
`fLaser-Infl11c=efl.. ’Br-eaiyfkzwzzz Au U‘§1sdat£:.
`
`;I§;;t;a:iu»c't:i;1n
`of Eicctrons
`.
`Eiemran €§'r{::§v£E1 in -.Ga$e»s
`Lasér~I:a;&.u::.:w;'z.',Eneraizzgmwxtx mi Solids am Liqzms
`.. {fim::»aiu.s:i:iz3g 'Rem_ar_i<s
` R:a:fm’*en:¢:.e:s
`
`{!(1€1iI}‘g.1§'f .P?us£—Br=eakti.ox&In Phenomena
`abexf
`Ki)-Qt
`
`Z’5:it.f<3»§i¥;:<:3;iiz:s:1
`Ciifizsatpifin 0f 21 ’P’mpagating flasma
`Absmrptian {Zhafanteristics Bf Hcatsni Gases
`Figattgrgs cf 1?fi:opagati.n_g Plasmas
`$3312.-~I}i1X1.Ensi0n.a} L:aser~S'u';3po1'1.ti:€3 ’CB1‘£fl3’H$1i0n Waves
`C3I.1e~Di.m.ensi0naI ’La.se:r~Suppcarted Detonzxtican Wave
`*One»13irj11.ans.ira’na} Laser~Suppin“te-d Radiation "Wave
`j:’i.‘ransi¥t'it3'r1 Regicms
`Radiai Ex;§arz.si:3‘n
`Thezfmal. Co;up1i.ng.
`523.3. Other Factors‘
`S’umn1a;fy
`References‘
`

`

`
`

`
`
`
`
`
`x
`
`0
`
`Canteniss
`
`3.3
`
`Intmduxetion to X—.r.ay Diagnostics
`Raferencas
`_
`p
`
`4
`
`i;;;s’e'§r;S1:st.aine£1 Piasixtas
`Dennis R. Keefer
`
`0
`
`4.1
`
`4.2
`4,3
`4.4
`4.5
`
`I’ntr0a3.ucii0n
`
`Princix‘-33133 of Qper2iti{2‘n.
`2—’;>ma’1yt'ic.a1 MQ£3e}.s
`Experimen.t:a1 Sfndies
`Ap;31,icati£3n.s of the Lase.r~S1:.s£a;ix:ed Plasma.
`Rcfcrances
`V
`b_
`
`‘
`
`-
`
`5
`
`i’nér~t.iz’§liy Confined. Fasimt
`Robert L. Ivicflmry am. Jana’
`
`’SO3;III‘es
`
`.
`
`’
`
`133;.
`161
`
`169
`
`169
`
`1.'??.
`1182
`189
`I95
`203
`
`207
`
`20?
`2.-:11
`217
`224
`227
`239
`243
`251
`2&0
`
`269
`
`269
`276
`233
`290
`291
`
`295
`
`295
`
`296
`302
`306
`309
`313
`318
`
`5.1
`5.2
`
`51,5
`
`5.5?
`5.8
`
`V
`
`.
`
`Ifiistaricai Overview
`Las0er~*Fusior: Scaiing Laws
`Car-anal Fhysics
`X~ray ‘Genexatiau by L;ase'r»Fmdx3ceci Plasmas
`1.33::-:—'Driven Abiatixziij
`§%i}ydr:3:1y:za:x11:ic:Stabfiity»;::§15xE;vI&i’i;i?s*<i*;1y* I3:-iv‘s:n.:
`.1I‘m::iiaii,::sI1 U‘n:i»£ozmi:y }'§§::q::i1:t:§z:<:.a’_z}.t;5f’
`Impiositm Experiments
`Rafemnces
`
`A
`
`6
`
`El..mei?—Base£1:8’;2.n°1ici3n.i111£:££1rfiibriimiifiix
`
`Iaseph "R. ’Wachte’r
`
`5.1 Aspects of Scmicandtwtor Fabrication
`(3.2
`App1fi<:ati0ns-of Lasers in-£113 Semifconductor I.ndu$t1'y‘
`6.3
`Research Areas 0
`0
`_
`6.4 Outlook
`Refarences
`
`‘
`
`7 0 S-pectmchemical Anaiysis Using Laser ?1asma.Exéit.at:im1
`L-eon J. Radziamski and David A. Cremers
`
`7.1
`
`Review
`
`-Methods. and Pmpezties of Analysis Using Laser 3?1asrnas
`7.2
`Analysis of Gases
`7.3
`7.4 Analysis of Bulk Liquids
`7.5 Analysis of.Particle.s
`7.6
`A11a1ysis‘ofSo11"ds
`7.7 Advances in Instrumentation
`
`

`
`X3
`
`321
`
`323
`
`32?
`
`327
`
`3.27
`
`331.3
`
`335
`
`341
`
`344
`
`345
`
`34’?
`
`347
`
`35!}
`
`353
`
`363
`
`365
`
`.369
`
`372 %
`376
`
`376
`
`385
`
`385
`
`386
`
`413
`
`§¥¥§€‘fl¥$
`
`'Pmgm::a.sis
`Referencas
`
`
`
`’un‘t}a'n2enia¥;fi:)f 2%u.1;1:2’1y$is of Sniitis b;y Las-e1?—i’t‘oduc»ed
`3.:-15:13:13
`
`fang W. Kim
`
`=C§ia:pt:e'r C!:rganiza'tion
`.I’:2:ri:1»:iueti0n
`’?ihe:m.m£:nalagy :’ai:' .1335: Heatring of Condense..d~Phase
`Targets.»
`
`’t%iy.a:.Spe-etrizaszapy
`lhiteiisi y Zxicasnrements and Bi'e.menia1..Ana3ysis
`.Sz2m.ma1ry
`Refe:r::.nc=es
`
`’
`
`Laser V-:«;ipu1'i.zaEtin11 far §.S 2t.’mp!_e Inirothxctian in Atolni-cimxd
`ems $pm.:.trasc;apy
`aseph 3.l’I.€d.§3G13,, 133:5: Mitchell, and Nic'ho1a.:~: Negjar
`
`.:£'3t2nv§:n.fi1:in,3i Stiiirl »San1;3'ie’Intr-oii‘ucti0n fax A't:3mic
`8pect,ras»eapy
`£;asa.r.13gi3Iai§‘i3n. raf’S:::fi’<':i Sampies
`'L:a.ser.A131a'tisn far =Smr11r;%3i?» Iixtriacinctica in Atcmie
`S';2ectr:3.s.m;>py
`iigizztixrzz Marits af ’f;.as-at Abiatian for Sample Intmduction
`in Atomic 8’p€:.:ftxcs<:opy
`-
`Laser »SQ1Z1T{}¥3.»S’f{}I‘ ’Mass Spectrometry
`Appiicatians of Laser ’M;icmp'r»o¥3e
`Appl.ieatiQ.ns of Laser De:s»or_pti0n and Postionizatien
`.=Con::1usia:n
`
`References
`
`
`
`Czxrreni New Applications of Laser Plasmas
`Allan A. Bauer, David W. Forsfund, Colin J. Mcléinstrie,
`Justin S; Wark, Philip J. Hargis, Jr., Roy A. Hamil, and Joseph
`M. Kindel
`
`10.1
`
`Introduction
`
`18.2 Applications of Lassr~P‘1asma~Ge.nerated Xqays and
`Particles
`10.3 Las::r~P1’asma Acceleratioxm of Particles
`
`

`
`xii
`
`_
`
`b
`
`.
`
`=£3;:m'teri{.s
`
`1114 Lasem-Puistad Power Sxvitching
`Refierances
`
`Index‘
`
`%
`
`-
`
`1»
`
`£324
`432
`
`437
`
`
`
`

`
`
`
`
`
`magmas
`
`{mania FL. itieeist
`Cfimter for ,£££h5':er.g§}9pff£:a¥3%2rz5
`Zkzimrisigz .9f'It?é::;2é.-mag »:,_SjIg:«;w:: Izzszime
`'Yi£Z§::}za:é:’a, Tennessee
`
`4.1 INTROBUCTION
`
`-first »t”3'1b»
`Plasmas created by the .ra¢:.imian%..fram ;£as:m:i .:ass::: beams
`served. with the ativcnt‘ {sf “giant pnlsa’ Q tzcifaeiéii, ruby» iasers by Maker
`
`
`at at (1963). Thase’ -plasmas £92-’:’
`1221;‘ gas‘ ’b.re:akdown at
`t'h—n3.f0-6118 of 3 lens and warn
`iha tii3:r£;tiot:’i0f £ha'I’a.Ser
`..
`:3 L
`_
`..
`;;::1155<:L. Plasmas were aim a¥:~:s:€*;1*%sr:i7£.£:2
`.-am: onA£116»st:.rfa£ies vi Ina:-erials :ir~
`radiate-d by ’h=ig’1a-gpzjwer pulseszi or »:<:a:ntinu;:ms iassmrs zansti ttis 11.i.”iE3j§fig 8.t6 into
`
`-the inc.i£3an't ‘beam at .s’::§3¥:mni::
`’Vsz;:;1’;33r”’
`1;:’vt;iIz3;;£i;ies.
`{I33 advent of
`:c.m_1t:inuojus, high-pmver £2-arbszin
`‘die
`_ 3,,’
`h§§éa1ite.b§?£3S§;ifi,§E tic sustain
`a plasma in a s'taa‘(iy—stat£;z €’i€3}1.ii3iti£1n.,i1..»,*if
`i'¥§Jf§ fiwizzs of a.1as§:r"b¢am, 3.12% the
`first. experimcntai abservatirzziz -63? a “cgxntx-muons’=opti::=a1 {3.iS{2}mIl'.;g%'” was re-
`_p0rted‘ by Generaitw. at .211. {1§7fi). This aontinucms, }aser-sustained vpiasma
`(L8?) is taften referred to as a coniizzuws aptical ::§i.sc,1f‘:.a.rge ((23113) and it»
`has a numbar of zmicgne praparties»t11?at make it an ”int::,restir:g c.a‘nd.idat’e. far
`a variety of appiications.
`,
`The laser-su.staim:d plasma shares many charaateristics with mixer gas
`discharges, as explained in detail by Raizcr (1989) in his coxnprehensivre. re-
`view, but it is sustained through .abs0rpt’ion cf power from an optical beam
`by the p.r(3.cess.0f inverse bremsstrah1ung.. Since the optical frequency of the
`sustaining beam is greater than the plasma‘-frequency, t}1’e‘beamis capable of
`propagating, well into the interior ofthe. plasmawhere. it is absorbed at high
`intensity near the focus. This is in contrast to plasmas sustained by high»
`Vfrequency elezctrical .fi.e1ds (n1i£:mwa~/e and electrodeleiss discharges) that
`operate at frequencies below the plasma frequency and sustain the plasma
`through absorption within 21 thin "layer near theplasma surface. This funda-
`’menta.l difference in the power absorption mechanism makes it possible to
`
`
`
`"i 89
`
`

`
`’
`
`-
`
`170
`
`V
`
`Keefer
`
`g¢:n;:;m£€~ 5’£ea;c1y4sta:<;;}iasII3§s,lzaving .maxi2fm,1m temperatures sf 1f3;{}GOIi at
`1nt3rt:»iix a .s1ma§I vaiume near mg»-f0¢1:’s.af%a was», far away frets: any cc:I.iif1i3i_ng_
`str'ncmrc. A photo of.a.p1as:na. sustained by ;a ‘iaser beam focused with a lens
`3 shown in Fig.
`‘
`"
`’
`;.}
`V
`:
`J
`laser was
`%
`gen. Fig; 4.:i( .).:$§iea;vs schem,
`mgimx.
`”€2o‘:z'timze1;:s
`
`
`
`
`3
`
`e been ’pr{}{i11ce{i in a vaxfety sf
`
`13:23}: :ii_oxida}aaa'rs .£:>}3e’raiif{3’g at
`,
`,
`"
`. 2': 25 W ta saverai kmwatfts, ’£saI..r:3::;t
`_.
`£1”.
`a. 1:1: mmati, (3
`air‘ é:.>.r.1a.rge. »»chamb:ers’with_.
`. Vgravidafi. by :2-x=a*t‘u:::-ai seoxrsmctina, §:2u't- mz:5nt' axe
`’ " £3 7$i:‘»?s1;l.; b’{:3;9%3}, Weéiie max, A{198'?),, and. =C.f.rz3s2s»ia11d’
`
`
`
`__
`
`1733. within tha.«sn.stainin’_g beam, and
`§:~f”t""e
`iwidrg. range cf é;,{{£)I1di'ii€3’I’I.,3*i18~
`:.:2:2:;.
`1 »
`La.
`£3 .<*-.:;:m;1‘£_::::;za;4:i£>.a::s af 1356: »;:i<;w=,sz*, fiaw, and optical :ca12figur;2z~
`
`
`
`‘
`
`.a-gxnail, is-elated vélume
`‘iii? ausiaixia ;§:1§i$.I£:a
`._
`, agzd,»
`pa:r%ax21re$..has siiggested a xmxnher af
`axis §Qr'§h%E:»1a3£3I~suS§t;»':1ifiE:d plasma. Sings the LS? can.
`,§r£3;jr:*G:gz:n and iha» paws: <: aI1.b£. beameci remately, it has.
`ep»e1rat'e in pa’:
`been prioprszseci. 1113;}: the
`=co1;z‘k*i be us-ed .fer high specifimimpnlse. space
`propx:3.sion:. A numb-er bf gaajgersi '223%: -d:e‘a1”tw.ith this ap‘p1i£~ati0n_,. and it was
`the Subjgct of a :e?iaxv ‘by Giuiiib an:1’K.rier (1984). Thompson et a1. (19?8)
`described axperimcnis in Whi,Gh "Laser energy was converted into. €:1..et:trit;a}'
`energy using a -}as’er~.susiained argcmyp}as3:s1a. Cremers at 211. v(’19f85) have
`suggested that
`as a source for Sp-actrochemicai analysis and given sicime
`experimental resulas. Cress and Cremexis (1986) have s11stai11ed plasmas in
`the threat of £11 .s1.naI1 11»c3.zz"it: ta produce atczmic oxygen having a directed
`‘vefocity of’sevcra1—.k.m/sec for this laboratory study of surface interactions at
`energies and particle fluxes similar‘ to those experienced by satellites in’1ow~
`garth srbit. Other applications are sugges-ted by analogy to other plasma
`devices including light ssurces, piasma‘ chemistry, and materials processing.
`The physical procassas that determine the unique characteristics of the
`LSP will be. discussed in Sec. 4.2, and the the.ore'tica1 analyses that have been
`used to describe the»LSP will be addressed in Sec. 4.3. Expe1iimental results
`obtained will be presentsd in Sec. 4.4 and compared with the t’heoretic.a1
`predictions. Sec. 4.5 will consider some possible applications.
`
`
`
`

`
`La~3?er—$us1ain‘e-£1 Piasmas
`
`‘
`
`1?‘?
`
`(1?)
`
`(3) Phattigfaph of a plasma sustained by a 600 W carbon dioxide laser?
`Figure 4.1
`bgam focused vmh a 191mm fecal length lens. (I2) Schematic mprelsentatien sh0w~
`ing how the pkzsma forms within. the focal volume.
`'
`
`

`
`“£72
`
`Keefer
`
`4.2 FRINCIPLES Q33" -{)}r3’ER!s.Ti{}N
`
`Plasmas that are c.re.at=e»d 01* sustained by lasers flan be g=enerated_i_n a variety
`uf forms, depending?-@n"tl1b £1132-avc:£§;:ls’£ic;s cf the laser and optical ge£3me~
`
`try used in generate ilaetm;
`' zgl1«’§:n£%jf_g§I»’p13l3é:'c3. lassrs can igxmcrata plasma
`breakdawn .dim.£:tiy :wi_ilé'i_13 a gas i1;.a:,r&suI£si.n zatransiclnt axganilinggélasma‘
`similar to 1:111 explesiong
`Image? §a§.fi.r intensities anal longs: pulfie times,
`plasmas may l2e}in.iti:att3iia’£ 5:3
`.$uff_3€'€=3
`1311 {I133 ;3rujpaga:fi’.ifita the sus»
`a:'aini_x:1g baaxzn €{i».S!i§}t3f3{31?§;{§ val
`itiss as:
`~
`fr-~s::s3;£;izr;x<:s.t3 dets:ma3;i<::n (LSD)
`wave or :snl3sen,ic valo{:itias 3373» lgfigé
`nee: ébrfabnstifin
`WEW6.
`These tramient plasmas have beer:
`slid by Eaiizzer {I-980) and will not
`
`be tmateél here,» If :*;h_Ie: liagsafiis’
`l
`~ef1‘.a:£1,:1v.:l t§13;::*;zrtiiia}’
`:w:z;:-
`
`lggeomatry, flaw, a114;l,’;§ar&asi1rf¢s’a:;,e:
`__
`.rz’_:§3«,..»
`3» aa%:ly»»:§;%a:s
`may
`’
`
`
`52 centij;fi1t1nsl§;'m3§fi£aixi§§».at’3333:3331”
`11.§ia‘1"El:2a:_ was cf the 'bea.m. The
`inifensity that is axzailalziliz iffimiz abfiiliitiixuoiiallasfir -is inwfficieni to cause
`maakdtnwn in tha gas, hosvgvér, and an .auXiIiéa:‘y sflmrce must be used to ini-
`tiate theplasma. A sketch {if 5: sieaiiy-s'£at‘r;.1a.sa.r~sus’tai'ncd 13121311121 is shown
`in Fig. 4.’i£(§). T113_plas'ma:m.ay'l3a»stz.sf£ai;:ie£3
`Ia emnfining cllaiilbfir £6
`ccmtérel the flow and prrcssixre 01‘ in -apex}. air wt £1 larg-e, chamber whcrc the
`t_1ow§_.:’; determ-i.ne_d by t.3‘:1$rm.:e;.I l.:'3u»z;3_yancy;.
`V
`,.
`In znany ways, the laser-su5iain;.e:l. glasma is similar is direct curran: gr
`lqwfzaqtzancy -elec;r:f>€I§.l;3*3
`anii f..t1.i£i£i:3xv;i2€s;g.dilsc11m°gxi:s’tl§.at am €3p~e.r-
`.
`aired in similar .g1;ase-s an
`£11" préfis-:%13;£€=S.
`Iiiifiwevicr, $116 11.3? 'W§}.1. gene:-
`any has .m{':re czsiir:-1’ act: 313.6 mzaga lxiiigher ;maxi.mu.m teznperature El1.an.n'tl1:=:r
`»§:£3ntin1.20u.s am s::i'm*.ce§ aizdi
`biz: :$u:=;'§a:i11’€::é§ in :22 steady state well away from.
`coniaining boundaries. A fin:§.£3afi18f£iir35}L v:1iffflr’enca:in'the way in which en-
`-ergy is absorbed by the plasma is r23.&§1r9:3éil3l.€:* £0.11 ‘£31633-. xxiizique» charactizristics
`-of the LSP.
`-
`
`
`
`‘
`
`4.2.1 Easic Physical Erncesses
`
`In a Cl}l?:E5£‘.‘€ current (dc) arc or in an inéluctlvely coupled plasma ‘(.ICI’), en-
`ergy is 'ab.ss:>rbecl througl1 ohmic .heati.ng pracluizzed by. the l0w~fr::quency or’
`direct currents flowing in the plasma. The elacirieal conductivity of an ideal
`plasma is. given by ~(Shkamfsl<y at al., 1966)
`
`J
`
`neg
`= M
`
`1/~—~iw
`
`in (z22~l~w3)
`
`4.1
`
`(
`
`)
`
`where it is this electron’ density, 8 the electronic charge, m the electron mass,
`to the radian frequency of the applied electric field, 1/ the affective collision
`frequency for electrons, andi thesquare root of M1. In the do are (as 2 0),
`the currents are’ transmitted through the plasma bcztween electrodes and
`
`

`
`Lasebfiustatned Plasmas
`
`'
`
`-.
`
`A 173
`
`the size of the plasma is determined by the ‘size and spacing of the electrode
`and the L;-o.nfi.::ix1:g boundaries.
`In the 143?, the currents are i.nduee€i.iI1iG
`the plasma from aliernrfiing cu:rent:3. flowing in a surrounding .so1enoifia1
`
`<:;c2ii.. The are is sag;
`inmgi
`' "thin a container that determines the plasma
`dian1€:tor,
`'whe.I£:as fine Ion
`of the "plasma
`determined by t}:1e}ength of
`"
`the soiemid.
`TI*.1€:*.,I'{33P operates 33. frgquencies well below the Vpiasma frequency
`
`p
`
`.........
`
`_»
`
`1.1}?
`
`::..—~
`
`WP
`
`4
`
`.
`
`7
`
`
`
`9
`p
`< >
`~4.,Z
`
`whe1'o..¢9 i$?"fi'.1fi}§£?2Ii}1§£ii‘52ii}* of fi?ae~$pa<:e:.. In this frequomiy range, the 6}€:£!~
`tromag‘na1io.’fiaIjtifioeésinaflzrofpagate. gss a ‘wave. xviihii: the pI1.a9ma,b11i“is
`.a,u;¢n;:_ate;i, agan ¢”a.ne$h;enti»wave (Holt and Hask-an, 1965) over dis-tagnces
`
`£43}
`
`is V£E1,e‘Sp:e'afl: O‘f?ii/ght:" ’Ehu.s, thapiasma is su.s~tai.ne::iI by azxoxgy-333»
`-where.»
`sorbexi within a_.sma§1..ia;,:.e.r near its outer surfacs that produces‘ a rathm':fiat
`temperature pirofiitsg w“'“
`thgpioasma and limits the maximum tzmgaera.
`t11r£%.i::$ that ¢ai:"Beobtaines3.,
`V
`-
`The frt%.€;"u§ncy of {ho goptitzai fields (23 'I‘_Hz for the 18:6 gm ca;r'b*on_. diox»
`ida Zasor) nsgcdfior-tho
`is greater than the plasma frequency, and the2'a~
`fore the .i'nGi’d’en'£ iasor. imam nan -propagate well into the interior bsfora
`it is s:i,g£xifi<3anf‘i}},y »a}3s-otbtzd’ ’t}1r£:¥.:g.h the process of .invarse ‘nrem.sstra121u11g
`(Shkatofsky at 211., 1966)‘ Sine-e the focusing‘ of the law: beam producsd
`by 21 ions or ‘m5.I’.I‘.{)'IT is ess.c-ntiaily preservod as tho "beam propagates into the
`plasma, very 1arge..fie}z:i. strengths may beproduced within the piasma near
`the beam focus. 1?; is £12853 iargc field strengths that lead to p-oak tcinperay
`tures in the LS1’ that are goneiraily greater than those obtained with either
`dc arcs or the EC? and make it possible to sustain a small Voiilme of plasmoa
`onear the focus, ‘W611 away from any confining walls.
`Inverse bramsst.z'ahIung— is a process in which the plasma electrons ab~
`sorb photons from the laser beam during inelastic collisions with ions, non»
`trals, and othsr elmztrons. The collisions betwew electrons and ions are
`'t}:1o_d0r‘ninantproceSS for the LSP and the absorption coefficient is given by
`(Shkarofsky et al., 1966)
`
`W
`
`“‘
`
`re‘ 3n.S0G 1~—e"”“’”‘T
`o -.
`
`(La) kr (
`
`Fzw/kT
`
`>
`
`V
`1.4.
`
`0 )
`
`

`
`374
`
`’
`
`,ij<.e»efer
`
`where E is Planck’s constant divided by zar, k B0i:am.a:§.:1’s c»£3*n»St23Iil?a 8137
`-the t£:mp€’:.r.alure ofl:hee1e.c:rons. T113 factor G‘ is the Gmmt faster and the
`Easter 3:59 isgiveu by
`
`
`A. 3
`3
`15;.
`.22
`
`. L‘
`.
`.
`.3133 "~'-’—" *“** nflfin
`3 H1203’
`.47n°.g
`
`112
`
`I
`3kT_.j
`
`.
`
`‘
`
`I
`
`(4-5).
`’
`

`
`-.
`mg "‘iw imam.
`’-
`32.32:’ i
`;i§’gi-v“c.m» by ear’: law
`
`£acmr,.is. a
`T where Z is the ionic cha:rge and 3,, the ion -dezxsilzy. ‘The
`mecfiaaniclail currectioxi tea the -::.1as.si.c.al theary,-_’amil aztiensiire ”!.:£i’xhies
`
`have} been given "by Karzais and Latter
`Fdr f
`‘
`"
`"
`’ ” " ’
`the phgtofn energy is ’mm.:.h lass than than
`’
`bmzzketalzi term in
`(4.4) is zmarily .in<3e.;§e:1 \.
`.
`cIc:=efiieient:"ls ess.enl;ial2y»pmpz3r:i:mai "t=G”l:ha.$§;1;2a£::. :3.
`size ef the
`will Clepefld an several féctflfis
`_2g;:;a:a.n:et:y;, 1aser»:pcs:ver, and a}}s£2rp.ti»c3’:x cnefifieiant.
`szaf. the-..1aser ‘imam as it prupagrates v2i:thin the
`
`_
`
`
`
`.
`
`“~=«' -val’
`
`‘
`
`..
`
`(.4-E6)
`
`F.EE3‘: abaargzl
`’
`~ where s is tha distance alnng the local :i.i.rex;:.ian £§i’5_;3:’:iii3
`.
`tinnifiength Life: is a daminantlength scaia fc:r’t}'.1s‘3.
`,,
`. 288 it :c§.e=;:rl-:‘*;r’. ma-..s .
`"H133 r:§'is_t;anc=e.-oyggr xvhigah tE:’a’p~{3w€;£,iS absGx*beé¥ frgm {?h:e’bai:am., F&r'tFhis’r:§caa
`2:
`:59-n,»t"1%m dimension Qftha»§ii’gii~:a3It1;}a£aI£iifa ;é2£¥2s:>3éb§i:z_.‘
`"<2:
`piiaatxza
`
`alcmg tha laser beam will he of the cider’ taf ;h:¢;»a¥3sar;):t:»c:n itzzzgiiz. ésiihaiigh
`it is {he absorption 3.Emg1:h that determines ‘tlilailangtii ief-tha»;3}asma»a1:an;g the 7
`Exam fixigs, :1. is the laser beam »cI.iarmeter amt. diziezmiizxes ti-1:2: galasma ’§fi33.I§§?e¢'
`tar; ’I”i1e’;31£1s:11a expands to fill the. begin £:i3.11”eI .ui§:'1.”ti:r:e it
`able fie «21?3$*c«fl3
`pawar, than rapicliy ciaszzmazscs in tenzperazure. m:tsi.:§::: tihes: lsaam ti1rau1_gTh
`thermal <:a.n::1uction.a.nd radiativs lass .machan.isms..
`The pnsition‘ 9f the
`relative to the facal paint is tiriiicai in deiermirb
`ing its sitruciure andilie range cf para.mcters far which it ‘cat; The .maintaine€1.
`Whan the plasma is initiatad near the beam foam, it pmpagataa into. the
`sustaining beam and seeks a stable. _position. The pasitidn nf stability will be
`.locat»e»d‘wher:: the imam intensity is ‘just sujffizziimt t11at.1:.ha ‘a’bsm“ba»x;l power
`will balance tlxalosses due to convection, thermal ccynfiuctinn, and.therm.a1
`radiation. A _number of factors cmnbine to determine this pcssiilcm of sta-
`bilitylncluding the transverse pmfile of the incident beam, t.hefoca1.leng-tl1
`and aberrations of‘ the focusing lens or mirror, the plasma bprassura, and the
`incident flow velocity (Keefer at 211., 1986; Walla at 211., 1987).
`The power per unit volume that is absorbedby the plasma is given by
`
`
`
`P == crl
`
`V
`
`(4.7)
`
`

`
`Laservfiusiaineti Plasmas‘
`
`3?5
`
`where I is the Iona} irradiaznce of the Eases: beam. Smce I depends an -the
`transv-ersa profile 0f the "incident beam a’s.’-weii as ‘the focal ¥ength and aber~
`’ra'zicn.s of the lens, these -chamczterisiics wiii .:infl.uenc-a £i1e’I.t:2ca’3:i0n within
`
`the focal region at
`the».
`inimm:n.sus1:ai.ni:t;gi’n.tan.sity is Icicamd. F01‘
`exampie, far a small. ffxznmbfir» "’n;$,_ the.'i:1£cnsit3¥ decreasfis rapicily with im
`cra.asi.n_g .dist.a.nce ftam..1hh?:*facus;2m€i»the p_1a‘sm.a»w.i11.s’:abi.1iza:ncar the focus.
`‘For -a}ar-ger.ffI111In.¥j)er system., ii1;sji':»..i.:3'e.=r1S?ity’ Ciecrzafias 168?: rapidiy and the
`p1asmawii’I.;stabi.1i2e.ai.2r:p0s§tia:z fzxi.
`awa: Em. ..
`neué. I::“<3a=e.-(1., for
`.s':_31ficienfly 1cmg*fo;;a’:I .1cr;;g1£h§ :a::;.?1} 1
`s:
`p=a‘v}'er3 §z1;as;:nas..h:avie’be=en 0b~
`-
`’
`’
`”
`'
`’
`vgfifiififg. 1193i?) as “’I.a:s¢r:zs;;ppo}*ted cam-
`
`
`
`
`,
`b
`’
`Tha. zimaiiaexzi ;~r;;>.a.t.i.,2::.1 :
`’Ia5ti:'tsns bemseen.i1rm apiiizzsaigésgzmg, 9.
`
`”
`
`'
`
`sizitaiis »3§.§’14E*.e.t*€$1?I2:i:§1fi1;“.:s:_17'¥._3r§It.1I1%:'i.nierx::~
`’
`’
`-
`.3.
`z..1:xg»$a=.-_,.»§. aprcssufenf
`’ "
`witiziin ’£h.¢%:¢ ;::«Ias:ma.,
`
`
`
`a $t:éib.I¢ -;:‘iax::::a
`a.n:i.;fi{aw .fbf._r.
`Mast céf xhaearzy 61:33 me.
`chambers tn": in §;p&n»aiEr,’xY§E1efi%»t11’ "£1.
`by the effects at‘ therma} bmzy-
`‘
`
`the ipr.essar:e .3215 inset powar»-.
`.
`.
`pressure w11.er’a»i:was l1‘:::iS.si3:5.1~&*:«’§:i3
`- Thfise. -axperimnnts
`.
`.
`eraiav et .ai., 1'9’Z2;; ’K<3z1¢;;=v 4% a‘{.., 1494:
`f¥31r”33£>3fih}.aser.p0sver anti
`Enézficatcdf, that filers wars np;‘;:>’er anti ’ix::t*».=’iv£'-—E1‘
`.
`.
`pressure at which the LS? =£:i3i:i.'i€i be snataineéi.
`Generalov et 31.. (1972) suggested that the upper iimit. for p-owe’: was a re-
`suit of forming’ the LS? .v¢ithA a horizontal beam. In this ,geemet:ry, thermal
`buoyancy ‘induces a flaw transxzers-e to the =0.;f:¥;i§:ai axis. The imiuced flow
`czarries the plasma up anti nut czf the Beam 'W31Efl.h.§g§}fiI“ Easier npmvez“ causas
`the plasma :0 stabiiize‘ farther from the focus. They were unabla to estab-
`Iishan ’upp-er pews: jimit when 1115 expaximmgt was aperatcd with {ha beam '
`pmpagating verti.ca11yV upward. Koziflv et_;a'1. (1974) d6ye¥c3pe.d a [radiative
`model for the LS? and explained the agape: power limit on the basis that
`the plasma must stabilize class: enangh to-the’f0ca1‘p0int. that the geonueb
`V ric increase of laser beam -intensity geing. inta the ‘plasma was greater than
`the loss of intensity clue to absorpfi-on. They speculated that the faihxre of
`Generaiov at al. (1972) to observe this limit in a vertical beam ‘was due to
`rapid extinction and reignition of the plasma.
`It is clear from the experiments of Generalov at al. (1972) that flow can
`have a large effect on the range of Aprcssure and "laser power that will support
`
`and zharmal razziiaticm; ’.Fhc pas.
`at which the piasma stabiiiz ’ :§§x2e: 1.
`
`

`
`‘W6
`
`Keefer
`
`
`
`Fiastxnas sust-a.i.nsd in tho frat: jot issuing from a nozzio have
`a szabio
`boon studied by Gerasimenko at 31. (198.3) who n1aa'.sured the discharge
`’%;s*f&3e%?i‘3 nnincigy alozxyg {ha bean: andxannges for the existenizn of a $toa€iy~st=ate'
`
`d;‘is's»;:h
`..Rn;:::nn1.%i§»
`y
`nonts’ havn been oozxcixxctnd in confined tubes
`
`:.vha1%e’=»£.0i1:ced nnnyactinn :1 :ni'nat€-ni nu: flow (‘Wane oz 211.,
`:£9{87_). 1:; was
`.:f0’unr?: ihaifi-n addition. in power and §}f$S.Si1f-£3, both the flow and nptiycai ge-
`OYII.
`in ”
`' gvg-:2:pi”GfBfindinflnen'c:-3 on the cfharactmisiicsyof tho =
`
`
`
`
`tho L-SP <:s:;:;.:icif2_:»’c=;, susta.i-nan are ya}
`y
`_y
`._
`o~:nIy:.;Eor the gmriicziiar.-experimental’ gjeomntrynsed to obtain ithkem.
`
`
`
`when tho pins
`inn ‘ iasma -
`
`
`
`
`
`
`thnft itiho ’3=1e-2* absorbed fmm £235. tzeoam, given byis balanced-’
`‘fine: convective; con§’uc'§i9<7.o, .a‘nd irafiiation Ioiss-es. -Sincies, in generai, "the ‘in,
`
`
`' _ T, the B33122, the p1asma.wi11 a.<:ijust.._;i‘z"2 size, snap»
`
`
`
`
`
`
`2!; rBs:1x‘F:...nf‘E3onn3i4h:o:nn:i iransitinns,» rosniting in lino ’rar}ia£,ion am: absnr
`tion, =and..frno;~?§:onn£i amzi fies-afrose téran:si‘tions’that resin}: in .m'ntin'unzn vraciz
`a’iiQn»-afifi: ahsoafpt
`Qve; §I1e.op£_ioaI§_y thinportion of the spectrum, ‘chi
`ran.1.am>.n xvii? : stmngiy ;i?::$i:rbaii by the plasma or sn:‘ronnr3ing nifinm.
`regions and wii} sinxpiy osc;ap»c from the plasma. (Ether Iportions of the spec» b
`mam will
`sirongiy absorbed, 1‘e2:'uking in a transport of energy within the :
`plasma. In the oniiizaiiy ii1ick1'imiI:,_this resu1‘ts;in a diffusive energy trans“
`p-Cart that is similar to thermal coimtiuction, but may be significantly larger.
`Detailed cn1Acui.ations. of the LS? (long and Keefer, 1986) indicate that this
`radiative trzmsporz is a szionxinant factor in the determination of the stmo
`turn and position of the LSP. In particular, it is the radiative transport that
`’ determines the t7ompe'ratur,e gmdiont in the upstream .fr.ont of thoplasma,
`thereby determining the position in the beam for which convection losses
`are balanced by -absorption.
`The position of stability for the LSP also depends on the plasma px'os~
`sure, The absorption coefiicientis a strong function of plasma density, as
`soon from Eq. .(4.4).. If the pressure is inczroasocl and the absorption ooe:ffi«
`cient increases, than the plasma can absorb more power from the beam and
`will move away from the focus to a lower intensity region in the beam. At the
`
`
`
`

`
`
`
`§;,=a»s.er-'S'usta’¥ne»d Ptasmas
`
`' 1??
`
`‘ ”
`
`'
`
`831.1%» ‘$1116. the zpiazmxa iength aizmg the .beam »ck:cr-e.a-ses bmcaus-e zaf the fle:~«
`£;1f§;as’e in absarptimx isrxgtix, 13111 the d.imnet=e.r i.n»<:re:ases ta ii}! the .larger :c.m;s’s
`$e<;ti<}.n sf zhva beam, Thus, far the same laser beam stars:-niititizis, a .’higfhar-
`
`px‘essuir»e
`wii} stziiiiiiiize
`a, Quint farther away fmm the ma: gixaint arzci
`have 3 :’s'maI1a:r..}angt11~'1o~C%1arnc1er ratio ’th.a.rz 3 I-0xvm*~:prassu.rc
`.
`,i11cide21iiase’r p{)we3f., as wail as tihc f/number and absrra¥i£3n.s cf the fa
`gusixlg Qpties,» will also .ir’:.fix.z.enc»e the ;3;3si,£iz3n. at which the
`St:;zt3i}izes
`iihe .2bsa’m., Fisam {me '=‘,£o:as;g::{i’:1g <3ii5£:us.£i€31}., it is cierax fhat as the?)-e.a.m
`pom: is increassziv, the piasma=wiIf1 mmze up t11eb£:an1 ixway ifrbm the fixzai
`T115 distance that it mtzzxzes. is zistermizzegi by ‘the .f!n.umb:&r (iiagiiiit {Bf
`
`3.2 in tiiéhe: 33€:a::I2.d;i’¢ti11$'£e2f:i’n£:i}£i€1:1t’§3:1flmfii-Iztzsizfzg
`”
`”
`.
`nee tihe rata»0fch.a11ge»»’inimami?ntei1sfi’£§’
`.
`_-
`mi
`
`:22 air’: in’£:was£:.in ffnumbe.-r; Lens ai:err:a§:ions:.ean-.ais::>..§1ars,%a
`81333 {:1
`Va _e£:.é‘t {§3}.p¥asma p=o-aition (Kaefmf et :aL, 198$}. In part;ic11k::r, Wfh;E11'i an an-~
`231333": Ema-:2; gfrrsxia: a’n.n.nst;abie1a¢ser <>:2+i:.i,£}21t:>:r:’E;:}s:::z»a:se;::i 133:3 sghericai I.e;:z.s.,
`'it..pr£3d13-ces an am’nn’iar’pmfQc,us region. befbre reaching» {ha ff}:-15:11 p?:i:si.I1}:;,b and
`_ £112:
`’
`t_§i1i;‘; ragian'n1.ay’1:23su.§i:im1’i’t0 »sz3.st.a;iz1 an azgnuiar" 2131.3;
`
` m: {ha z:»'bs;é:rvat:iAn.:1.s :c§iswu.ss::d. abcve, it is cigarti1.at’£heg;$%:>sit»i£§n Gf
`{ha plasma relaiive in -the focai paint has a: prafwndeffzészéi’<1:2-”ii1¢’:p}:asma
`=;:istics.. Aifile upper limits Qf:at3%t*.i¥i2y :f::sr bath i1.as::r—: -pa:;»ver< ml»
`,;:ha.:f;s:::te
`
`923
`V
`a}i§§’=i§€£r's
`that {ha pi£ixsn1.a:ii:ecbmes xx:ist;a“b'}.e sixhan ii; ixnavasma
`£ar‘fm1’m;
`fi>»<:;;¥. paint. This may be dm: to tits :1’.at-:..i, as prQposed»byf’Kt§2fi:3v
`at Vail. :(3§¥?£§}, ihatas ‘iihapiasma .mavas sufficiently f_ar’awa3r
`iii:-£:u;s:.,
`iha ,i?i§{t§§ 933 in.crga;se cf the beam .in£ensiiy in ihsa aiiracéticzh. af‘ -agzrczpagiafiain
`’ aims s:i1a.}I6r. Sines the. tampareitura s::%:£ '=t}1:<i’ ;2§.a::m’:,a .m3.J,$t 5 "
`ease.-tax:-itxe
`
`beam grgipiagates into the uy:t:’aarzi ecfige itixietpj-’Iasmai_ .:ixfi:énsi:3?‘ii:tf~zfI1e
`baammnst 3715:: increase. At some paint, §i1e:dac’ra.as’eA-of i}za.’b»aam iI1.;’czé;f1s.iiy
`due-ti} »a’.i}si3rpti0n is greater than the incrieeasa due: ‘E0 f0c%::.s§:1g, SC! the piasnza
`Essécemeéa unstable and extingui-s'hcs. Recent <:.a1c:,.z}atit3ns by Sféng. gm :1, Keefm:
`(:9a?a}, hmvaver, indicate: that there may exist 1.0031 're:gi£3-213. =withi2: t}:1e’LS-EP
`whom .£}1e’b-mm .intans:ity dm;re.as-es ‘as it penetraies the plasma.
`. Accmsidarabie ciegree of £10I1t1'O10f the structure and position Bf ihezlgfi?
`can be gained through both optical geometry and flow, in Vaddifian tc) Iasar
`p-zxwcr zzmzi. ’pressure. Utilization of these aciditicanal parameters nmake-.5 ‘it,
`p’0ssib1i~: to successfuliy opczrate the LSP ever a wider range 0f exprsrinfremtal
`conesiiiierzs, enabling 21 wider range of potezntial appiications.
`
`’
`
`‘
`
`
`
`13.2.2.
`
`?1asn1a Characteristics
`
`Laser~sus.tained plasmas have been operated in 21 variety of molecular and
`rare gases at pressures from 1 to more than 200 atm. The resulting plasmas
`have characteristics that are similar to are plasmas operated at similar p1‘f3.S-
`
`

`
`177:8
`
`-
`
`-Keefer
`
`am usually somewhat highs:
`sures, {mt the pcak tenupcraturcs in the
`than these for the ccmparable arc, Ra:¥iati=on "item the plasma can be a Sig-
`nificant 'fI‘aCiiO’I1 of the total pzawar ,iz?:pI.1.t, and .rar3.iaii0n transp.r;:2r!: plays 2.-
`majcr tale in t:‘ctctminin_ the structure‘ of thc plasma. Co1::tinuu.rn —abscr-p—
`tion processes are cf13attici3lar,1’mp0.ttatzce in these ;plasm.as since thcpower
`to wstain the plasma is aiascrbati -tlzrctzglz these. me.-chanisms,
`The» .caniin1mm ahccttzztizm putiizccss iinyclvcs both l:}{)'i3I1fi.~fi‘€f3 trans.ition.s
`('p}:»0tci£>nizatii}n) anti ft'.6c».f£'cc transifticns (invcrsc bt‘fimsst.f’ahluéng) in
`wlzich phm:tmjs are absorbcd. fmm the»»l.a4scr’l::eam. Thu .fr<w-ices. transitions
`iI1?t:tlv6=»‘:flectron ccllisicms with 56:13, Gthfif éclcctrcns, and .’ncutr:al particles’
`{siziiaamfslfty c: .31., 3;’9‘§S-;;; £3:r.i‘c:m, ’19fi4}..
`i39mi'nan:t abscrption process
`
`for than is fiiiffliligli cc?ll§3_ion.§ ihctwcteti
`.
`..
`;xft.s 3-m3”icns, ,ar1d*t,hc a_b%m:p~
`-tiozt cccfiicicnt far this ptcccsa: is» given by Eq.
`For the usual Case in
`the 'LSP, kw ~.»:<:::k:'1’~and the ~a'?bs£33.fpii<:;I1’ is; appraximatcly‘ garcgtortianal to the
`sq’na’r=t-: of the la$.er- tvavclcxzgtjlgl
`ta
`’$irs3z:g,'xvavelcr;=gtIl ticpcncicrtcc,
`.311. cf _t.h’c_ rwcrtcci. e?£P€£i;ma.n'.t£2l
`{ES'i3Il.-.€Ii»if£}i" 111.8. LSP"h,:aw'c» beer; cbtaincd us«
`ing thc 1-9.6 gm w.avcle,;ngfl1 carbmn Ciiflxidc laser; Si-ace the length scale
`far the plasma is of 1:he—:*::.rdcr»cf the abserptian .lcnjg¥;Ih;, thc» length cf ‘the
`bplasma and .1113 pm;-er mqttired ti) ’s*us'ta1”:It it iworxld be cxpcctecl in increase
`dramatically .fm'shx:3’rter aaiia’vel;c:1*:gth_ lascrs Ctyggrcntly, -tfité. cnly other lasers:
`-zliztt are manly canciidams ta sustaizt £;{it1I?i122'{1§i}11§‘1 gzlajsxztast-arc» the itysilrcgczi
`€11‘ denicri'um.fluc.riid.c chcmical lasers mat cpcratc at wavclettgtjhs cf 3’ to
`4 ;.&m..
`'
`'
`'
`.
`Tltcrttzal r,a>di:a>fi!>01Et>..iS iizaiiilie cf thfit ::1}I£:st.’.i;2:;§c:’ta:z’1 c'ha:;acterisiics of the
`LSF. Thermal -rad_.i.a1:ion jO3t.ffG1'3Il.’ih3}313$'ifi3 can ai_:c0’nnt fer nearfzy all
`that ;;=t3wc1' abimribcd by the 'f3l’a,s.Ii”1a what} £115:- flow througlz the plasma is
`small anti. will account for :a s.igx.1ilicant fmciie'n of absorbed pews: even
`whcn thc ccnvcctlvc lcsscs are large. Thjc thermal rradiation. consists of
`continuum radiation resulting from _reccx1il3i1*;ati0n (free-bound transitions)
`and bramsstrahlnng (fffifi-’fI‘-fifi tr-ansitionfl) as well as line radiation (:bC}1.,1I1(3*
`buund transititms). Calculatitzn of this radi.atit::n is straightfcrward, ab
`though rather tctiieus, when the plasma is in local thermodynamic equ£~
`librimm (LTE) (Gricm, 1964).
`‘Local tltcrmcaclynamic equilibrium is es»
`tablishcd when the clcctmn colclisional rate proccsscs dominate the pro-
`cesses of radiative decay and recombination. When LTE is c~st.ab.lishcd
`in the plasma, the density -in specific quantum states is the same as a sys~
`team in complete thermal -equilibrium having the same total density, tern»
`peraturc, ancl chcmicalv.c_ompc3iti0:1.
`It should be emphasized that this
`does not imply that the radiation is similar ta a blackbody at the plasma
`temperature. In general, that: spectrum of the Iadiaticm from the plasma
`will have a complex structurc consisting of the superposition of relatively
`narrow spectral lines and a continuum having a complex. spectral struc-
`ture.
`‘
`
`

`
`s.ss
`S55
`
`§ ,
`
`Laser~8ustairie-ti Piasmas
`
`"179
`
`
`
`.
`
`_
`
`The sbscrptifiszn: c-ociii cient in this plasma‘ depends on the waveicngtli, and
`far thc u'i:r.svi.t31ci."portiQn cf the spccuum bslciw the wavelength iii thc rcso»
`nanceiimss ('£}.‘ai1.Siti
`:13 in 'ivii1g the grmimi state), the r.ac:iia2_ie.n is stmrzgiy
`
`abscirhxcd by tiiii pia ’
`_
`the cca1cr.su.:muxicii.ng gas. This rcsniis in a
`szrazijg raciiativss 'ira,:is{3Qrt”'mecha’nis’m that is imgiartszii in :ietcm1.i.iiin_g the:
`st:mc.:ii:i::'e ifithe pias’ma.. Qitsn, 'rz;d;iative tr-anspcri. for stIQng1y.ai3££3ri}in_g
`gases is :zn€i<ia:iic::i as :21 -ziiffusivc ensrgy trans-port simiiar to thc.nna1..candue~
`izion.
`£i1¢’.s£m:iIgiy itinizecixjsgicns -a:f"the piasma, the r.adiativc ir;anspcrt_.:is.
`many iimcs iarger tiiraiz the ’i=i:_tr.insie ihsrmsii ccnciucticn and is flit? dc?-i1i=i2a3::’t
`}2;sat~trans£c:r
`Thiis -is cspccisiiy iii:-V3 in the ugsirsam tcgisii cf
`~X¥h{i}‘ii:
`’e*t;e~;:1:p:»3;rii£=2ir[a graiiient is ilaidgc, zmd .ra£i.ia£it:).x_1 tfansfifiift
`fisiiit
`izozisisf
`i*2z:5»’1g3ssasis cf»-the insiident "flaw.
`titéiaiigsrssssssisrigth regiicm s'i3mr.c the rcssnsncc transii;i;:>n.s, fi%is..ab~
`,,
`scsrptiizm of'ii1e.,razii.at’infi by tiic piasma anti t'he surrmznciifng gas is much.
`smafilerr. "I113 =ai2scr;:'iii3n 1.ezzg1;i2. for this is-diatidn is Qfitiszi large -xsiizriz
`éi
`
`{scams <:i1<a'rac:s'risi:it;:e::ii.msn;sia;ix1s of the splasma, and 'fI711}fih»f3f’ii1fl,f3§?t1fEi..1{§2i
`es; 963.
`tsgiczi .Q:f:t;i1e.:spcctru’i:2, {he piasma may be cnnsicisrcci cap
`/ziciaiiy thingaIitiif'ti;ezpias:1121.is in L'.i‘}?., than the €:.sc:aping:;’:a3;iiatiOn eanfbc
`’us's-xi is characterize the tempcraturc within the LS? {£{e=e:£ss at 31,, 1?§86;
`
`987).
`
`
`sass §’??i‘§f1:_iI.‘1
`iii-E: piasz‘-as is far fmm sn

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket