throbber
IPR2016-00726-ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1020 , p. 1 of 185
`
`

`
`IPR2016-00726-ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1020 , p. 2 of 185
`
`

`
`EXHIBIT A
`
`IPR2016-00726-ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1020 , p. 3 of 185
`
`

`
`Adaptive Strategies For Routing In
`
`Dynamic Networks
`
`Peter John Shoubridge
`
`Bachelor of Engineering in Electronic Engineering
`
`School of Physics and Electronic Systems Engineering
`
`Faculty of Information Technology
`
`University of South Australia
`
`Thesis submitted for the degree of Doctor of Philosophy
`
`December(cid:2) 
`
`IPR2016-00726-ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1020 , p. 4 of 185
`
`

`
`Contents
`
` Introduction
`
` (cid:2) Thesis Objectives (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2)
`
` (cid:2) Achievements (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2)
`
` (cid:2) Thesis Outline (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2)
`
` Cost of Routing in Networks
`
`(cid:2) Routing in Communication Networks (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2)
`
`(cid:2) Classications of Routing Procedures (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2)
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`(cid:2)(cid:2) Deterministic and stochastic routing (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2)
`
`(cid:2)(cid:2) Centralised and distributed routing (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2)
`
`(cid:2)(cid:2) Hierarchical and nonhierarchical routing (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2)
`
`(cid:2)(cid:2) Adaptive and nonadaptive routing
`
`(cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2)(cid:2) Collaborative and independent procedures (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2) Shortest Path Routing (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2) Flood Search Routing (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2) Overheads Associated with Routing (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2)(cid:2) Overheads in centralised and distributed routing (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2)(cid:2) Overheads in hierarchical and nonhierarchical routing (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2)(cid:2) Overheads in adaptive and nonadaptive routing (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2)(cid:2) Routing table maintenance in adaptive schemes
`
`(cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2)(cid:2) Cost comparison of ooding and shortest path routing (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2) Routing Cost and Network Capacity (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2)
`
` Combining Routing Procedures
`
` 
`
` (cid:2) Future Demands on Routing (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`i
`
`IPR2016-00726-ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1020 , p. 5 of 185
`
`

`
` (cid:2) Background of Combined Routing Procedures
`
`(cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
` (cid:2) Constituent Protocols for Combined Routing Strategies (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
` (cid:2) (cid:2) Distributed minimum hop algorithm (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
` (cid:2) (cid:2)
`
`Jae(cid:8)Moss algorithm implemented as minimum hop (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
` (cid:2) (cid:2) Flood search algorithm (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
` (cid:2) Multiple Protocol Routing (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
` (cid:2)(cid:2) Operating multiple protocols in one network (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
` (cid:2)(cid:2) Problems with alternating between routing protocols
`
`(cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
` (cid:2) The Proposed Hybrid Routing Scheme (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
` Modelling of the Routing Strategy
`
`
`
`(cid:2) Methodology (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2) Development of the Simulation Model (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2)(cid:2) Network and trac models (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2)(cid:2) Modelling dynamic network behaviour
`
`(cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2)(cid:2) Models of routing procedures
`
`(cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2) Comments on Interpretation of Simulation Results (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
` Performance of Hybrid Routing
`
`
`
`(cid:2) Performance of Minimum Hop and Flooding Protocols
`
`(cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2) (cid:2)
`
`Static network conditions
`
`(cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2) (cid:2) Verication of the simulation model under static conditions (cid:2) (cid:2) 
`
`(cid:2) (cid:2) Eects of dynamic network conditions
`
`(cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2)
`
`Implications of the Results to Multiple Protocol Routing (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2)
`
`(cid:2) Performance of the Proposed Hybrid Routing Scheme (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2) Eect of Network Size and Connectivity (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
` Modications to Hybrid Routing
`
` 
`
`(cid:2) Next Best Path Strategy (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2)
`
`(cid:2) (cid:2) Delay throughput performance (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2)
`
`(cid:2) (cid:2) Comparison with hybrid routing (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2) Prioritised Routing Table Updates (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2)(cid:2) The priority mechanism (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`ii
`
`IPR2016-00726-ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1020 , p. 6 of 185
`
`

`
`(cid:2)(cid:2) Performance comparison using priority (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
` Verifying Performance Robustness of Hybrid Routing
`
` 
`
`(cid:2) Expected Routing Algorithm Performance (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2) Verication Through Simulation Modelling (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2) Large Changes to Topology (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2) (cid:2) Results of network simulation (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2) Regional and Time Varying Link Cost Change Intensity (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2)(cid:2)
`
`Simulation results (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2) Topology Change in a Mobile Radio Network (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2)(cid:2) Mobile packet radio node model (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2)
`
`(cid:2)(cid:2) Topology control
`
`(cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2)
`
`(cid:2)(cid:2) Modelling a multiple access scheme (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2)(cid:2) Routing performance (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
` Conclusions
`
` 
`
`(cid:2)
`
`Identifying Dominant Routing Costs
`
`(cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2) A Solution to Routing Table Uncertainty (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2) Recommendations for Further Study (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`Bibliography
`
`A Routing Power Calculations
`
` 
`
` 
`
`B Dynamic Scenario for the Mobile Packet Radio Network Model 
`
`C Publications
`
` 
`
`iii
`
`IPR2016-00726-ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1020 , p. 7 of 185
`
`

`
`List of Figures
`
` (cid:2) Routing performance subject to a changing topology (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2)
`
`
`
`(cid:2) Shortest path spanning tree for destination d (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2) Delay versus throughput for an MM queue (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2) Delay versus throughput for network of queues (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2) Relative performance of routing procedures (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
` (cid:2) Location of node v in the network G (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
` (cid:2) Routing overheads as the network becomes more dynamic (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
` (cid:2) Multiple protocol routing (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
` (cid:2) Primary node functions required for protocol switching (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
` (cid:2) Local broadcast hybrid routing (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2) Deriving a simulation model
`
`(cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2) Network model (cid:11)  nodes with connectivity of degree  (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2) Delay using ooding and minimum hop in static network (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`
`
`(cid:2) Determining the maximum operating point(cid:14) n (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2) Queue length with ooding and minimum hop in static network (cid:2) (cid:2) (cid:2) 
`
`(cid:2) Verication of minimum hop in static network (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2) Verication of constrained ooding in static network
`
`(cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2) Delay using ooding with increasing intensity of change (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2)
`
`(cid:2) Delay using minimum hop with increasing intensity of change
`
`(cid:2) (cid:2) (cid:2) (cid:2)
`
`(cid:2) Dominance of retransmissions with increasing intensity of change (cid:2) (cid:2) (cid:2) 
`
`(cid:2) Probability of success using minimum hop with increasing intensity
`
`of change
`
`(cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2)
`
`(cid:2) Delay using hybrid routing with increasing intensity of change (cid:2) (cid:2) (cid:2) (cid:2) 
`
`iv
`
`IPR2016-00726-ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1020 , p. 8 of 185
`
`

`
`(cid:2) Relative routing transmission overheads (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2)
`
`(cid:2)  Comparative performance over varying intensity of change (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2)
`
`(cid:2) Comparative performance (cid:8)  nodes with connectivity of degree  (cid:2) (cid:2) 
`
`(cid:2)  Hybrid routing performance with increased connectivity (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2)  Comparative performance (cid:8)  nodes with connectivity of degree  (cid:2) 
`
`(cid:2)  Hybrid routing performance with increased network size
`
`(cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2) Delay using next choice with increasing intensity of change (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2)
`
`(cid:2) Probability of success using next choice with increasing intensity of
`
`change (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2)
`
`(cid:2) Relative routing transmission overheads (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2) Comparative performance over varying intensity of change (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2) Priority queueing model for packets transmitted on link l (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2) Minimum hop routing with prioritised table updates (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2) Hybrid routing with prioritised table updates
`
`(cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2)
`
`(cid:2) Minimum hop routing with increased degree of topology change (cid:2) (cid:2) (cid:2) 
`
`(cid:2) Hybrid routing with increased degree of topology change (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2) Comparative performance with increased degree of topology change (cid:2) 
`
`(cid:2) Region of dynamic change shaded area moving across the network (cid:2) 
`
`(cid:2) Minimum hop routing with regional topology change
`
`(cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2) Hybrid routing with regional topology change (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2) Comparative performance with regional topology change (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2)
`
`(cid:2) Delaunay triangles and some of their circumscribing circles (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2)
`
`(cid:2) Minimum hop routing performance in the mobile radio network model 
`
`(cid:2) Flooding performance in the mobile radio network model (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2)
`
`(cid:2) Hybrid routing performance in the mobile radio network model (cid:2) (cid:2) (cid:2) (cid:2)
`
`B(cid:2) Stationary nodes and nodes travelling at kmhr (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`B(cid:2) Nodes travelling at kmhr and kmhr (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`B(cid:2) Delaunay triangulation of initial node positions
`
`(cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`v
`
`IPR2016-00726-ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1020 , p. 9 of 185
`
`

`
`List of Tables
`
`(cid:2) Routing Algorithm Performance (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2) Relative Routing Cost
`
`(cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2)
`
` (cid:2) Distance and Routing Tables for Node v (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`(cid:2) Throughput and Delay Comparison with Hybrid Routing (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2)
`
`(cid:2) Comparison of Minimum Hop Routing with and without Priority (cid:2) (cid:2)
`
`(cid:2) Comparison of Hybrid Routing with and without Priority (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2)
`
`(cid:2) Routing power performance in the mobile radio network model (cid:2) (cid:2) (cid:2) (cid:2) 
`
`A(cid:2) Routing Power (cid:11)  Nodes with Connectivity of Degree  (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`A(cid:2) Routing Power (cid:11)  Nodes with Connectivity of Degree  (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`A(cid:2) Routing Power (cid:11)  Nodes with Connectivity of Degree  (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`A(cid:2) Routing Power (cid:11) Prioritised Routing Table Update Messages (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`A(cid:2) Routing Power (cid:11)  Nodes(cid:13)  Degree Connectivity(cid:13) D (cid:14) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) (cid:2) 
`
`A(cid:2) Routing Power (cid:11)  Nodes(cid:13)  Degree Connectivity(cid:13) Regional Change (cid:2) 
`
`vi
`
`IPR2016-00726-ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1020 , p. 10 of 185
`
`

`
`Abbreviations
`
`ACK
`
`Acknowledgment
`
`ARPANET
`
`Advanced Research Projects Agency Network
`
`ARQ
`
`ATM
`
`AT(cid:2)T
`
`CDMA
`
`CSMA
`
`CUP
`
`DAR
`
`DNHR
`
`FDMA
`
`FLD
`
`IP
`
`IUP
`
`LAN
`
`MSG
`
`OSPF
`
`RIP
`
`SP
`
`TDMA
`
`TSMR
`
`Automatic Repeat Request
`
`Asynchronous Transfer Mode
`
`American Telephone (cid:2) Telegraph
`
`Code Division Multiple Access
`
`Carrier Sense Multiple Access
`
`Coordinated Update Procedure
`
`Dynamic Alternative Routing
`
`Dynamic Nonhierarchical Routing
`
`Frequency Division Multiple Access
`
`Flooding
`
`Internet Protocol
`
`Independent Update Procedure
`
`Local Area Network
`
`Message
`
`Open Shortest Path First
`
`Routing Information Protocol
`
`Shortest Path Routing
`
`Time Division Multiple Access
`
`Trunk Status Map Routing
`
`vii
`
`IPR2016-00726-ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1020 , p. 11 of 185
`
`

`
`Abstract
`
`In modern communication systems(cid:2) especially those with mobile radio compo(cid:3)
`
`nents(cid:2) the distribution of trac loads and network topologies may vary from nearly
`
`static to very dynamic(cid:5) The dynamic behaviour may vary both in space i(cid:5)e(cid:5) aect
`
`only regions of a network and in time(cid:5) Commonly known routing algorithms tend
`
`to be well suited for specic networking environments(cid:5) For example(cid:2) algorithms
`
`based on the shortest path principle tend to work well with quasi(cid:3)static networks(cid:2)
`
`and random search or ood based algorithms are better suited to networks with
`
`dynamically changing topologies(cid:5) As a result(cid:2) it is very dicult to select a single
`
`routing algorithm that will be most appropriate for a given network(cid:2) if the network
`
`is subject to varying degrees of dynamic behaviour(cid:5) Usually(cid:2) what works well for
`
`some regions of a network(cid:2) will be inecient for other regions(cid:5) Similarly(cid:2) the routing
`
`eciency will vary in time(cid:5) An intuitive solution to this problem(cid:2) namely switching
`
`between a number of routing procedures depending on network behaviour(cid:2) requires
`
`a set of switching criteria and decision making procedures which are extremely dif(cid:3)
`
`cult to dene and implement for networks with a distributed mode of operation
`
`and control(cid:5)
`
`This thesis develops a routing strategy that smoothly adapts to a changing net(cid:3)
`
`work topology dened by links failing and subsequently recovering by combining
`
`two dierent routing principles into one hybrid routing procedure(cid:5) The proposed
`
`routing procedure does not require any specic measures of the network dynamics
`
`to be computed by network nodes and then used to decide on the routing principle(cid:5)
`
`Instead(cid:2) by deciding locally on the basis of routing information normally available
`
`at each node(cid:2) the way in which a next node is to be reached(cid:2) the hybrid routing
`
`strategy exhibits a smooth change from minimum hop routing to constrained ood(cid:3)
`
`ing(cid:2) as the behaviour of the network or regions within changes from static to very
`
`dynamic(cid:5)
`
`viii
`
`IPR2016-00726-ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1020 , p. 12 of 185
`
`

`
`Declaration
`
`I declare that this thesis does not incorporate without acknowledgment any ma(cid:2)
`
`terial previously submitted for a degree or diploma in any university(cid:3) and that to
`
`the best of my knowledge it does not contain any materials previously published or
`
`written by another person except where due reference is made in the text(cid:4)
`
`Peter John Shoubridge
`
`ix
`
`IPR2016-00726-ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1020 , p. 13 of 185
`
`

`
`Acknowledgments
`
`I am very grateful for the support and guidance provided by several people in
`
`undertaking this research program(cid:2) Firstly(cid:3) I would like to thank Professor Michael
`
`Miller and Professor Ken Lever from the Institute for Telecommunications Research
`
`at the University of South Australia for their enthusiasm and the excellent postgrad(cid:4)
`
`uate study environment they provided(cid:2) Also(cid:3) I wish to thank my employers(cid:3) Mr Neil
`
`Bryans(cid:3) Dr Tony Bedford(cid:3) Dr Stephen Cook and Mr Manfred Heigl at the Defence
`
`Science and Technology Organisation for providing the opportunity and exibility
`
`to undertake this study(cid:2)
`
`I wish to extend a very special thanks to my supervisor Dr Arek Dadej for
`
`the many constructive discussions we have had and his enthusiastic support that
`
`has been invaluable towards producing this thesis(cid:2) Finally(cid:3) I would like to thank
`
`Jonathon Shewchuk from the School of Computer Science at Carnegie Mellon Uni(cid:4)
`
`versity for permission to use his software to calculate the Delaunay triangulations
`
`used in Chapter (cid:2)
`
`x
`
`IPR2016-00726-ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1020 , p. 14 of 185
`
`

`
`Chapter
`
`Introduction
`
`Communication networks enable users to exchange information through the sharing
`
`of switching and transmission resources(cid:2) Routing provides an essential function in
`
`ensuring that information transmitted from a source can successfully nd a path
`
`through a network to its desired destination(cid:2) Generally the routing function seeks
`
`to optimise some performance criteria such as network utilisation or throughput(cid:4) or
`
`perhaps average delay(cid:2) As networks increase in size(cid:4) with more users demanding
`
`seamless connectivity(cid:4) mobility and a high level of availability(cid:4) the task of routing
`
`becomes an increasingly complex problem to network providers(cid:2)
`
`For ecient routing(cid:4) nodes require at least some knowledge of network topology(cid:2)
`
`Links may fail or become congested(cid:4) nodes or users could be mobile(cid:4) resulting in
`
`changes to the source(cid:6)destination paths within the network(cid:2) Information regarding
`
`these changes must be conveyed to network nodes so that appropriate routing can
`
`take place(cid:2) This information exchange consumes network resources that could oth(cid:6)
`
`erwise be used for user trac and represents a cost in maintaining up to date routing
`
`information in network nodes(cid:2) As topology or trac loads change more frequently(cid:4)
`
`the network becomes dynamic and maintaining accurate routing information at in(cid:6)
`
`dividual nodes comes at a higher cost(cid:2)
`
`In addition to transmission capacity(cid:4) routing procedures consume other network
`
`resources such as processing time to execute algorithms and memory to store rout(cid:6)
`
`ing tables(cid:2) Generally(cid:4) in dynamic networks employing radio transmission bearers(cid:4)
`
`processing power and memory within network nodes are of relatively low cost when
`
`compared to transmission resources which are often costly and limited(cid:2)
`
`
`
`IPR2016-00726-ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1020 , p. 15 of 185
`
`

`
` (cid:2) Thesis Objectives
`
`Typically(cid:2) when shortest path routing algorithms are utilised to maintain routing
`
`look up tables stored within network nodes(cid:2) they contribute zero transmission costs
`
`when making a routing decision(cid:3) In forwarding a user packet(cid:2) a node simply deter(cid:4)
`
`mines the most appropriate outgoing link from the routing table(cid:3) However(cid:2) these
`
`shortest path algorithms do consume resources every time the network changes in
`
`bringing all the routing tables throughout the network up to date(cid:3) If routing deci(cid:4)
`
`sions are based on inaccurate information stored in routing tables(cid:2) retransmissions
`
`or reattempts caused by higher layer end(cid:4)to(cid:4)end transport protocols typically occur
`
`as a result of the excessive delays or lost trac(cid:3) This places additional load on the
`
`network further consuming transmission resources(cid:3)
`
`Flooding based routing procedures(cid:2) on the other hand(cid:2) do not maintain routing
`
`tables and therefore do not require any table update procedures(cid:3) As such they
`
`contribute zero update cost but do consume large amounts of network capacity
`
`through broadcasting each time a routing decision is required(cid:3) Overheads resulting
`
`from these types of routing procedure are generally independent from the frequency
`
`of changes occurring within a network(cid:3) Instead overheads are related to the extent
`
`of the ooding process(cid:3)
`
`While shortest path algorithms are less costly to operate in a reasonably static
`
`network environment(cid:2) ooding may be required for very dynamic networks(cid:3) This is
`
`certainly true if shortest path algorithms are ineective in maintaining accurate
`
`routing tables due to high rates of change in network topology(cid:3) Unfortunately
`
`ooding is inecient(cid:2) resulting in very low network utilisation(cid:3) If network conditions
`
`can vary from static to very dynamic(cid:2) better routing strategies are required for
`
`greater network utilisation(cid:3) Identifying more ecient routing strategies under such
`
`conditions is the prime objective of this thesis(cid:3)
`
` Shortest path algorithms determine the best(cid:3) paths through a network as dened by arbitrary
`
`criteria(cid:5) Full descriptions of such algorithms are presented in later chapters(cid:5)
`
`
`
`IPR2016-00726-ACTIVISION, EA, TAKE-TWO, 2K, ROCKSTAR, Ex. 1020 , p. 16 of 185
`
`

`
` (cid:2) Achievements
`
`With many routing algorithms operating eciently for only one class of network(cid:3)
`
`either nearly static or very dynamic(cid:3) the task of selecting a single most appropri(cid:4)
`
`ate routing algorithm can be very dicult because the dynamic nature of a given
`
`network can vary(cid:5) Operating shortest path routing algorithms in dynamic networks
`
`is not possible due to the associated high routing cost(cid:5) It has been established in
`
`this thesis that a dominant constraint limiting the use of minimum hop routing one
`
`particular form of shortest path routing(cid:3) in a network subjected to increasingly fre(cid:4)
`
`quent link failures and subsequent recoveries(cid:3) is the routing table uncertainty(cid:5) While
`
`routing table update protocol overheads were found substantial(cid:3) they are far less sig(cid:4)
`
`nicant(cid:5) This observation opens an opportunity for considerable improvement to the
`
`algorithm(cid:9)s performance by overcoming the problem of uncertainty in routing tables(cid:5)
`
`It is possible to achieve signicantly improved performance over a wider range of
`
`dynamic conditions by combining dierent existing routing procedures into a new
`
`hybrid routing procedure(cid:5)
`
`A hybrid routi

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket