throbber
------------------------------ADVERSE REACTIONS------------------------------­
`The most common adverse reactions (≥ 5%) are asthenia/fatigue, back pain,
`diarrhea, arthralgia, hot flush, peripheral edema, musculoskeletal pain,
`
`
`headache, upper respiratory infection, muscular weakness, dizziness,
`
`
`
`insomnia, lower respiratory infection, spinal cord compression and cauda
`equina syndrome, hematuria, paresthesia, anxiety, and hypertension. (6.1)
`
`
`To report SUSPECTED ADVERSE REACTIONS, contact Astellas
`
`Pharma US, Inc. at 1-800-727-7003 or FDA at 1-800-FDA-1088 or
`
`
`www.fda.gov/medwatch.
`
`-----------------------------DRUG INTERACTIONS-------------------------------­
`
`
` Avoid strong CYP2C8 inhibitors, as they can increase the plasma exposure
`to XTANDI. If co-administration is necessary, reduce the dose of
`XTANDI. (2.2, 7.1)
`
`
` Avoid strong or moderate CYP3A4 or CYP2C8 inducers as they can alter
`
`
`
`the plasma exposure to XTANDI. (7.1, 7.2)
`
`
` Avoid CYP3A4, CYP2C9 and CYP2C19 substrates with a narrow
`therapeutic index, as XTANDI may decrease the plasma exposures of these
`
`drugs. If XTANDI is co-administered with warfarin (CYP2C9 substrate),
`
`conduct additional INR monitoring. (7.3)
`
`
`
`
`
`
`
`See 17 for PATIENT COUNSELING INFORMATION and FDA-
`approved patient labeling.
`
`Revised: 08/2012
`

`8.3 Nursing Mothers
`8.4 Pediatric Use
`8.5 Geriatric Use

`8.6 Patients with Renal Impairment

`8.7 Patients with Hepatic Impairment

`10 OVERDOSAGE
`

`11 DESCRIPTION
`

`12 CLINICAL PHARMACOLOGY
`

`12.1 Mechanism of Action

`12.3 Pharmacokinetics

`12.6 Cardiac Electrophysiology

`13 NONCLINICAL TOXICOLOGY

`13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility

`14 CLINICAL STUDIES
`

`16 HOW SUPPLIED/STORAGE AND HANDLING
`

`17 PATIENT COUNSELING INFORMATION
`
`*Sections or subsections omitted from the Full Prescribing Information are not listed.
`
`
`  
`
` HIGHLIGHTS OF PRESCRIBING INFORMATION
`
`These highlights do not include all the information needed to use
`XTANDI® safely and effectively. See full prescribing information for
`XTANDI.
`
`
`XTANDI® (enzalutamide) capsules for oral use
`
`Initial U.S. Approval: 2012
`
`
`---------------------------INDICATIONS AND USAGE---------------------------
`XTANDI is an androgen receptor inhibitor indicated for the treatment of
`
`patients with metastatic castration-resistant prostate cancer who have
`
`previously received docetaxel. (1)
`
`-----------------------DOSAGE AND ADMINISTRATION----------------------­
`
`XTANDI 160 mg (four 40 mg capsules) administered orally once daily.
`
`
`
`Swallow capsules whole. XTANDI can be taken with or without food. (2.1)
`
`---------------------DOSAGE FORMS AND STRENGTHS---------------------­
`
`Capsule 40 mg (3)
`
`--------------------------CONTRAINDICATIONS-------------------------------­
`Pregnancy (4, 8.1)
`
`-------------------------WARNINGS AND PRECAUTIONS---------------------­
`Seizure occurred in 0.9% of patients receiving XTANDI. There is no clinical
`trial experience with XTANDI in patients who have had a seizure, in patients
`with predisposing factors for seizure, or in patients using concomitant
`medications that may lower the seizure threshold. (5.1)
`
`
`
`
`
`
`
`
`
`
`FULL PRESCRIBING INFORMATION: CONTENTS*
`

`1 INDICATIONS AND USAGE

`2 DOSAGE AND ADMINISTRATION
`2.1 Dosing Information
`2.2 Dose Modifications

`3 DOSAGE FORMS AND STRENGTHS

`4 CONTRAINDICATIONS

`5 WARNINGS AND PRECAUTIONS

`5.1 Seizure

`6 ADVERSE REACTIONS

`6.1 Clinical Trial Experience

`7 DRUG INTERACTIONS
`7.1 Drugs that Inhibit or Induce CYP2C8
`7.2 Drugs that Inhibit or Induce CYP3A4

`7.3 Effect of XTANDI on Drug Metabolizing Enzymes

`8 USE IN SPECIFIC POPULATIONS

`8.1 Pregnancy
`
`  
`
`  
`
`Reference ID: 3183415
`
`AVENTIS EXHIBIT 2173
`Mylan v. Aventis IPR2016-00712
`
`1
`
`

`
`FULL PRESCRIBING INFORMATION
`
` 1 INDICATIONS AND USAGE
`
`XTANDI is indicated for the treatment of patients with metastatic castration-resistant prostate cancer who have previously
`received docetaxel.
`
`2 DOSAGE AND ADMINISTRATION
`2.1 Dosing Information
`The recommended dose of XTANDI is 160 mg (four 40 mg capsules) administered orally once daily. XTANDI can be
`taken with or without food [see Clinical Pharmacology (12.3)]. Swallow capsules whole. Do not chew, dissolve, or open
`the capsules.
`
`
`2.2 Dose Modifications
`If a patient experiences a ≥ Grade 3 toxicity or an intolerable side effect, withhold dosing for one week or until symptoms
`
`improve to ≤ Grade 2, then resume at the same or a reduced dose (120 mg or 80 mg), if warranted.
`
`Concomitant Strong CYP2C8 Inhibitors
`
`The concomitant use of strong CYP2C8 inhibitors should be avoided if possible. If patients must be co-administered a
`strong CYP2C8 inhibitor, reduce the XTANDI dose to 80 mg once daily. If co-administration of the strong inhibitor is
`discontinued, the XTANDI dose should be returned to the dose used prior to initiation of the strong CYP2C8 inhibitor
`
`[see Drug Interactions (7.1) and Clinical Pharmacology (12.3)].
`
`3 DOSAGE FORMS AND STRENGTHS
`
`XTANDI 40 mg capsules are white to off-white oblong soft gelatin capsules imprinted in black ink with MDV.
`
`4 CONTRAINDICATIONS
`Pregnancy
`XTANDI can cause fetal harm when administered to a pregnant woman based on its mechanism of action. XTANDI is
`not indicated for use in women. XTANDI is contraindicated in women who are or may become pregnant. If this drug is
`used during pregnancy, or if the patient becomes pregnant while taking this drug, apprise the patient of the potential
`hazard to the fetus and the potential risk for pregnancy loss [see Use in Specific Populations (8.1)].
`
`5 WARNINGS AND PRECAUTIONS
`5.1 Seizure
`In the randomized clinical trial, 7 of 800 (0.9%) patients treated with XTANDI 160 mg once daily experienced a seizure.
`No seizures occurred in patients treated with placebo. Seizures occurred from 31 to 603 days after initiation of XTANDI.
`
`Patients experiencing seizure were permanently discontinued from therapy and all seizures resolved. There is no clinical
`
`trial experience re-administering XTANDI to patients who experienced seizures.
`
`The safety of XTANDI in patients with predisposing factors for seizure is not known because these patients were
`excluded from the trial. These exclusion criteria included a history of seizure, underlying brain injury with loss of
`consciousness, transient ischemic attack within the past 12 months, cerebral vascular accident, brain metastases, brain
`
`arteriovenous malformation or the use of concomitant medications that may lower the seizure threshold.
`
`
`
`
`
`Because of the risk of seizure associated with XTANDI use, patients should be advised of the risk of engaging in any
`activity where sudden loss of consciousness could cause serious harm to themselves or others.
`
`Reference ID: 3183415
`
`2
`
`

`
`6 ADVERSE REACTIONS
`
`The following is discussed in more detail in other sections of the labeling:
`
` Seizure [see Warnings and Precautions (5.1)]
`
`
`6.1 Clinical Trial Experience
`
`Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials
`of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed
`in practice.
`
`In the randomized clinical trial in patients with metastatic castration-resistant prostate cancer who had previously received
`docetaxel, patients received XTANDI 160 mg orally once daily (N = 800) or placebo (N = 399). The median duration of
`treatment was 8.3 months with XTANDI and 3.0 months with placebo. All patients continued androgen deprivation
`therapy. Patients were allowed, but not required, to take glucocorticoids. During the trial, 48% of patients on the
`XTANDI arm and 46% of patients on the placebo arm received glucocorticoids. All adverse events and laboratory
`
`
`abnormalities were graded using NCI CTCAE version 4.
`
`
`The most common adverse drug reactions (≥ 5%) reported in patients receiving XTANDI in the randomized clinical trial
`were asthenia/fatigue, back pain, diarrhea, arthralgia, hot flush, peripheral edema, musculoskeletal pain, headache, upper
`respiratory infection, muscular weakness, dizziness, insomnia, lower respiratory infection, spinal cord compression and
`cauda equina syndrome, hematuria, paresthesia, anxiety, and hypertension. Grade 3 and higher adverse reactions were
`reported among 47% of XTANDI-treated patients and 53% of placebo-treated patients. Discontinuations due to adverse
`events were reported for 16% of XTANDI-treated patients and 18% of placebo-treated patients. The most common
`adverse reaction leading to treatment discontinuation was seizure, which occurred in 0.9% of the XTANDI-treated
`patients compared to none (0%) of the placebo-treated patients. Table 1 shows adverse reactions reported in the
`randomized clinical trial that occurred at a ≥ 2% absolute increase in frequency in the XTANDI arm compared to the
`placebo arm.
`
`
`
`
`Table 1. Adverse Reactions in the Randomized Trial
`
`XTANDI
`
`
`N = 800
`Grade 1-4
`Grade 3-4
`(%)
`(%)
`
`Placebo
`N = 399
`Grade 1-4
`Grade 3-4
`(%)
`(%)
`
`44.4
`13.3
`
`24.3
`17.3
`11.5
`6.8
`0.3
`
`17.5
`
`10.3
`2.8
`
`5.5
`7.5
`4.5
`
`4.5
`1.8
`
`9.3
`0.8
`
`4.0
`1.8
`0.3
`1.8
`0.0
`
`0.3
`
`0.0
`1.3
`
`0.0
`0.5
`3.8
`
`0.0
`0.0
`
`9.0
`1.0
`
`5.3
`2.5
`1.3
`1.5
`0.3
`
`1.1
`
`0.0
`2.1
`
`0.9
`0.5
`6.6
`
`0.0
`0.3
`
`
`General Disorders
`Asthenic Conditionsa
`50.6
`
`15.4
`Peripheral Edema
`Musculoskeletal And Connective Tissue Disorders
`Back Pain
`26.4
`Arthralgia
`20.5
`
`Musculoskeletal Pain
`15.0
`
`Muscular Weakness
`9.8
`Musculoskeletal Stiffness
`2.6
`Gastrointestinal Disorders
`
`Diarrhea
`
`Vascular Disorders
`
`Hot Flush
`
`Hypertension
`
`Nervous System Disorders
`
`Headache
`
`Dizzinessb
`Spinal Cord Compression and
`
`
`Cauda Equina Syndrome
`
`
`Paresthesia
`
`Mental Impairment Disordersc
`
`21.8
`
`20.3
`6.4
`
`12.1
`9.5
`7.4
`
`6.6
`4.3
`
`
`
`
`
`Reference ID: 3183415
`
`3
`
`

`
`
`
` XTANDI
`
`N = 800
`Grade 1-4
`Grade 3-4
`(%)
`(%)
`4.0
`0.3
`
`Placebo
`N = 399
`Grade 1-4
`Grade 3-4
`(%)
`(%)
`1.8
`0.0
`
`10.9
`
`8.5
`
`3.3
`
`0.0
`
`2.4
`
`0.0
`0.3
`
`1.8
`0.0
`
`0.3
`1.4
`
`0.0
`0.0
`
`0.1
`
`6.5
`
`4.8
`
`6.0
`4.0
`
`4.5
`2.5
`
`1.3
`0.8
`
`1.3
`1.3
`
`1.3
`
`0.3
`
`1.3
`
`0.5
`0.0
`
`1.0
`0.0
`
`0.0
`0.3
`
`0.0
`0.0
`
`0.3
`
`
`8.8
`6.5
`
`
`Hypoesthesia
`
`Infections And Infestations
`Upper Respiratory Tract
`
`Infectiond
`Lower Respiratory Tract And
`
`Lung Infectione
`
`Psychiatric Disorders
`
`Insomnia
`
`Anxiety
`
`Renal And Urinary Disorders
`
`6.9
`Hematuria
`
`4.8
`Pollakiuria
`Injury, Poisoning And Procedural Complications
`
`
`Fall
`4.6
`
`Non-pathologic Fractures
`4.0
`Skin And Subcutaneous Tissue Disorders
`
`Pruritus
`3.8
`
`Dry Skin
`3.5
`Respiratory Disorders
`
`Epistaxis
`
`a
`Includes asthenia and fatigue.
`b
`Includes dizziness and vertigo.
`
`
`c
`Includes amnesia, memory impairment, cognitive disorder, and disturbance in attention.
`
`Includes nasopharyngitis, upper respiratory tract infection, sinusitis, rhinitis, pharyngitis, and laryngitis.
`d
`
`
`e
`Includes pneumonia, lower respiratory tract infection, bronchitis, and lung infection.
`
`
`Laboratory Abnormalities
`
`In the randomized clinical trial, Grade 1-4 neutropenia occurred in 15% of patients on XTANDI (1% Grade 3-4) and in
`6% of patients on placebo (no Grade 3-4). The incidence of Grade 1-4 thrombocytopenia was similar in both arms; 0.5%
`of patients on XTANDI and 1% on placebo experienced Grade 3-4 thrombocytopenia. Grade 1-4 elevations in ALT
`occurred in 10% of patients on XTANDI (0.3% Grade 3-4) and 18% of patients on placebo (0.5% Grade 3-4). Grade 1-4
`elevations in bilirubin occurred in 3% of patients on XTANDI and 2% of patients on placebo.
`
`
`Infections
`
`
`In the randomized clinical trial, 1.0% of patients treated with XTANDI compared to 0.3% of patients on placebo died
`from infections or sepsis. Infection-related serious adverse events were reported in approximately 6% of the patients on
`
`both treatment arms.
`
`
`Falls and Fall-related Injuries
`
`
`In the randomized clinical trial, falls or injuries related to falls occurred in 4.6% of patients treated with XTANDI
`compared to 1.3% of patients on placebo. Falls were not associated with loss of consciousness or seizure. Fall-related
`injuries were more severe in patients treated with XTANDI and included non-pathologic fractures, joint injuries, and
`hematomas.
`
`
`
`
`
`
`
`
`Hallucinations
`
`In the randomized clinical trial, 1.6% of patients treated with XTANDI were reported to have Grade 1 or 2 hallucinations
`compared to 0.3% of patients on placebo. Of the patients with hallucinations, the majority were on opioid-containing
`medications at the time of the event. Hallucinations were visual, tactile, or undefined.
`
`
`Reference ID: 3183415
`
`4
`
`

`
`7 DRUG INTERACTIONS
`
`7.1 Drugs that Inhibit or Induce CYP2C8
`
`Co-administration of a strong CYP2C8 inhibitor (gemfibrozil) increased the composite area under the plasma
`concentration-time curve (AUC) of enzalutamide plus N-desmethyl enzalutamide in healthy volunteers. Co-administration
`of XTANDI with strong CYP2C8 inhibitors should be avoided if possible. If co-administration of XTANDI with a strong
`CYP2C8 inhibitor cannot be avoided, reduce the dose of XTANDI [see Dosage and Administration (2.2) and Clinical
`Pharmacology (12.3)].
`
`
`The effects of CYP2C8 inducers on the pharmacokinetics of enzalutamide have not been evaluated in vivo.
`Co-administration of XTANDI with strong or moderate CYP2C8 inducers (e.g., rifampin) may alter the plasma exposure
`
`of XTANDI and should be avoided if possible. Selection of a concomitant medication with no or minimal CYP2C8
`induction potential is recommended [see Clinical Pharmacology (12.3)].
`
`
` 7.2 Drugs that Inhibit or Induce CYP3A4
`
`Co-administration of a strong CYP3A4 inhibitor (itraconazole) increased the composite AUC of enzalutamide plus N­
`desmethyl enzalutamide by 1.3 fold in healthy volunteers [see Clinical Pharmacology (12.3)].
`
`
`
`The effects of CYP3A4 inducers on the pharmacokinetics of enzalutamide have not been evaluated in vivo.
`Co-administration of XTANDI with strong CYP3A4 inducers (e.g., carbamazepine, phenobarbital, phenytoin, rifabutin,
`rifampin, rifapentine) may decrease the plasma exposure of XTANDI and should be avoided if possible. Selection of a
`concomitant medication with no or minimal CYP3A4 induction potential is recommended. Moderate CYP3A4 inducers
`
`(e.g., bosentan, efavirenz, etravirine, modafinil, nafcillin) and St. John’s Wort may also reduce the plasma exposure of
`XTANDI and should be avoided if possible [see Clinical Pharmacology (12.3)].
`
` 7.3 Effect of XTANDI on Drug Metabolizing Enzymes
`
`Enzalutamide is a strong CYP3A4 inducer and a moderate CYP2C9 and CYP2C19 inducer in humans. At steady state,
`XTANDI reduced the plasma exposure to midazolam (CYP3A4 substrate), warfarin (CYP2C9 substrate), and omeprazole
`(CYP2C19 substrate). Concomitant use of XTANDI with narrow therapeutic index drugs that are metabolized by
`CYP3A4 (e.g., alfentanil, cyclosporine, dihydroergotamine, ergotamine, fentanyl, pimozide, quinidine, sirolimus and
`tacrolimus), CYP2C9 (e.g., phenytoin, warfarin) and CYP2C19 (e.g., S-mephenytoin) should be avoided, as enzalutamide
`
`
`may decrease their exposure. If co-administration with warfarin cannot be avoided, conduct additional INR monitoring
`[see Clinical Pharmacology (12.3)].
`
`8 USE IN SPECIFIC POPULATIONS
`
`8.1 Pregnancy
`Pregnancy Category X [see Contraindications (4)].
`
`
`XTANDI can cause fetal harm when administered to a pregnant woman based on its mechanism of action. While there are
`no human or animal data on the use of XTANDI in pregnancy and XTANDI is not indicated for use in women, it is
`important to know that maternal use of an androgen receptor inhibitor could affect development of the fetus. XTANDI is
`contraindicated in women who are or may become pregnant while receiving the drug. If this drug is used during
`
`pregnancy, or if the patient becomes pregnant while taking this drug, apprise the patient of the potential hazard to the fetus
`and the potential risk for pregnancy loss. Advise females of reproductive potential to avoid becoming pregnant during
`
`treatment with XTANDI.
`
`8.3 Nursing Mothers
`
`XTANDI is not indicated for use in women. It is not known if enzalutamide is excreted in human milk. Because many
`
`drugs are excreted in human milk, and because of the potential for serious adverse reactions in nursing infants from
`XTANDI, a decision should be made to either discontinue nursing, or discontinue the drug taking into account the
`
`importance of the drug to the mother.
`
`Reference ID: 3183415
`
`5
`
`

`
`8.4 Pediatric Use
`Safety and effectiveness of XTANDI in pediatric patients have not been established.
`
`8.5 Geriatric Use
`Of 800 patients who received XTANDI in the randomized clinical trial, 71 percent were 65 and over, while 25 percent
`were 75 and over. No overall differences in safety or effectiveness were observed between these patients and younger
`patients. Other reported clinical experience has not identified differences in responses between the elderly and younger
`
`patients, but greater sensitivity of some older individuals cannot be ruled out.
`
`
`8.6 Patients with Renal Impairment
`A dedicated renal impairment trial for XTANDI has not been conducted. Based on the population pharmacokinetic
`analysis using data from clinical trials in patients with metastatic castration-resistant prostate cancer and healthy
`
`volunteers, no significant difference in enzalutamide clearance was observed in patients with pre-existing mild to
`moderate renal impairment (30 mL/min ≤ creatinine clearance [CrCL] ≤ 89 mL/min) compared to patients and volunteers
`
`with baseline normal renal function (CrCL ≥ 90 mL/min). No initial dosage adjustment is necessary for patients with mild
`
`to moderate renal impairment. Severe renal impairment (CrCL < 30 mL/min) and end-stage renal disease have not been
`assessed [see Clinical Pharmacology (12.3)].
`
`8.7 Patients with Hepatic Impairment
`A dedicated hepatic impairment trial compared the composite systemic exposure of enzalutamide plus N-desmethyl
`enzalutamide in volunteers with baseline mild or moderate hepatic impairment (Child-Pugh Class A and B, respectively)
`
`versus healthy controls with normal hepatic function. The composite AUC of enzalutamide plus N-desmethyl
`enzalutamide was similar in volunteers with mild or moderate baseline hepatic impairment compared to volunteers with
`normal hepatic function. No initial dosage adjustment is necessary for patients with baseline mild or moderate hepatic
`
`impairment. Baseline severe hepatic impairment (Child-Pugh Class C) has not been assessed [see Clinical Pharmacology
`(12.3)].
`
`
`10 OVERDOSAGE
`In the event of an overdose, stop treatment with XTANDI and initiate general supportive measures taking into
`consideration the half-life of 5.8 days. In a dose escalation study, no seizures were reported at < 240 mg daily, whereas
`3 seizures were reported, 1 each at 360 mg, 480 mg, and 600 mg daily. Patients may be at increased risk of seizures
`following an overdose.
`
`11 DESCRIPTION
`
`Enzalutamide is an androgen receptor inhibitor. The chemical name is 4-{3-[4-cyano-3-(trifluoromethyl)phenyl]-5,5­
`dimethyl-4-oxo-2-sulfanylideneimidazolidin-1-yl}-2-fluoro-N-methylbenzamide.
`
`The molecular weight is 464.44 and molecular formula is C21H16F4N4O2S. The structural formula is:
`
`
`
`CF3
`
`NC
`
`S
`
`N
`
`N
`
`O
`
`F
`
`O
`
`NHMe
`
`
`
`
`Enzalutamide is a white crystalline non-hygroscopic solid. It is practically insoluble in water.
`
`
`Reference ID: 3183415
`
`6
`
`

`
`
`
`XTANDI is provided as liquid-filled soft gelatin capsules for oral administration. Each capsule contains 40 mg of
`
`enzalutamide as a solution in caprylocaproyl polyoxylglycerides. The inactive ingredients are caprylocaproyl
`
`polyoxylglycerides, butylated hydroxyanisole, butylated hydroxytoluene, gelatin, sorbitol sorbitan solution, glycerin,
`purified water, titanium dioxide, and black iron oxide.
`
`12 CLINICAL PHARMACOLOGY
`12.1 Mechanism of Action
`
` Enzalutamide is an androgen receptor inhibitor that acts on different steps in the androgen receptor signaling pathway.
`Enzalutamide has been shown to competitively inhibit androgen binding to androgen receptors and inhibit androgen
`receptor nuclear translocation and interaction with DNA. A major metabolite, N-desmethyl enzalutamide, exhibited
`similar in vitro activity to enzalutamide. Enzalutamide decreased proliferation and induced cell death of prostate cancer
`cells in vitro, and decreased tumor volume in a mouse prostate cancer xenograft model.
`
`
`12.3 Pharmacokinetics
`The pharmacokinetics of enzalutamide and its major active metabolite (N-desmethyl enzalutamide) were evaluated in
`patients with metastatic castration-resistant prostate cancer and healthy male volunteers. The plasma enzalutamide
`
`pharmacokinetics are adequately described by a linear two-compartment model with first-order absorption.
`
`
`Absorption
`
`
`
`Following oral administration (XTANDI 160 mg daily) in patients with metastatic castration-resistant prostate cancer, the
`median time to reach maximum plasma enzalutamide concentrations (Cmax) is 1 hour (range 0.5 to 3 hours). At steady
`
`state, the plasma mean Cmax values for enzalutamide and N-desmethyl enzalutamide are 16.6 μg/mL (23% CV) and
`12.7 μg/mL (30% CV), respectively, and the plasma mean predose trough values are 11.4 μg/mL (26% CV) and
`13.0 μg/mL (30% CV), respectively.
`
`
`With the daily dosing regimen, enzalutamide steady state is achieved by Day 28, and enzalutamide accumulates
`approximately 8.3-fold relative to a single dose. Daily fluctuations in enzalutamide plasma concentrations are low (mean
`peak-to-trough ratio of 1.25). At steady state, enzalutamide showed approximately dose proportional pharmacokinetics
`
`
`over the daily dose range of 30 to 360 mg.
`
`
`A single 160 mg oral dose of XTANDI was administered to healthy volunteers with a high-fat meal or in the fasted
`condition. A high-fat meal did not alter the AUC to enzalutamide or N-desmethyl enzalutamide. The results are
`summarized in Figure 1.
`
`
`
`
`Distribution and Protein Binding
`
`The mean apparent volume of distribution (V/F) of enzalutamide in patients after a single oral dose is 110 L (29% CV).
`
`
`Enzalutamide is 97% to 98% bound to plasma proteins, primarily albumin. N-desmethyl enzalutamide is 95% bound to
`
`plasma proteins.
`
`
`
`
`Metabolism
`
`Following single oral administration of 14C-enzalutamide 160 mg, plasma samples were analyzed for enzalutamide and its
`metabolites up to 77 days post dose. Enzalutamide, N-desmethyl enzalutamide, and a major inactive carboxylic acid
`
`metabolite accounted for 88% of the 14C-radioactivity in plasma, representing 30%, 49%, and 10%, respectively, of the
`total 14C-AUC0-inf.
`
`In vitro, human CYP2C8 and CYP3A4 are responsible for the metabolism of enzalutamide. Based on in vivo and in vitro
`
`data, CYP2C8 is primarily responsible for the formation of the active metabolite (N-desmethyl enzalutamide).
`
`
`Reference ID: 3183415
`
`7
`
`

`
`Elimination
`
`Enzalutamide is primarily eliminated by hepatic metabolism. Following single oral administration of 14C-enzalutamide
`160 mg, 85% of the radioactivity is recovered by 77 days post dose: 71% is recovered in urine (including only trace
`amounts of enzalutamide and N-desmethyl enzalutamide), and 14% is recovered in feces (0.4% of dose as unchanged
`enzalutamide and 1% as N-desmethyl enzalutamide).
`
`
`The mean apparent clearance (CL/F) of enzalutamide in patients after a single oral dose is 0.56 L/h (range 0.33 to
`
`1.02 L/h).
`
`
`
`The mean terminal half-life (t1/2) for enzalutamide in patients after a single oral dose is 5.8 days (range 2.8 to 10.2 days).
`Following a single 160 mg oral dose of enzalutamide in healthy volunteers, the mean terminal t1/2 for N-desmethyl
`
`
`enzalutamide is approximately 7.8 to 8.6 days.
`
`Pharmacokinetics in Special Populations
`
`
`
`Renal Impairment:
`A population pharmacokinetic analysis (based on pre-existing renal function) was carried out with data from 59 healthy
`male volunteers and 926 patients with metastatic castration-resistant prostate cancer enrolled in clinical trials, including
`512 with normal renal function (CrCL ≥ 90 mL/min), 332 with mild renal impairment (CrCL 60 to < 90 mL/min), 88 with
`moderate renal impairment (CrCL 30 to < 60 mL/min), and 1 with severe renal impairment (CrCL < 30 mL/min). The
`
`
`apparent clearance of enzalutamide was similar in patients with pre-existing mild and moderate renal impairment (CrCL
`30 to < 90 mL/min) compared to patients and volunteers with normal renal function. The potential effect of severe renal
`impairment or end stage renal disease on enzalutamide pharmacokinetics cannot be determined as clinical and
`pharmacokinetic data are available from only one patient [see Use in Specific Populations (8.6)].
`
`
`Hepatic Impairment:
`The plasma pharmacokinetics of enzalutamide and N-desmethyl enzalutamide were examined in volunteers with normal
`hepatic function (N = 16) and with pre-existing mild (N = 8, Child-Pugh Class A) or moderate (N = 8, Child-Pugh B)
`hepatic impairment. XTANDI was administered as a single 160 mg dose. The composite AUC of enzalutamide plus
`N-desmethyl enzalutamide was similar in volunteers with mild or moderate baseline hepatic impairment compared to
`volunteers with normal hepatic function. The results are summarized in Figure 1. Clinical and pharmacokinetic data are
`not available for patients with severe hepatic impairment (Child-Pugh Class C) [see Use in Specific Populations (8.7)].
`
` Body Weight and Age:
`
`
`Population pharmacokinetic analyses showed that weight (range: 46 to 163 kg) and age (range: 41 to 92 yr) do not have a
`
`clinically meaningful influence on the exposure to enzalutamide.
`
`
`
`
`
`
`Gender:
`
`The effect of gender on the pharmacokinetics of enzalutamide has not been evaluated.
`
`
`Race:
`
`
`The majority of patients in the randomized clinical trial were Caucasian (> 92%). There are insufficient data to evaluate
`
`
`potential differences in the pharmacokinetics of enzalutamide in other races.
`
`
`
`
`Drug Interactions
`
`
`Effect of Other Drugs on XTANDI:
`
`In a drug-drug interaction trial in healthy volunteers, a single 160 mg oral dose of XTANDI was administered alone or
`after multiple oral doses of gemfibrozil (strong CYP2C8 inhibitor). Gemfibrozil increased the AUC0-inf of enzalutamide
`plus N-desmethyl enzalutamide by 2.2-fold with minimal effect on Cmax. The results are summarized in Figure 1 [see
`
`Dosage and Administration (2.2) and Drug Interactions (7.1)].
`
`
`
`Reference ID: 3183415
`
`8
`
`

`
`In a drug-drug interaction trial in healthy volunteers, a single 160 mg oral dose of XTANDI was administered alone or
`after multiple oral doses of itraconazole (strong CYP3A4 inhibitor). Itraconazole increased the AUC0-inf of enzalutamide
`plus N-desmethyl enzalutamide by 1.3-fold with no effect on Cmax. The results are summarized in Figure 1 [see Dosage
`
`and Administration (2.2) and Drug Interactions (7.2)].
`
`The effects of CYP2C8 and CYP3A4 inducers on the exposure of XTANDI have not been evaluated in vivo.
`
`Figure 1. Effects of Other Drugs and Intrinsic/Extrinsic Factors on XTANDI
`Population Description PK#
`
`
`
`Fold Change and 90% CI
`
`Recommendation
`
`
`
`
`Reduce XTANDI dose*
`
`
`
`
`No initial dose adjustment
`
`
`
`
`No initial dose adjustment
`
`
`
`
`No initial dose adjustment
`
`
`
`
`Take with or without food
`
`
` Ratio Relative to Reference
`
`
`# PK parameters (Cmax and AUC0-inf) are for enzalutamide plus N-desmethyl enzalutamide, except in the food-effect trial, where they
`
`
`are for enzalutamide alone . * See Dosage and Administration (2.2).
`
`
`Reference ID: 3183415
`
`9
`
`

`
` Effect of XTANDI on Other Drugs:
`
`
` In an in vivo phenotypic cocktail drug-drug interaction trial in patients with castration-resistant prostate cancer, a single
`oral dose of the CYP probe substrate cocktail (for CYP2C8, CYP2C9, CYP2C19, and CYP3A4) was administered before
`and concomitantly with XTANDI (following at least 55 days of dosing at 160 mg daily). The results are summarized in
`
`Figure 2. Results showed that in vivo, at steady state, XTANDI is a strong CYP3A4 inducer and a moderate CYP2C9 and
`CYP2C19 inducer [see Drug Interactions (7.3)]. XTANDI did not cause clinically meaningful changes in exposure to the
`CYP2C8 substrate.
`
`
`Figure 2. Effect of XTANDI on Other Drugs
`
` Fold Change and 90% CI
`Population Description PK
`
`Recommendation
`
`Avoid concomitant use of
`substrates with a narrow
`therapeutic index*
`
`Avoid concomitant use of
`substrates with a narrow
`therapeutic index*
`
`Avoid concomitant use of
`substrates with a narrow
`therapeutic index*
`
`
`
`No dose adjustment
`
`
`*See Drug Interactions (7.3).
`
`In vitro, enzalutamide, N-desmethyl enzalutamide, and the major inactive carboxylic acid metabolite caused direct
`inhibition of multiple CYP enzymes including CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4/5;
`however, subsequent clinical data showed that XTANDI is an inducer of CYP2C9, CYP2C19, and CYP3A4 and had no
`clinically meaningful effect on CYP2C8 (see Figure 2). In vitro, enzalutamide caused time-dependent inhibition of
`CYP1A2.
`
`In vitro studies showed that enzalutamide caused induction of CYP3A4 and that enzalutamide is not expected to induce
`CYP1A2 at therapeutically relevant concentrations.
`
`
`
`In vitro, enzalutamide, N-desmethyl enzalutamide, and the major inactive carboxylic acid metabolite are not substrates for
`human P-glycoprotein. In vitro, enzalutamide and N-desmethyl enzalutamide are inhibitors of human P-glycoprotein,
`while the major inactive carboxylic acid metabolite is not.
`
`12.6 Cardiac Electrophysiology
`The effect of enzalutamide 160 mg/day at steady state on the QTc interval was evaluated in 796 patients with castration-
`resistant prostate cancer. No large difference (i.e., greater than 20 ms) was observed between the mean QT interval change
`from baseline in patients treated with XTANDI and that in patients treated with placebo, based on the Fridericia correction
`method. However, small increases in the mean QTc interval (i.e., less than 10 ms) due to enzalutamide cannot be
`excluded due to limitations of the study design.
`
`
`Reference ID: 3183415
`
`10
`
`

`
`
`
`13 NONCLINICAL TOXICOLOGY
`13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility
`Long-term animal studies have not been conducted to evaluate the carcinogenic potential of enzalutamide.
`
`Enzalutamide did not induce mutations in the bacterial reverse mutation (Ames) assay and was not genotoxic in either the
`
` in vitro mouse lymphoma thymidine kinase (Tk) gene mutation assay or the in vivo mouse micronucleus assay.
`
` Based on nonclinical findings in repeat-dose toxicology studies, which were consistent with the pharmacological activity
`
`
` of enzalutamide, male fertility may be impaired by treatment with XTANDI. In a 26-week study in rats, atrophy of the
` prostate and seminal vesicles was observed at ≥ 30 mg/kg/day (equal to the human exposure based on AUC). In 4- and
`
`13-week studies in dogs, hypospermatogenesis and atrophy of the prostate and epididymides were observed at
`
`≥ 4 mg/kg/day (0.3 times the human exposure based on AUC).
`
` 14 CLINICAL STUDIES
`
`The efficacy and safety of XTANDI in patients with metastatic castration-resistant prostate cancer who had received prior
`docetaxel-based therapy were assessed in a randomized, placebo-controlled, multicenter phase 3 clinical trial. The primary
`
`endpoint was overall survival. A total of 1199 patients were randomized 2:1 to receive either XTANDI orally at a dose of
`
`160 mg once daily (N = 800) or placebo orally once daily (N = 399). All patients continued androgen deprivation therapy.
`
`Patients were allowed, but not required to continue or initiate glucocorticoids. Study treatment continued until disease
`
`progression (evidence of radiographic progression, a skeletal-related event, or clinical progression), initiation of new
`systemic antineoplastic treatment, unacceptable toxicity, or withdrawal. Patients with a history of seizure, taking
`medicines known to decrease the seizure threshold, or with other risk factors for seizure

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket