throbber
SECOND EDITION
`
`DISCRETE-TIME
`SIGNAL
`PROCESSING
`
`ALAN v. OPPENHEIM
`
`MASSACHUSETTS INSTITUTE OF TECHNOLOGY
`
`RoNALD W. ScHAFER
`
`GEORGIA INSTITUTE OF TECHNOLOGY
`
`WITH
`
`JoHN R. BucK
`
`UNIVERSITY OF MASSACHUSETTS DARTMOUTH
`
`PRENTICE HALL
`UPPER SADDLE RIVER, NEW JERSEY 07458
`
`IPR2016-00704
`SAINT LAWRENCE COMMUNICATIONS LLC
`Exhibit 2005
`
`

`
`Oppenheim, Alan V.
`Discrete-time signal processing I Alan V. Oppenheim, Ronald W.
`Schafer, with John R. Buck.
`2nd ed.
`em.
`p.
`Includes bibliographical references and index.
`ISBN 0-13-754920-2
`l. Signal processing-Mathematics. 2. Discrete-time systems.
`L Schafer, Ronald W.
`II. Buck, John R.
`III. Title.
`TK5102.9.067 1998
`621.382'2---dc21
`
`98-50398
`CIP
`
`Acquisitions editor: Tom Robbins
`Production service: Interactive Composition Corporation
`Editorial/production supervision: Sbaryn Vitrano
`Copy editor: Brian Baker
`Cover design: Vivian Berman
`Art director: Amy Rosen
`Managing editor: Eileen Clark
`Editor-in-Chief: Marda Horton
`Director of production and manufacturing: David W. Riccardi
`Manufacturing buyer: Pat Brown
`Editorial assistant: Dan De Pasquale
`
`© 1999,1989 Alan V. Oppenheim, Ronald W. Schafer
`Published by Prentice-Hall, Inc.
`Upper Saddle River, New Jersey 07458
`
`All rights reserved. No part of this book may be
`reproduced, in any form or by any means,
`without permission in writing from the publisher.
`
`The author and publisher of this book have used their best efforts in preparing this book. These efforts include
`the development, research, and testing of the theories and programs to determine their effectiveness. The
`author and publisher make no warranty of any kind, expressed or implied, with regard to these programs
`or the documentation contained in this book. The author and publisher shall not be liable in any event for
`incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use
`of these programs.
`
`Printed in the United States of America
`10 9 8 7 6 5 4
`
`ISBN
`
`0-13-754920-2
`
`Prentice-Hall International (UK) Limited, London
`Prentice-Hall of Australia Pty. Limited, Sydney
`Prentice-Hall Canada Inc., Toronto
`Prentice-Hall Hispanoamericana, S.A., Mexico
`Prentice-Hall of India Private Limited, New Delhi
`Prentice-Hall of Japan, Inc., Tokyo
`Simon & Schuster Asia Pte. Ltd., Singapore
`Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro
`
`

`
`To Phyllis, Justine and Jason
`
`To Dorothy, Bill, Tricia, Ken and Kate
`and in memory of John
`
`To Susan
`
`

`
`.
`
`

`
`CONTENTS
`
`LIST OF EXAMPLES XV
`
`PREFACE XIX
`
`AcKNOWLEDGMENTS xxv
`1 INTRODUCTION
`l
`2 DISCRETE-TIME SIGNALS AND SYSTEMS 8
`
`Introduction 8
`2.0
`2.1 Discrete-Time Signals: Sequences 9
`2.1.1 Basic Sequences and Sequence Operations 11
`2.2 Discrete-Time Systems 16
`2.2.1 Memoryless Systems 18
`2.2.2 Linear Systems 18
`2.2.3 Time-Invariant Systems 20
`2.2.4 Causality 21
`2.2.5 Stability 21
`2.3 Linear Time-Invariant Systems 22
`2.4 Properties of Linear Time-Invariant Systems 28
`2.5 Linear Constant-Coefficient Difference Equations 34
`2.6
`Frequency-Domain Representation of Discrete-Time Signals and
`Systems 40
`2.6.1 Eigenfunctions for Linear Time-Invariant Systems 40
`2.6.2 Suddenly Applied Complex Exponential Inputs 46
`2. 7 Representation of Sequences by Fourier Transforms 48
`2.8 Symmetry Properties of the Fourier Transform 55
`2.9 Fourier Transform Theorems 58
`2.9.1 Linearity of the Fourier Transform 59
`2.9.2 Time Shifting and Frequency Shifting 59
`2.9.3 Time Reversal 60
`2.9.4 Differentiation in Frequency 60
`2.9.5 Parseval's Theorem 60
`2.9.6 The Convolution Theorem 60
`2.9.7 The Modulation or Windowing Theorem 61
`2.10 Discrete-Time Random Signals 65
`2.11 Summary 70
`Problems 70
`
`3 THE z-ThANSFORM 94
`
`3.0
`3.1
`
`Introduction 94
`z. Transform 94
`
`vii
`
`

`
`Contents
`
`lOS
`
`viii
`
`3.4
`
`3.2 Properties of the Region of Convergence for the z-Transform
`3.3 The Inverse z-Transform 111
`3.3.1
`Inspection Method 111
`3.3.2 Partial Fraction Expansion 112
`3.3.3 Power Series Expansion 116
`z-Transform Properties 119
`3.4.1 Linearity 119
`3.4.2 Time Shifting 120
`3.4.3 Multiplication by an Exponential Sequence 121
`3.4.4 Differentiation of X(z) 122
`3.4.5 Conjugation of a Complex Sequence 123
`3.4.6 Time Reversal 123
`3.4.7 Convolution of Sequences 124
`3.4.8
`Initial-Value Theorem 126
`3.4.9 Summary of Some z-Transform Properties 126
`3.5 Summary 126
`Problems 127
`
`4 SAMPLING oF CoNTINuous-TIME SIGNALS 140
`
`Introduction 140
`4.0
`4.1 Periodic Sampling 140
`4.2 Frequency-Domain Representation of Sampling 142
`4.3 Reconstruction of a Bandlimited Signal from Its Samples 150
`4.4 Discrete-Time Processing of Continuous-Time Signals 153
`4.4.1 Linear Time-Invariant Discrete-Time Systems 154
`4.4.2
`Impulse Invariance 160
`4.5 Continuous-Time Processing of Discrete· Time Signals 163
`4.6 Changing the Sampling Rate Using Discrete-Time Processing 167
`4.6.1 Sampling Rate Reduction by an Integer Factor 167
`4.6.2
`Increasing the Sampling Rate by an Integer Factor 172
`4.6.3 Changing the Sampling Rate by a Noninteger Factor 176
`4. 7 Multirate Signal Processing 179
`4.7.1
`Interchange of Filtering and Downsampling/Upsampling 179
`4.7.2 Polyphase Decompositions 180
`4.7.3 Polyphase Implementation of Decimation Filters 182
`4.7.4 Polyphase Implementation of Interpolation Filters 183
`4.8 Digital Processing of Analog Signals 185
`4.8.1 Prefiltering to Avoid Aliasing 185
`4.8.2 Analog-to-Digital (A/D) Conversion 187
`4.8.3 Analysis of Quantization Errors 193
`4.8.4 D/ A Conversion 197
`4.9 Oversampling and Noise Shaping in A/D and D/A Conversion 201
`4.9.1 Oversampled AID Conversion with Direct
`Quantization 201
`4.9.2 Oversampled AID Conversion with Noise Shaping 206
`4.9.3 Oversampling and Noise Shaping in D/ A Conversion 210
`
`

`
`Contents
`
`ix
`
`4.10 Summary 213
`Problems 214
`
`5 TRANSFORM ANALYSIS OF LINEAR TIME-INVARIANT
`SYSTEMS 240
`5.0
`Introduction 240
`5.1 The Frequency Response of LTI Systems 241
`5.1.1
`Ideal Frequency-Selective Filters 241
`5.1.2 Phase Distortion and Delay 242
`5.2 System Functions for Systems Characterized by Linear
`Constant-Coefficient Difference
`Equations 245
`5.2.1 Stability and Causality 247
`5.2.2
`Inverse Systems 248
`5.2.3
`Impulse Response for Rational System Functions 250
`5.3 Frequency Response for Rational System Functions 253
`5.3.1 Frequency Response of a Single Zero or Pole 258
`5.3.2 Examples with Multiple Poles and Zeros 265
`5.4 Relationship between Magnitude and Phase 270
`5.5 All-Pass Systems 274
`5.6 Minimum-Phase Systems 280
`5.6.1 Minimum-Phase and All-Pass Decomposition 280
`5.6.2 Frequency-Response Compensation 282
`5.6.3 Properties of Minimum-Phase Systems 287
`5.7 Linear Systems with Generalized Linear Phase 291
`5.7.1 Systems with Linear Phase 292
`5.7.2 Generalized Linear Phase 295
`5.7.3 Causal Generalized Linear-Phase Systems 297
`5.7.4 Relation of FIR Linear-Phase Systems to Minimum-Phase
`Systems 308
`5.8 Summary 311
`Problems 3U
`
`6 STRUCTURES FOR DISCRETE-TIME SYSTEMS 340
`
`Introduction 340
`6.0
`6.1 Block Diagram Representation of Linear Constant-Coefficient
`Difference Equations 341
`6.2 Signal Flow Graph Representation of Linear Constant-Coefficient
`Difference Equations 348
`6.3 Basic Structures for IIR Systems 354
`6.3.1 Direct Forms 354
`6.3.2 Cascade Form 356
`6.3.3 Parallel Form 359
`6.3.4 Feedback in IIR Systems 361
`6.4 Transposed Forms 363
`6.5 Basic Network Structures for FIR Systems 366
`
`

`
`x
`
`Contents
`
`6.5.1 Direct Form 367
`6.5.2 Cascade Form 367
`6.5.3 Structures for Linear-Phase FIR Systems 368
`6.6 Overview of Finite-Precision Numerical Effects 370
`6.6.1 Number Representations 371
`6.6.2 Quantization in Implementing Systems 374
`6. 7 The Effects of Coefficient Quantization 377
`6.7.1 Effects of Coefficient Quantization in IIR Systems 377
`6.7.2 Example of Coefficient Quantization in an Elliptic Filter 379
`6.7.3 Poles of Quantized Second-Order Sections 382
`6.7.4 Effects of Coefficient Quantization in FIR Systems 384
`6.7.5 Example of Quantization of an Optimum FIR Filter 386
`6.7.6 Maintaining Linear Phase 390
`6.8 Effects of Round-off Noise iu Digital Filters 391
`6.8.1 Analysis of the Direct-Form IIR Structures 391
`6.8.2 Scaling in Fixed-Point Implementations of IIR Systems 399
`6.8.3 Example of Analysis of a Cascade IIR Structure 403
`6.8.4 Analysis of Direct-Form FIR Systems 410
`6.8.5 Floating-Point Realizations of Discrete-Time Systems 412
`6.9 Zero-Input Limit Cydes in Fixed -Point Realizations of IIR Digital
`Filters 413
`6.9.1 Limit Cycles due to Round-off and Truncation 414
`6.9.2 Limit Cycles Due to Overflow 416
`6.9.3 Avoiding Limit Cycles 417
`6.10 Summary 418
`Problems 419
`
`7 FILTER DESIGN TECHNIQUES 439
`
`Introduction 439
`7.0
`7.1 Design of Discrete-Time IIR Filters from Continuous-Time
`Filters 442
`7.1.1 Filter Design by Impulse Invariance 443
`7.1.2 Bilinear Transformation 450
`7.1.3 Examples of Bilinear Transformation Design 454
`7.2 Design of FIR Filters by Windowing 465
`7.2.1 Properties of Commonly Used Windows 467
`7 .2.2
`Incorporation of Generalized Linear Phase 469
`7.2.3 The Kaiser Window Filter Design Method 474
`7.2.4 Relationship of the Kaiser Window to Other Windows 478
`7.3 Examples of FIR Filter Design by the Kaiser Window Method 478
`7.3.1 Highpass Filter 479
`7.3.2 Discrete-Time Differentiators 482
`7.4 Optimum Approximations of FIR Filters 486
`7.4.1 Optimal'JYpe I Lowpass Filters 491
`7 .4.2 Optimal Type II Lowpass Filters 497
`7.4.3 The Parks-McClellan Algorithm 498
`
`

`
`Contents
`
`7.5
`
`501
`7.4.4 Characteristics of Optimum FIR Filters
`Examples of FIR Equiripple Approximation 503
`7.5.1 Lowpass Filter
`503
`7.5.2 Compensation for Zero-Order Hold 506
`7.5.3 Bandpass Filter
`507
`7.6 Comments on IIR and FIR Discrete-'Iime Filters
`
`510
`
`7.7
`
`Summary
`Problems
`
`511
`511
`
`THE DISCRETE FOURIER TRANSFORM 541
`
`8.0
`
`8.1
`
`8.2
`
`8.3
`
`8.4
`
`8.5
`
`8.6
`
`8.7
`
`8.8
`
`8.9
`
`Introduction 541
`
`Representation of Periodic Sequences: The Discrete Fourier
`Series
`542
`
`Properties of the Discrete Fourier Series
`8.2.1 Linearity 546
`8.2.2
`Shift of a Sequence
`8.2.3 Duality 547
`547
`8.2.4 Symmetry Properties
`8.2.5 Periodic Convolution 548
`
`546
`
`546
`
`8.2.6 Summary of Properties of the DFS Representation of Periodic
`Sequences
`550
`The Fourier Transform of Periodic Signals
`Sampling the Fourier Transform 555
`Fourier Representation of Finite-Duration Sequences: The Discrete
`Fourier Transform 559
`
`551
`
`Properties of the Discrete Fourier Transform 564
`8.6.1 Linearity 564
`8.6.2 Circular Shift of a Sequence
`8.6.3 Duality 567
`8.6.4 Symmetry Properties
`8.6.5 Circular Convolution
`
`568
`571
`
`564
`
`8.6.6 Summary of Properties of the Discrete Fourier Transform 575
`Linear Convolution Using the Discrete Fourier Transfonn 576
`8.7.1 Linear Convolution of Two Finite-Length Sequences
`577
`8.7.2 Circular Convolution as Linear Convolution with Aliasing
`8.7.3
`Implementing Linear Time-Invariant Systems Using the
`DFT 582
`
`577
`
`The Discrete Cosine '1}-ansform (DCT)
`8.8.1 Definitions of the DCT 589
`
`589
`
`8.8.2 Definition of the DCT-1 and DCT-2
`
`590
`
`593
`8.8.3 Relationship between the DFT and the DCT-1
`594
`8.8.4 Relationship between the DFT and the DCT-2
`8.8.5 Energy Compaction Property of the DCT-2
`595
`8.8.6 Applications of the DCT 598
`Summary
`599
`Problems
`600
`
`

`
`xii
`
`Contents
`
`COMPUTATION OF THE DISCRETE FOURIER
`
`TRANSFORM 629
`
`9.0
`
`Introduction 629
`
`Efficient Computation of the Discrete Fourier '11-ansfonn
`9.1
`The Goertzel Algorithm 633
`9.2
`9.3 Decimation-in-Time FFI‘ Algorithms
`9.3.1
`In-Place Computations
`640
`9.3.2 Alternative Forms
`643
`
`635
`
`630
`
`9.4 Decimation-in-Frequency FFT Algorithms
`9.4.1
`In—Place Computation 650
`9.4.2 Alternative Forms
`650
`
`646
`
`9.5
`
`Practical Considerations 652
`
`Indexing 652
`9.5.1
`9.5.2 Coefficients
`654
`
`9.6
`
`9.7
`9.8
`
`9.5.3 Algorithms for More General Values of N 655
`Implementation of the DFT Using Convolution 655
`9.6.1 Overview of the Winograd Fourier Transform Algorithm 655
`9.6.2 The Chirp Transform Algorithm 656
`Effects of Finite Register Length 661
`Summary 669
`Problems
`669
`
`FOURIER ANALYSIS OF SIGNALS USING THE
`
`DISCRETE FOURIER TRANSFORM 693
`
`10.0
`
`Introduction 693
`
`10.1 Fourier Analysis of Signals Using the DFT 694
`10.2 DFT Analysis of Sinusoidal Signals
`697
`10.2.1 The Effect of Windowing 698
`10.2.2 The Effect of Spectral Sampling 703
`10.3 The Time-Dependent Fourier '11-ansfonn
`714
`10.3.1 The Effect of the Window 717
`
`10.3.2 Sampling in Time and Frequency 718
`10.4 Block Convolution Using the Time-Dependent Fourier
`Transform 722
`
`723
`10.5 Fourier Analysis of Nonstationary Signals
`724
`10.5.1 Time-Dependent Fourier Analysis of Speech Signals
`728
`10.5.2 Time-Dependent Fourier Analysis of Radar Signals
`10.6 Fourier Analysis of Stationary Random Signals: The Periodogram 730
`10.6.1 The Periodogram 731
`10.6.2 Properties of the Periodogram 733
`10.6.3 Periodogram Averaging 737
`10.6.4 Computation of Average Periodograms Using the DFT 739
`10.6.5 An Example of Periodogram Analysis
`739
`
`

`
`Contents
`
`xiii
`
`10.7
`
`Spectrum Analysis of Random Signals Using Estimates of the
`Autocorrelation Sequence
`743
`10.7.1 Computing Correlation and Power Spectrum Estimates Using
`the DFT 746
`
`10.7.2 An Example of Power Spectrum Estimation Based on
`Estimation of the Autocorrelation Sequence
`748
`Summary 754
`Problems
`755
`
`10.8
`
`DISCRETE HILBERT TRANSFORMS 775
`
`Introduction 775
`
`11.0
`
`11.1
`
`11.2
`
`11.3
`
`11.4
`
`11.5
`
`Real- and Imaginary-Part Sufficiency of the Fourier Transform for
`Causal Sequences
`777
`Sufficiency Theorems for Finite-Length Sequences
`Relationships Between Magnitude and Phase
`788
`Hilbert Transform Relations for Complex Sequences
`11.4.1 Design of Hilbert Transformers
`792
`11.4.2 Representation of Bandpass Signals
`11.4.3 Bandpass Sampling 799
`Summary 801
`Problems
`802
`
`782
`
`789
`
`796
`
`APPENDIX A RANDOM SIGNALS
`
`811
`
`A.1
`
`A.2
`
`A.3
`
`A.4
`
`A.5
`
`Discrete-Time Random Processes
`
`811
`
`813
`Averages
`A.2.1 Definitions
`
`813
`
`815
`A.2.2 Time Averages
`Properties of Correlation and Covariance Sequences
`Fourier Transform Representation of Random Signals
`Use of the z-Transform in Average Power Computations
`
`817
`818
`820
`
`APPENDIX B CoNTINUoUS—TIME FILTERS
`
`824
`
`B.1
`
`B.2
`
`B.3
`
`Butterworth Lowpass Filters
`Chebyshev Filters
`826
`Elliptic Filters
`828
`
`824
`
`APPENDIX C ANSWERS T0 SELECTED BASIC
`
`PROBLEMS
`
`830
`
`BIBLIOGRAPHY 851
`
`INDEX 859
`
`

`
`.
`
`

`
`LIST OF EXAMPLES
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`_
`.
`.
`Combining Basic Sequences .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Periodic and Aperiodic Discrete—Time Sinusoids .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`The Ideal Delay System .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Moving Average .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`A Memoryless System .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`The Accumulator System .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`A Nonlinear System .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`The Accumulator as a Time-Invariant System .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`The Compressor System .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`The Forward and Backward Difference Systems .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Testing for Stability or Instability .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. ... .
`.
`.
`.
`.
`.
`.
`.
`Computation of the Convolution Sum .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Analytical Evaluation of the Convolution Sum .
`.
`.
`Difference Equation Representation of the Accumulator .
`.
`.
`.
`Difference Equation Representation of the
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Moving-Average System .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Recursive Computation of Difference Equations .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Frequency Response of the Ideal Delay System .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Sinusoidal Response of LTI Systems .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Ideal Frequency-Selective Filters .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Frequency Response of the Moving-Average System .
`Absolute Summability for a Suddenly-Applied Exponential .
`Square-Summability for the Ideal Lowpass Filter .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Fourier Transform of a Constant .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`Fourier Transform of Complex Exponential Sequences .
`.
`.
`.
`.
`Illustration of Symmetry Properties .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Determining a Fourier Transform Using Tables 2.2 and 2.3 .
`Determining an Inverse Fourier Transform Using
`Tables 2.2 and 2.3 .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`.
`
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`
`. ._ 13
`. .. 15
`.
`.
`. 17
`.
`.
`. 17
`.
`.
`. 18
`. .. 19
`.
`.
`. 19
`.
`.
`. 20
`.
`.
`. 20
`.
`.
`. 21
`.
`.
`. 22
`. .. 25
`.
`.
`. 26
`.
`.
`. 34
`
`. 35
`.
`.
`. 37
`.
`.
`. .. 41
`. .. 42
`.
`.
`. 43
`. .. 44
`.
`.
`. 51
`.
`.
`. 52
`.
`.
`. 53
`
`. 54
`.
`.
`. .. 57
`. .. 63
`
`.
`
`.
`
`. .. 63
`
`Determining the Impulse Response from the Frequency
`Response .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Determining the Impulse Response for a Difference
`Equation .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`White Noise .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. . .
`. . .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`Right—Sided Exponential Sequence .
`Left—Sided Exponential Sequence .
`.
`.
`Sum of Two Exponential Sequences .
`Sum of Two Exponentials (Again) .
`.
`Two-Sided Exponential Sequence .
`.
`.
`Finite-Length Sequence .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Stability, Causality, and the ROC .
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. .-.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`.
`
`.
`,
`.
`.
`.
`.
`.
`
`.
`
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`.
`
`. .. 64
`
`. .. 64
`.
`.
`. 69
`
`. 98
`.
`.
`.
`. .. 99
`.
`.
`. 100
`.
`.
`. 101
`.
`.
`. 102
`.
`. .. 103
`. .. 110
`XV
`
`Example 2.1
`Example 2.2
`Example 2.3
`Example 2.4
`Example 2.5
`Example 2.6
`Example 2.7
`Example 2.8
`Example 2.9
`Example 2.10
`Example 2.11
`Example 2.12
`Example 2.13
`Example 2.14
`Example 2.15
`
`Example 2.16
`Example 2.17
`Example 2.18
`Example 2.19
`Example 2.20
`Example 2.21
`Example 2.22
`Example 2.23
`Example 2.24
`Example 2.25
`Example 2.26
`Example 2.27
`
`Example 2.28
`
`Example 2.29
`
`Example 2.30
`Example 3.1
`Example 3.2
`Example 3.3
`Example 3.4
`Example 3.5
`Example 3.6
`Example 3.7
`
`

`
`xvi
`
`Second-Order z—Transform .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Inverse by Partial Fractions .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Finite-Length Sequence .
`.
`.
`.
`.
`.
`.
`.
`.
`Inverse Transform by Power Series Expansion .
`.
`.
`.
`.
`.
`Power Series Expansion by Long Division .
`.
`.
`.
`.
`.
`Power Series Expansion for a Left-Sided Sequence .
`Shifted Exponential Sequence .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Exponential Multiplication .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Inverse of Non-Rational 2-Transform .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`List of Examples
`
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 113
`
`. .. 115
`.
`.
`.
`.
`.
`. .. 117
`.
`.
`.
`.
`.
`.
`.
`. 117
`.
`.
`.
`.
`.
`.
`.
`. 118
`.
`.
`.
`.
`.
`. .. 118
`.
`.
`.
`.
`.
`. .... . .. 120
`.
`.
`.
`.
`.
`. .. 121
`.
`.
`.
`.
`.
`.
`.
`. 122
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 123
`
`Example 3.8
`Example 3.9
`Example 3.10
`Example 3.11
`Example 3.12
`Example 3.13
`Example 3.14
`Example 3.15
`Example 3.16
`Example 3.17
`Example 3.18
`Example 3.19
`Example 4.1
`Example 4.2
`
`Example 4.3
`Example 4.4
`
`Example 4.5
`
`Example 4.6
`Example 4.7
`
`Example 4.8
`
`Example 4.9
`Example 4.10
`Example 4.11
`Example 4.12
`Example 5.1
`Example 5.2
`Example 5.3
`Example 5.4
`Example 5.5
`Example 5.6
`Example 5.7
`Example 5.8
`Example 5.9
`Example 5.10
`Example 5.11
`Example 5.13
`Example 5.14
`Example 5.15
`Example 5.16
`Example 5.17
`Example 5.18
`Example 5.19
`
`Second-Order Pole .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Time—Reversed Exponential Sequence .
`.
`.
`.
`Evaluating a Convolution Using the z-Transform .
`Sampling and Reconstruction of a Sinusoidal Signal .
`Aliasing in the Reconstruction of an Undersampled
`Sinusoidal Signal .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`A Second Example of Aliasing .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Ideal Continuous-Time Lowpass Filtering Using a
`Discrete-Time Lowpass Filter .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Discrete—Time Implementation of an Ideal
`Continuous-Time Bandlimited Differentiator .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`. .. .
`.
`Illustration of Example 4.5 with a Sinusoidal Input. .
`A Discrete—Time Lowpass Filter Obtained By Impulse
`Invariance .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`
`.
`.
`.
`
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`.
`
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`.
`
`.
`.
`
`.
`
`.
`
`.
`
`.
`.
`.
`
`.
`.
`
`.
`
`.
`
`.
`
`.
`.
`.
`
`.
`.
`
`.
`
`.
`
`.
`
`. .. 124
`. .. 125
`.
`.
`. 147
`
`. 148
`.
`.
`. .. 149
`
`. .. 155
`
`.
`
`.
`
`. 158
`
`. .. 159
`
`.
`
`.
`
`.
`
`. .. 162
`
`Impulse Invariance Applied to Continuous-Time Systems
`.
`.
`.
`.
`with Rational System Functions _
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Noninteger Delay .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Moving-Average System with Noninteger Delay . . .
`. . .
`.
`.
`.
`.
`Sampling Rate Conversion by a Noninteger Rational Factor. .
`Quantization Error For a Sinusoidal Signal _
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Effects of Attenuation and Group Delay .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Second-Order System .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Determining the ROC .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Inverse System for First-Order System .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Inverse for System with a Zero in the ROC .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`A First-Order IIR System .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`A Simple FIR System .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. ... .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Second-Order IIR System .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Second-Order FIR System .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Third-Order IIR System . . . .
`. . .
`.
`.
`. .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Systems with the Same C(z) .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`First- and Second-Order All-Pass Systems .
`.
`.
`.
`.
`. . .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Minimum—Phase /All-Pass Decomposition .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Compensation of an FIR System .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Ideal Lowpass with Linear Phase .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Type I Linear-Phase System .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Type II Linear-Phase System .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Type III Linear-Phase System .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`. .. 162
`.
`.
`. 164
`.
`.
`. 165
`.
`.
`. 177
`. .. 194
`. .. 243
`.
`.
`. 246
`.
`. .247
`. .. 249
`.
`.
`_ 250
`.
`.
`. 251
`.
`.
`. 252
`.
`.
`. 265
`.
`.
`. 268
`. .. 268
`.
`.
`. 271
`.
`. .275
`.
`.
`. 281
`. .. 283
`. .. 293
`.
`.
`. 300
`.
`. .302
`. .. 302
`
`

`
`List of Examples
`
`Example 5.20
`Example 5.21
`Example 6.1
`Example 6.2
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Type IV Linear-Phase System .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Decomposition of a Linear-Phase System .
`.
`.
`Block Diagram Representation of a Difference Equation .
`Direct Form I and Direct Form II Implementation of an LTI
`System .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Determination of the System Function from a Flow Graph .
`Illustration of Direct Form I and Direct Form II Structures .
`
`Illustration of Cascade Structures .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Illustration of Parallel-Form Structures .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Transposed Form for a First—Order System with No Zeroes .
`Transposed Form for a Basic Second-Order Section .
`.
`.
`.
`.
`.
`.
`.
`.
`Round-off Noise in a First—Order System .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Round-off Noise in a Second-Order System .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Interaction Between Scaling and Round-off Noise .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Scaling Considerations for the FIR System in Section 6.7.5 .
`Limit Cycle Behavior in a First—Order System .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Overflow Oscillations in a Second-Order System .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Determining Specifications for a Discrete-Time Filter .
`.
`.
`.
`.
`.
`.
`Impulse Invariance with a Butterworth Filter .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Bilinear Transformation of a Butterworth Filter .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`xvii
`
`. .. 302
`. .. 308
`. .. 342
`
`. 347
`.
`.
`. .. 352
`. .. 355
`
`. .. 358
`
`. .. 360
`
`. .. 363
`.
`.
`. 364
`.
`.
`. 396
`.
`.
`. 397
`.
`.
`. 402
`.
`.
`. 411
`. .. 414
`. .. 416
`. .. 440
`. .. 446
`.
`.
`. 454
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`. 458
`. 460
`. 463
`. 472
`. 476
`. 479
`. 483
`. 490
`. 544
`. 544
`
`.
`.
`.
`
`.
`.
`.
`
`.
`
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`Example 6.3
`Example 6.4
`Example 6.5
`Example 6.6
`Example 6.7
`Example 6.8
`Example 6.9
`Example 6.10
`Example 6.11
`Example 6.12
`Example 6.13
`Example 6.14
`Example 7.1
`Example 7.2
`Example 7.3
`Example 7.4
`Example 7.5
`Example 7.6
`Example 7.7
`Example 7.8
`Example 7.9
`Example 7.10
`Example 7.11
`Example 8.1
`Example 8.2
`Example 8.3
`
`Example 8.4
`Example 8.5
`Example 8.6
`
`Example 8.7
`Example 8.8
`Example 8.9
`Example 8.10
`Example 8.11
`Example 8.12
`Example 8.13
`Example 9.1
`Example 10.1
`Example 10.2
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Butterworth Approximation .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Chebyshev Approximation .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Elliptic Approximation .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Linear-Phase Lowpass Filter .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`_
`Kaiser Window Design of a Lowpass Filter .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Kaiser Window Design of a Highpass Filter .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Kaiser Window Design of a Differentiator .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Alternation Theorem and Polynomials ,
`_
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Discrete Fourier Series of a Periodic Impulse Train .
`.
`.
`.
`.
`.
`.
`.
`.
`Duality in the Discrete Fourier Series .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`The Discrete Fourier Series of a Periodic Rectangular Pulse
`Train .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`Periodic Convolution .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`.
`.
`.
`.
`The Fourier Transform of a Periodic Impulse Train .
`Relationship Between the Fourier Series Coefficients and
`the Fourier Transform of One Period .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`The DFT of a Rectangular Pulse .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Circular Shift of a Sequence .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`The Duality Relationship for the DFT .
`.
`.
`.
`Circular Convolution with a Delayed Impulse Sequence .
`.
`.
`.
`Circular Convolution of Two Rectangular Pulses .
`.
`.
`.
`.
`.
`.
`.
`.
`Circular Convolution as Linear Convolution with Aliasing .
`Energy Compaction in the DCT-2 .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Chirp Transform Parameters .
`.
`.
`. .. .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Fourier Analysis Using the DFT .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Relationship Between DFT Values .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 545
`
`. 549
`
`. 552
`
`. .. 554
`
`. 561
`.
`.
`. .. 566
`. .. 568
`. .. 572
`. .. 573
`. .. 579
`. .. 596
`.
`.
`. 661
`. .. 697
`. .. 697
`
`

`
`xviii
`
`Example 10.3
`
`Example 10.4
`Example 10.5
`
`Example 10.6
`Example 10.7
`
`Example 10.8
`
`Example 10.9
`Example 10.10
`
`Example 11.1
`Example 11.2
`Example 11.3
`Example 11.4
`Example A.1
`Example A.2
`
`Effect of Windowing on Fourier Analysis of Sinusoidal
`Signals .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Illustration of the Effect of Spectral Sampling .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Spectral Sampling with Frequencies Matching DFT
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Frequencies .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. .. .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. . .
`.
`.
`.
`.
`.
`.
`DFT Analysis of Sinusoidal Signals Using a Kaiser Window... .
`DFT Analysis with 32-point Kaiser Window and
`.
`.
`.
`.
`.
`.
`Zero-Padding .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Oversampling and Linear Interpolation for Frequency
`Estimation .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. .. 713
`
`List of Examples
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`. 698
`. 703
`
`. 706
`. 708
`
`. 711
`
`Time-Dependent Fourier Transform of a Linear Chirp Signal .
`Spectrogram Display of the Time-Dependent Fourier
`Transform of Speech .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Finite—Length Sequence .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Exponential Sequence .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Periodic Sequence .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Kaiser Window Design of Hilbert Transformers .
`.
`.
`.
`.
`.
`Noise Power Output of Ideal Lowpass Filter .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Noise Power Output of a Second-Order IIR Filter .
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`. 715
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`. 725
`.
`.
`. ..779
`. .. 779
`.
`.
`. 787
`. .. 793
`.
`.
`. 820
`.
`.
`. 823
`
`

`
`PREFACE
`
`This text is a second generation descendent of our text, Digital Signal Processing, which
`was published in 1975. At that time, the technical field of digital signal processing was
`in its infancy, but certain basic principles had emerged and could be organized into
`a coherent presentation. Although courses existed at a few schools, they were almost
`exclusively at the graduate level. The original text was designed for such courses.
`By 1985, the pace of research and integrated circuit technology made it clear
`that digital signal processing would realize the potential that had been evident in the
`1970s. The burgeoning importance of DSP clearly justified a revision and updating of the
`original text. However, in organizing that revision, it was clear that so many changes had
`occurred that it was most appropriate to develop a new textbook, strongly based on our
`original text, while keeping the original text in print. We titled the new book Discrete-
`Time Signal Processing to emphasize that most of the theory and design techniques
`discussed in the text apply to discrete-time systems in general.
`By the time Discrete-Time Signal Processing was published in 1989, the basic
`principles of DSP were commonly taught at the undergraduate level, sometimes even
`as part of a first course on linear systems, or at a somewhat more advanced level in
`third-year, fourth-year, or beginning graduate subjects. Therefore, it was appropriate to
`expand considerably the treatment of such topics as linear systems, sampling, multirate
`signal processing, applications, and spectral analysis. In addition, more examples were
`included to emphasize and illustrate important concepts. We also removed and con-
`densed some topics that time had shown were not fundamental to the understanding of
`di

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket