`
`USUO69Tr'24-21. B2
`
`(12) United States Patent
`Melnychuk et al.
`
`(10) Patent No.:
`
`(45) Date of Patent:
`
`US 6,972,421 B2
`Dec. 6, 2005
`
`(54) EXTREME ULTRAVIOLET LIGHT SOURCE
`
`(75)
`
`Inventors: Stephan T. Melnychuk, Carlsbad, CA
`(US); William N. Partlo, Poway, CA
`(US); Igor V. Fomenkov, San Diego,
`(.‘A (US); 1. Roger Oliver. San Diego,
`CA (US); Richard M. Ness. San Diego,
`CA (US); Norbert flowering, San
`Diego, CA (US); Oleh Khodykin, San
`Diego, (TA (US); Curtis L. Rettig,
`Vista, (TA (US); Gerry M.
`Bluntenstock, San Diego, CA (US);
`Timotiiy S. Dyer, Oceanside, CA (US);
`Rodney I). Simmons, San Diego, CA
`(US); Jerzy R. Hofiman, Escondido,
`CA (US); R. Mark Johnson, Ramona,
`CA (US)
`
`(73) Assignee: Cymel‘, Inc., San Diego, (T/\(US)
`
`{ *) Notice:
`
`Subject to any disclaimer, the term of this
`patent
`is extended or adjusted under 35
`U.S.C. 154(b) by 107 days.
`
`(21) Appl. No.: l0,I"409,254
`
`(22
`
`Filed:
`
`Apr. 3, 2003
`
`(65)
`
`Prior Publication Data
`Us 2ora4;mns473 Al Jun. in, 2004
`
`Related U.S. Application Data
`
`(63)
`
`Continuatien—in—part of application No. 1U;'384.067. filed on
`Mar. 8, 2tItl3_. which is a continuation—in—pari of application
`No.
`lDt'18'3I_.824, tiled on Jul. 3, 21')02_. now Pat. No. 6.815,
`?U{J, which is a eontinuation—in—part of application No.
`l0;‘12ti.65S, filed on Apr. 10, 2002, now Pat. No. 6,?44_.06f,I_.
`which is a continuation-in-part of application No. D9;‘S'I5_.
`719, liled on Jun. 6, 2001, new Pat. No. 6,536,757, which is
`a continuation—in—part of application No. (l9}8?'5_.?2l_, filed
`on Jun. 6, 2001, now Pat. No. 6,566,668, which is a
`t:ontinuation—in—parl of application No. C|9,r‘696,{l84_. tiled on
`Oct. 16. 2000, now Pat. No. 6,566,667, which is a continu-
`ation-in-parl 01‘ application No. 0FJ,t590_.962_. tiled on Jun. 9,
`2000, now abandoned.
`
`(60)
`
`Provisional application No. 6U;‘422_.8D8_. filed on Oct. 31,
`2002, and provisional application No. 6W4l9,8U5, filed on
`om. 13, zoo).
`
`Int.C|.7
`(51)
`(52) U.S. Cl.
`
`(58) Field of Search
`
`H01] 35120
`250.1504 R; ?.50t'493.1;
`378E119
`250E504 R, 493.1;
`378E119; 37215, 87
`
`(56)
`
`References Cited
`U.S. PATENT DOCUMENTS
`
`2,759,106 A
`3,150,483 A
`3,232,046 A
`
`3/1956 Welter
`(#1964 Maytield et al.
`2.31966 Meyer
`
`
`
`2Si!f53
`6035.5
`5[l;‘35.5
`
`(Continued)
`OTHER PUBLICATIONS
`
`Apruzese, J.P., “X—Ray Laser Research Using 2. Pinches,"
`Am.
`l'n.s'r. of Phys. 399-403, (1994).
`
`(Continued)
`
`Priniary Exrrmther—Kict T. Nguyen
`(74) Attorrie}-‘, Agent, or Firm William (T. Cray; Cymar,
`Inc.
`
`(57)
`
`ABSTRACT
`
`invention provides a reliable. high-repetition
`The present
`rate, production line compatible high energy photon source.
`Avery hot plasma containing an active material is produced
`in vacuum chamber. The active material is an atomic ele-
`ment having an emission line within a desired extreme
`ultraviolet (EUV) range. A pulse power source comprising a
`charging capacitor and a magnetic compression circuit com-
`prising a pulse transformer, provides electrical pulses having
`suflicient energy and electrical potential suflicient to pro-
`duce the EUV light at an intermediate focus at rates in excess
`o1‘ 5 Watts. In preferred embodiments designed by Appli-
`canLs in-band, LEUV light energy at the intermediate focus is
`45 Watts extendablc to 105.8 Watts.
`
`78 Claims, 50 Drawing Slleets
`
`
`
`ASML 1331
`ASML 1331
`
`
`
`US 6,972,421 B2
`Page 2
`
`US. PATIENT DOCUMENTS
`
`Fomertkov, et 2111., "Characterization of a ]3.5nm Source for
`EUV Lithography based on a Dense Plasma Focus and
`Lithium Emission,” Sernatech Intl. Workshop on EUV
`Lithography (Oct. 1999).
`llansson, et al., “Xenon liquid jet laser-plasma source for
`EUV lithography," Emerging Lithographic Technologies IV,
`Pr-oc. Of SPIE , vol. 3997:729—732 (2000).
`Kato, Yasuo, “Electrode lifetimes in a Plasma Focus Soft
`X—Ray Source," J. Appi. Phys. (33) P1. 1, No. 8:4’.-'42—4744
`(1991).
`Kate, ct al., “Plasma focus X-ray source for lithography,”
`Am. Vac. Sci. Tech. B... 6(1): 195-198 (1988).
`Lebert, et al., “Soft x-ray emission of laser-produced plas-
`mas using a low—debris cryogenic nitrogen target,” J’. App.
`Phys., 84(6) 3419-3421 (1998).
`Lebert, et 211., “A gas discharge based radiation source for
`EUV—lith0graphy," Int]. (Joni. Micro and Nar1o-—l£ngineer-
`ing 98 (Sep. 2-24, 1998) Leuvcn. Belgium.
`Lebcrt, et al., “Investigation of pinch plasmas with plasma
`parameters promising ASE,” Inst. Phys. (Ionf. Ser No. 125:
`Section 9, pp. 411-415 (1992) Schiersee, Germany.
`Lee, la 11., “Production of dense plasmas in hypocyloidal
`pinch apparatus,” The Phys. Of Ft'tu'a's, 20(2):313—32]
`(1977).
`Lewis, Ciaran L.S., “Status of Collision-Pumped X-ray
`Lasers," Am Inst. Phys. pp. 9-16 (1994).
`Malmqvist, et al., “Liquid—jct
`target for laser—plasma soft
`x-ray generation,” Am. 1'ns.'. Phys. 67( 12):4150-4153 1996).
`Mather, et al., “Stability of the Dense Plasma Focus,” Phys.
`Of Fhads, 12(11):2343—2347 (1969).
`Mayo, el al., “A magnetized coaxial source facility for the
`generation Ofenergic plasma flows,” Sci. ’t'.‘ec.-‘moi. voi. 4:pp.
`47-55 (1994).
`Mayo, et a1., “Initial Results on high enthalpy plasma
`generation in a magnetized coaxial source,” Fusion Tech vol.
`261221-1225 (1994).
`Nilsen, et 511., “Analysis of resonantly photopumped Na-Ne
`x-ray-laser scheme,” Am Phys. Soc. 44(7):459l-4597
`(1991).
`Partlo, et a1., “EUV (l3.5nm) Light Generation Using a
`Dense Plasma Focus Device", SPIE Proc, On Emergimz
`Lithographic Technoiogies H3, vol. 3676, 846-858 (Mar.
`1999).
`Price, Robert 1-1., “X—Ray Microscopy using Grazing Inci-
`dence Reflection Optics,” Am.
`131.51‘. Phys.
`, pp. 189-199,
`(1981).
`Qi, et al., "1"lur1rescence in Mg ix emission :11 43.340 A
`from Mg Pinch lasmas photopumped by Al X1 Line radia-
`tion at 48.338
`.” The Am. Phys. Soc., 47(3):2253—2263
`(Mar. 1993).
`Scheuer, et al., “A Magnetically—No7.zled, Quasi—Steady,
`Multimcgawatt, Coaxial Plasma Thruster,” IEEE: Transac-
`tions on Plasma Science, 22(6) (Dec. 1994).
`Schriever, et al., “Laser--produced lithium plasma as a
`narrow-band extended ultraviolet radiation source for pho-
`toelectron spectroscopy," App. Optics, 37(7):1243-1248,
`(Mar. 1998).
`Schriever, et al., “Narrowband laser produced extreme ultra-
`violet sources adapted to siliconirnolybdenum multilayer
`optics," J. of App. Phys., 83(9):4566-4571, (May 1998).
`Zombeck, M.V., “Astrophysical Observations with High
`Resolution X—ray Telescope," Am.
`fast. Of Phys, pp.
`200-209 (1981).
`
`601202
`1031966 Boden
`2507227
`731973
`42.5.1467
`6.31976
`2503493
`631975
`2501402
`731976 Roberts cl al.
`31372316
`831977 Lee
`31332315
`531978 Samis
`2503503
`331979 Malloarzietal.
`757245
`731979 Witter
`.... .. 123330
`531980 Giardini
`1233143
`1231982 Asik
`1233620
`131983 Emio
`. 3783119
`331985 Cartz etal.
`315339
`331985 Asmussen ct al.
`. 3783119
`831985 Weiss ct al.
`378019
`831985 Iwantatsu
`1233536
`1231985 Ward
`3783119
`6.31986 Herciger et al.
`378334
`1031986 Weiss et al.
`431371
`1231986 Gann
`. 378.3119
`1231986 Weiss et al.
`378.334
`131987 Okada ct al.
`. 3783119
`631988 Gupta ct al.
`. 3783119
`631988 Gupta et 31.
`.. 1233162
`1031988 Ward
`37831.19
`631989 Riordan el al.
`. 3073106
`531990 Birx ct al.
`3781122
`631991 NCE ct al.
`3243674
`..
`6.31991 Horsley et al.
`4303311
`.
`431992 Hammer et al.
`315.1326
`631992 Dcthlefsen . .... ..
`3077419
`831992 Birx
`.... .. 378334
`1231992 Kumakhov ..
`372337
`531994 Cook etal.
`244,153
`5.31995 Dearman et al.
`372338
`9.11995 Birx et al.
`.. 3783119
`431996 McGeoch
`372.338
`331998 Birx et al.
`2503504
`631998 Partlo
`2193121
`233999 Bit):
`372,338
`831999 Partlo et al.
`. 3783122
`1031999 Silfvast ct a1.
`250,504
`2.32000 Silfvast et al.
`204092.15
`332000 Schulz
`2503504
`43200!) Partlo
`2507504
`532000 Purtlo et al.
`2193121.57
`132001 Birx
`363321
`232001 Pascente
`2503504
`532003 Panto et al.
`2507504
`532003 Rauch et al.
`532003 Mcficoch .............. .. 378.3119
`772003 Melnychuk el al.
`. 250.1504
`1232001 Kandaka et al.
`. 3783119
`832002 Partlo et al.
`. 2501504
`1132002 Schrievcr et al.
`. 3783119
`432003 Ahmad etal.
`3783119
`
`..
`.
`
`..
`
`..
`
`..
`
`
`
`..
`
`..
`
`3,279,176 A
`3,746,870 A
`3,960,473 A
`3,961,197 A
`3,969,628 A
`4,042,848 A
`4,088,966 A
`4,143,275 A
`4,152,150 A
`4,203,393 A
`4,364,342 A
`4,369,758 A
`4,504,964 A
`4,507,588 A
`4,536,884 A
`4,538,291 A
`4,561,406 A
`4,596,030 A
`4,618,971 A
`4,626,193 A
`4,633,492 A
`4,635,282 A
`4,751,723 A
`4,752,946 A
`4,774,914 A
`4,837,794 A
`4,928,020 A
`5,023,897 A
`5,027,076 A
`5,102,776 A
`5,126,638 A
`5,142,166 A
`5,175,755 A
`5,313,481 A
`5,411,224 A
`5,448,580 A
`5,504,795 A
`5,729,562 A
`5,763,930 A
`5,866,871 A
`5,936,988 A
`5,963,616 A
`6,031,241 A
`6,039,850 A
`6.051.841 A
`6,064,072 A
`6,172,324 B1
`6,195,272 B1
`6,566,667 131
`6,566,668 132
`6,567,499 B2 "
`6,535,757 B2
`200110055364 A1
`200230100882 A1
`200210168049 A1
`20037111681112 A1
`
`011 I ER PU BLI CAT1 ONS
`
`Bollanti, et al., “C0rI'lpac1 Three Electrodes lixcimer Laser
`IANUS for
`a POPA Optical System,” SPIE Proc.
`(2206)144-153, (1994).
`Bollanti, et al., "Ianus, the 1hree—electrode excimer laser,”
`App. Phys. B (Laser & Optics) 66{4):401—406, (1998).
`Choi, et al., "A 1013 A35 I-ligh Energy Density Micro
`Discharge Radiation Source,’’ 13. Radiation Characteristics,
`p. 287-290.
`Choi, et a1.. “Fast pulsed hollow cathode capillary discharge
`device,” Rev. of Sci. htsrram. 69(9):3118-3122 (1998).
`
`
`
`US 6,972,421 B2
`Page 3
`
`Choi et a1., “Temporal development of hard and soft x—ray
`emission from a gas—pulI Z pinch,” Rev. Sci. Inslrum. 57(8),
`pp. 2162-2164 (Aug. 1986).
`Silfvast, et al., “High—-power plasma discharge source at
`13.5 nm and 11.4 nm for EUV lithography,” SP1?-I, vol.
`3676:272—275, (Mar. 1999).
`Silfvast, et al., “Lithium hydride capillary discharge creates
`x—ray plasma at 13.5 namometers,” Laser Focus World, p.
`13. (Mar. 1997).
`Wilhein, et al., “A slit grating spectrograph for quantitative
`soft x—ray spectroscopy,” Am. Inst. Of Phys. Rev. of Sci.
`In5lrum., 70(3):169-1-1699, (Mar. 1999).
`Wu, et al., “The vacuum Spark and Spherical Pinch X—ray,"
`EUV Point Sources,” SPIE, Com’. On Emerging itiecii.
`[[1,
`Santa Clara, CA vol. 36'r'6:410—420, (Mar. 1999).
`Giordano and letardi, “Magnetic pulse compressor for
`prepulse discharge in spiker—sustainer exeitati technique for
`XeC1 lasers,” Rev. Sci. Instrurn 65(8), pp. 2475-2481 (Aug.
`1994).
`Jahn, Physics of Electric Propulsion, Mc(}raw—IIi1l Book
`Company, (Series in Missile and Space U.S.A.), Chap. 9,
`“Unsteady Electromagnetic Acceleration,” p. 237 (1968).
`
`Lebert et al, "Comparison of laser produced and gas dis-
`charge based EUV sources for different applications," frater-
`mrtionai Conference Mr'cr0— and Nan0—Engineering 98,
`Sep. 22—24, 1998, Lcuven, Belgium, 6 pages.
`Lowe, "Gas plasmas yield X rays for Lithography,” Elec-
`tronics, pp. 4(!—41 (Jan. 27, 1982).
`
`Mather, "Formation of a High—Densty Deuterium Plasma
`Focus," The Physics of Fluids, 8(2), 366-377 (Feb. 1965).
`
`Matthews and Cooper, "Plasma sources for x—ray lithogra-
`phy," SPIE, 333, Submicron Lithography, pp. 136-139
`(1982).
`
`Pearlman and Riordan, "X—ray lithography using a pulsed
`plasma source,” J. Vac. Sci. Technol, pp. 1190-1193 (Novj
`Dec. 1981).
`
`Shiloh et 211., “Z Pinch ofa Gas Jet," Physical Review Lett.,
`40(8), pp. 515-518 (Feb. 20, I978).
`Slallings el al., “imploding argon plasma experiments,”
`Appl. Phys. I..ett., 35(7), pp. 524-526 (Oct. 1, 1979).
`
`* cited by examiner
`
`
`
`U.S. Patent
`
`bee. 6,2005
`
`Sheet 1 of 50
`
`US 6,972,421 B2
`
`nnowwsrmum
`
`$5995I
`
`H
`
`
`
`RESWNICHIRCER
`
`I}?bia1
`70Wrs:
`+ DC400POWER SUPPLY
`
`E'
`
`5.
`F5‘3
`
`=:—.
`E
`
`L1
`
`‘as
`
`c-1l55{}{
`
`,L4_
`
`250,.-H
`
`CD
`CD
`*1‘
`
`55
`
`
`
`DE-DINGSVHT
`
`
`
`CMRGLNGSHICH
`
`402
`
`
`
`FOG.‘TIA
`
`
`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 2 of 50
`
`US 6,972,421 B2
`
`BKACK: VOLTAGE ON c2
`
`
`RED: VOLTAGE ACROSS
`ELECTRODES
`
`5
`
`4
`,___
`35 3
`LLJ
`3 2
`SE‘
`B 1
`9-5
`3 0I
`
`-1
`
`-2
`
`0.7
`
`0.5
`
`E
`3 0.5
`% 0,4
`‘Ea’
`9 0.3
`5’
`C)
`8 0.2
`32
`CL
`
`0.1
`
`
`
`-3
`-500 -500 -400 -300 -200 --100
`
`0
`
`100
`
`200
`
`300
`
`400
`
`500
`
`TIME (ns)
`
`HQ. 1 B
`
`1300V OPERATION
`
`INTEGRAL = 3.1E—-8 Vsec
`
`OUTPUT = 12.7mJ/211
`
`0.0
`-50
`
`0
`
`100
`
`50
`HME (ns)
`OUTPUT (11.4 nm) = 22rnJ/21:
`
`150
`
`HG. ‘HG
`
`
`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 3 of so
`
`US 6,972,421 B2
`
`
`
`sa_§,EI=a..
`
`Ego;
`
`5&3
`
`
`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 4 0f50
`
`Us 6,972,421 B2
`
`
`
`é
`
`‘L‘.}}..‘
`kg‘
`
`1
`;
`
`O N
`
`22
`
`LL
`
`'
`
`o
`N N
`I
`(9
`
`E C
`
`D
`01
`
`9 L
`
`I.
`
`ZDIRECTION
`
`FIG.2A
`
`
`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 5 of 50
`
`US 6,972,421 B2
`
`404
`
`
`
`
`
`
`
`n
`
`
`
`.—--— ——-- .-
`
`.E=E-
`
`.‘ -
`
`§
`
`3
`K,-
`
`'£.l||l—
`
`_II|l_'
`
`_ ' 1
`
`E
`
`—
`
`I
`
`
`
`
`
`
`
`I —. "'*‘V
`
`‘ " E3
`
`.
`
`____
`
`" :,,
`
`'7‘
`
`
`IL‘:‘!5-'--"'§'-5-'5—'3§
`LI.’ “:1: I2
`junk
`2
`2
`2
`.. _.._ w=\|— I
`S
`
`
`.,.-
`.
`:-
`-ii,
`\
`__,_;::. @,:§u§¢l
`
`~
`-
`
`
`
`
`'3
`/
`:§—
`-------------- .-.5 — $..----
`‘N
`
`
`93%.
`f_;._ E I
`- 5.13--
`a-— ,, ggl fill] .-.;.-_,
`.‘
`Zlnjl
`.:.I
`':-1'5... !'-_
`
`
`§
`__I—§§!'.-'i|
`éfifliél-E--—$
`
`W
`
`g 2
`
`\
`
`\.\
`
`§§.l..i
`‘{4}
`
`'
`
`
`
`
`
`§g‘—'gg—-"
`
`"§ii=..2:.
`
`
`
`,~:-===-
`
`,
`
`- "2
`
`~.
`
`,!_IJ¢s\% III! ‘E?!
`
`u—
`3:
`I_
`/! a\ _.
`T...
`\
`. "'
`!-g-I,-_%__,///2
`I:\:\—- -2*:
`i‘Il
`
`
`
`
`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 5 of 50
`
`US 6,972,421 B2
`
`) _$__
`
`his-3.-.;-um-.—
`
`88
`if
`
`1
`
`3,,
`
`._
`
`
`
`/
`
`a..\ W
`
`
`
`
`
`ii
`
`-‘Ia _.
` ._
`nun--:IiI‘i.'=!!ai‘i.i
`
`,
`
`°* %%E’?<%”°“
`
`2-Co CAPACITOR
`DECKS
`
`
`
` "
`
`
`
`1|
`I I-III! 11 run1
`4,4-$3.:-EuI:I:wI
`
`
`mII|m|I_:'.'JzIII.-annmlflfiil:
`
` .
`
`.1 -.'i_a-3.).
`
`
`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 7 of 50
`
`US 6,972,421 B2
`
`o__:mmEm
`
`._o=...o_2
`
`E
`
`_o==2£._o
`
`m:EE:n_
`
`cozo~_coTP_n_
`
`mmuefiom
`
`tom9.323
`
`._....__e_..ooSn.
`
`
`
`
`
`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 8 M50
`
`US 6,972,421 B2
`
`om»omwz_m:
`
`mOOZ<H<
`
`'
`
`A
`
`....._u§
`
`GEN.07.3.330:mx
`
`muowmm8mmom9Em
`
`om»omaz_m:
`
`mmm2<Ioz_
`
`cow
`
`O9....
`
`,wA
`
`2:eB5Um..
`
`MonMm8D.m0D.
`
`o
`
`
`
`
`
`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 9 of 50
`
`US 6,972,421 B2
`
`VC2[xv]
`
` C2Energy[J]
`
`0
`
`200
`
`400
`
`600
`
`800
`
`1000
`
`1200 1400 1600
`
`Pressure [mTorr1
`
`FHG, 2/am
`
`
`
`IntegratedPhotodiodeSignal[nV-51
`
`
`
`
`
`
`
`U.S. Patent
`
`D
`
`6.,
`
`059|.0
`
`US 6,972,421 B2
`
`
`m52%.©EQEN.@Em333fir.Ema_8s$mEgo:5%.52m_3.s8m_
`
`
`Snuzemnfiem.....w~._.o._w_.I~I._..'m.
`
`2...u._
`'3».On.3Wnunrm
`
`3
`
`Q6:.qm2% ~E2,”23%aa
`
`3
`
`3
`3
`3
`3
`3
`(94,) Aouagamg Miuaug puequ| Ana
`
`8
`
`S
`
`8
`
`2
`
`(a|norLu) &5Jau3 pueq
`
`
`
`
`
`%o_co_o_Ecmaofifinm..,oEzm:o.__.=vmo..o_nm>oE
`
`m...$O._.___..$
`
`
`
`
`
`
`
`
`
`
`
`
`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 110150
`
`US 6,972,421 B2
`
`0.4.
`60
`Putse Number
`
`.
`
`.I-
`
`.‘.Iu.oIQ-.ouuo
`
`.
`
`Pulsa Number
`
`.IIt.w...tn
`
`-.C..0...u5..
`.:.....
`NH“.U
`D2-5
`
`nIt‘..
`-.1
`
`U5U24|cl.
`50
`
`Number of pu1ses
`
`FHG. 2A1-14))
`
`
`
`
`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 12 of 50
`
`US 6,972,421 B2
`
`
`
`Single channel debris shield
`
`FHG 2/M1 5)
`
`
`
`
`
`Multichannel debris shield.
`
`Number of channe|s=60. Length=1 cm.
`
`HG. zzaxmsi
`
`_—
`
`
`
`Required Level
`
`
`
`Single Channel Shield
`Id
`
`Muitiple Channel Shie
`I
`
`
`
`
`
`Reductionfactor
`
`.—I Ois
`
`
`
`
`
`
`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 13 of 50
`
`US 6,972,421 B2
`
`Tungsten, Molybdenum
`
`Cooling
`we
`
`304L Stainless Steei
`
`Cathode
`232:2?
`
`Insulator
`
`Anode Cooting Water
`
`
`
`
`
`HeatExtraction(Watts)
`
`FUG, 2AM 8)
`
`3000
`
`._A8[Q8o8C)DC)
`
`0
`
`100
`
`200
`
`DPF Repetition Rate (Hz)
`
`IFUG, ZAMQ)
`
`EUV efficiency with Xe,
`EUV energy per puise
`Source size
`
`Transverse source stability
`Out of band radiation
`
`Continuous repetition rate
`Burst re petition rate
`Energy Stability
`
`4. 10 % rms
`
`> 0.4 %
`45 rnJ
`0.25 x 2 mm
`
`50 pm rrns
`< 0.5%
`
`200 Hz
`2000 Hz
`
`FBG. 2A((2®)
`
`
`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 14 of 50
`
`US 6,972,421 B2
`
`
`
`E23>_._%.moo_.E4
`
`
`
`wO_._.n_Ozo:.<z_s5._.__
`
`mdimm
`
`
`
`mo_EoZOFUDDME
`
`
`
`oz:n_z<:mmEu_<_§
`
`
`
`mn_s5n_Oman»
`
`2:?._mmmm>04>2:
`
`SmvqmGE
`
`IODOK
`
`5__...DO<>
`
`miwmn___2D&
`
`5.23
`
`mn_s5a
`
`o_zom5m._m_
`
`w._oE2oo
`
`._.Z<2Ommm
`
`Km_omqxo
`
`
`
`
`
`U.S. Patent
`
`D
`
`29(D
`
`HHM
`
`W
`
`US 6,972,421 B2
`
`ESEmEmm.Emx
`
`
`
`2:E.._o_§oBm£5.ox-___>ax
`
`W8%
`
`S83
`
`,m88
`
`3®_.VP9OFmo
`
`82:
`
`Sow
`
`(suun 'C|JB]£1!SU31U]
`
`
`
`AECQ..2@_.._0_U>w?)eptfiw£a@Cmw_m>m.?J
`
`
`
`
`
`Em.©EQm.®E
`
`
`
`U.S. Patent
`
`6.,
`
`C“n
`
`US 6,972,421 B2
`
`
`
`
`
`Em:.mm:,E-.S:2:43
`
`w_mm2<:u
`
`DII.
`
`
`
`
`
`I...I:I:¢Emmi+I:mmmmfi
`
`
`
`mo¢m_s_mobmfioo
`
`rmmm<2
`
`
`
`I::!mmmzqzo 26$xwmfi\%arr:r!2,002.;ma!
`
`
`
`
`
`
`
`3E95$9:.
`
`mama;
`
`at\\oz.m:oo.._.2a\\
`m.u\\\\it$52....”___
`
`.m1.1It1..1..\mzflH...mmomgz-3m21..
`mbsflzmflz,9\:5:>3\\\mammfi
`
`
`zém9,2EH02EBmsommozoammW.
`.@=.u:
`
`Emssmo
`
`
`
`
`U S Patent
`
`Dec. 6,2005
`
`Sheet 17 of 50
`
`US 6,972,421 B2
`
`LASER 1
`
`45° MIRRORS
`
`-
`
`'
`
`wINOOw
`
`MULTI-LAYER FIRST
`COLLECTOR MIRROR
`
`/
`LASER 2
`
`FOCUSING
`LENS
`
`CHAMBER
`WALL
`
`LASER 3
`\
`
`‘
`
`WINDOW
`
`‘'"'--~-—.
`
`EUV LIGHT To
`J INTERMEDIATE FOCUS
`‘“ *-~- —~. ._
`
`~'
`
`\
`
`
`
`LASER FOCUS
`
`—_'_' ‘”" ‘-— --—e:=-
`
`____E7
`
`,2 «-*5’
`
`.2» *"'
`
`REGION OBSCURED
`BY NOZZLE ANO
`BEAM DELIVERY
`
`LASER 4
`
`
`
`U.S. Patent
`
`Dec. 6,2005
`
`Sl1ect18 of 50
`
`US 6,972,421 B2
`
`LASER
`
`‘—°’
`
`NOZZLE
`
`PROTECTIVE
`
`COATING
`
`DROP OF TARGET
`MATERIAL
`
`PROTECTIVE
`
`COATING
`
`FOCUSING
`LENS
`
`DUMP
`
`HQ. 48
`
`
`
`U.S. Patent
`
`5
`
`.n
`
`0
`
`US 6,972,421 B2
`
`zocsaé=8zo:<N_zoTm_Eu&H.2“wew>8 ~HDn_m._..E1m\x\EoEH._.m
`
`6H,
`
`%\\\\\\\
`
`
`
`
`
`\\......\..b..‘gag!!!‘ii’A.//A$3m_o5:mz_mooE8.m
`
`xm_Dmofijbmznom.~OmODLu|mm_E._.._O
`
`
`
`
`
`
`
`0u.Ns\\....................................................................._
`
`5AT3%
`
`A159;
`
`HXKmo<:o>:2:0.1!m,,mzfl
`
`uz_m8EAI5ma
`
`38%E4/
`azza;,,,§o9IE§
`
`,,
`
`89$32¢
`
`
`
`A.uoofiowm
`
`I~_.5.?J:m2_
`
`
`
`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 20 of 50
`
`US 6,972,421 B2
`
`
`
`
`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 21 of 50
`
`US 6,972,421 B2
`
`on.®E
`
`
`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 22 of 50
`
`US 6,972,421 B2
`
`
`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 23 of 50
`
`US 6,972,421 B2
`
`
`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 24 of 50
`
`US 6,972,421 B2
`
`104
`
`
`-
`, ..mv -
`''
`*'''.I'.Ii.‘a1a'iL*§‘
`
`,.'.u|uu.v:r2v;1.va.'r..v4v..fi*r.g.
`_ MIIII.IIN:.!m1'|"n"A‘&'l'.|.Ifl"1
`
`.I'.I.Io.I Ys'1'al5m‘l'nnVA
`DI
`
`
`
`
`
`
`
`
`
`U.S. Patent
`
`bee. 6, 2005
`
`Sheet 25 of 50
`
`US 6,972,421 B2
`
`
`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 26 of 50
`
`US 6,972,421 B2
`
`Published Reflectivity of Mo/Si Mirror
`
`
`
`Wavelength(nm) FIG10
`
`15
`
`1314
`
`‘I2
`
`11
`
`
`
`ju-——
`
`%%
`
`'I
`M!‘
`
`«.3
`
`L.“I
`
`(A) |9U5!s iwa Je1eu.1cu13ed3
`
`
`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 27 of 50
`
`US 6,972,421 B2
`
`easazasm
`
`§§§_e.§/
`
`
`
`.EEG5%«.5.GE2.mmAH5§§_02.3”.
`
`
`
`
`
`522B§_§3.9%.225:85:B:m:m_E
`
`.3
`
`
`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 23 of 50
`
`US 6,972,421 B2
`
`Ilafll.II’rl..vIlHrI|..n0......IIit
`
`
` WWu.M“W *VH1...
`
`
`
`
`
`-.2.U>oEzmB$>_dn:_oinr Smmzmom_mmm_%,mo¢mwmAom_.%.,\.8m2_ms_ou$u:om<m§_
`
`
`
`m:oz<zo_mm__2mz<Eom
`
`
`
`Emmzmnm_E>_._mou.Oaim
`
`,62m__&m$3
`
`
`
`
`
`I_.©Zm_._.300“.5582
`
`
`
`@:..©E
`
`
`
`
`\x\_\\%.::-......m.1.IE,HI:.1:
`
`
`-..:uHlf..!mafiago$2.t....uN.«n.nnmu..m.W,u...
`
`
`-,_.ozmEm..,$F---..,-___...
`
`n.u:ff!f!:1.HHruH::fJIw...wr:<M.\\..\,m\~\Vmm.n._.:._.m..1.I»!.
`--Gfizwomw_mw_%4oom_mm@__m__uV\\vwIn.\...I\\\.\.\
`
`
`L.1..|.....w\.2,sen?
`-/If..-..-m...nH.n.H¢.u\\,...,.m.u,..m_&mam,_,uzwm”m___x..:
`
`
`
`
`
`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 29 of 50
`
`US 6,972,421 B2
`
`
`
`
`
`m_mcmco_mm_Emma>u:w.O_.cm.2uw__oO__mcm-¢
`
`
`
`
`
`
`
`n..._.I.lL_
`
`Amwemmuv296_._o_mm_Em_
`
`
`
`Q:.©E
`
`onRom
`
`Naosoméé
`
`Z“m_mn__._._m
`
`83
`
`88
`
`Smd
`
`83
`
`
`
`SI
`
`US 6,972,421 B2
`
`.......i...\\\\|P.I...!..n\1MIrrf..r:......
`
`
`
`a..I...II\Iu|\
`
`
`
`
`alrllI3I.ll.I.\2.,I........I.....:....i...6..ll......I:.l.r.....J..r.:I¢I.|uIII.l.I.JI.I-IIIIIu\u....:i...-...::.:r
`
`.rJ....fla....ul.....tu.....l........\n......I...........I.IIuI..eI.
`
`
`
`
`
`.............u....-...¢...rIllIII|It......r.............
`\\\|\\....\-:fli..I--M\-.%II!!!-.om\0.I--I--J|--....II.3\.-u.
`
`urllltfI:..:1.\:C.III.....Jllrne\IIuu..ID..I..Ir....
`
`
`
`
`
`L.I.Il.l|.I|IlI!o\ll
`
`rl.uaIn.I:Il..I\0-fl!1...:\allu.0..uf......uIt.......I....rl.....\In
`...l.II...IJll...I.rIll...IIll.|I..II.III..ll\\5.......J|:.I..
`
`
`
`-.....awtJ.u.......rnlrf..\1\\a...tuJ....
`
`
`'.I.'."'III
`
`
`
`
`|r:l.l.ll.l.I.l.III!IIIIIII1...r
`
`
`
`
`JlllnIllil...II...i..l...-I....|...!..\...Iul.|l.ll
`
`rffr...I-5Il..u...I......:.J.r....I..l..:.If...a\\\
`
`
`l......l.1.......rul....rI...I.rru..II..IiIl.lull...\\Il.I.I...
`
`
`..\
`
`
`.l..rrlJI..l...ll1.l.l....ltlr....r..llJ\IlIl!nff
`
`
`
`
`..In:....8\IlulI\IIl.1I.fnI.luIl.l.|.II..|lI..ll|.|.I|1.|-IIIIIIIIIIu\Iul.I.o.i--|:--:I--i::I
`
`
`
`
`I..|.lII|ul.II.|I...0......I.lu15IIuIIII.l11IlluI|.lII
`
`
`Illlllill
`
`I»0Zm_._#63EEo¢m_
`
`i.....r.J:
`
`
`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 31 of 50
`
`US 6,972,421 B2
`
`:1:
`1-
`(.3
`.|.J
`._J
`_.I
`<'-C
`(J
`0LI.
`
`ZL
`
`EEc
`
`:
`c::Ll")
`
`
`
`U.S. Patent
`
`US 6,972,421 B2
`
`W._
`
`_22.H_.m_3
`
`2
`
`Lfi
`F’
`
`E
`
`
`
`oz_v_%_sM858ozcao;
`
`2.maNwma3we
`
`\%JWm?.®E
`
`
`
`
`
`Q23..QE9:..@=M_mi..@E«E.@EH_
`
`
`
`
`
`
`
`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 33 of 50
`
`US 6,972,421 B2
`
`EUV Intensity (Normalized)
`
`
`
`
`
`m:.__._:.9...b_mcmE_DDMnew.wuocm>._,U>umzzmmwz
`
`
`
`
`
`
`
`
`
`
`
`
`
`...,.m.._..:3mo«:o>wozdeoiaom2mo.w....“i
`
`W..2.2......Q
`
`N
`.w
`
`A
`
`(pazggeuuom) a5e1|o,r\ epouv pue L3
`
`$5mEfi
`
`WP.®E
`
`88m
`
`2:.oO9-8m.8m.8%8m-Hm
`
`2-
`
`.9
`
`
`
`
`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 34 of 50
`
`US 6,972,421 B2
`
`~,,
`‘__|_\
`.2
`/V
`
`I
`
`l .' I
`
`
`
`
`
`
`"ha.
`
`I‘
`
`
`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 35 of 50
`
`US 6,972,421 B2
`
`H6.1]7
`
`
`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 36 of 50
`
`US 6,972,421 B2
`
`43.07.
`
`
`
` .w+.._o4.._O
`
`
`
`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 37 of 50
`
`US 6,972,421 B2
`
`n:.5n_
`
`
`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet as of 50
`
`US 6,972,421 B2
`
`% B 5.
`
`._J
`C)
`(.3
`La.)
`<.:
`21...:
`.:o
`
`Qc
`
`FIG.18C
`
`E (
`
`:2
`
`E (
`
`.9
`
`
`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 39 of 50
`
`US 6,972,421 B2
`
`
`
`
`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 41 of 50
`
`US 6,972,421 B2
`
`nIx
`
`...---J_.—-..
`
`E5m_ozEm_o-x
`
`3o
`
`
`
`Ea.mozfiwa
`
`.2,o9-N-.m-
`
`XITH EMILVWEH
`
`65?,@E
`
`"-5".0":
`
`ca
`(‘\.|
`
`3
`
`(U1lU)E|3NViS|G'.k
`
`(WU!) 33NV.LS|G'A
`
`
`
`
`
`
`
`U.S. Patent
`
`Dec. 6,2005
`
`sum 42 of 50
`
`US 6,972,421 B2
`
`
`
`U.S. Patent
`
`bee. 6,2005
`
`Sheet 43 of 50
`
`US 6,972,421 B2
`
`gX'\\Ԥ
`,\ W‘
`.
`‘-\
`E" -9}
`‘*3
`
`.\2si‘a:'
`u:.\\\\\\\\1~‘&I:
`?'?‘Is
`
`
`I.-Am: gr/2.’/2.
`
`
`
`
`
`
`
`U.S. Patent
`
`bee. 6,2005
`
`Sheet 44 of 50
`
`US 6,972,421 B2
`
`
`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 45 of 50
`
`US 6,972,421 B2
`
`METAL
`LIQUIDJET
`
`[
`
`%
`
`PWCH
`
`DISCHARGE
`/ SUCTION
`0/ Z
`-~
`
`MM
`KADDITIONAL
`
`GAS INLET
`
`F‘-"G.
`
`PINCH
`
`,/SILICON
`0
`
`if
` TUNGSTEN
`
`?~_—/-XENON GAS
`
`/
`
`§ :F0|L TRAP
`\. i /
`/' TUNGSTEN
`
`SOURCE
`
`
`
`IFHG. 26A
`
`
`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 46 of 50
`
`US 6,972,421 B2
`
`PRIOR ART
`
`HQ. 27
`
`
`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 47 of 50
`
`US 6,972,421 B2
`
`
`
`F[l@. 281%
`
`10 Turn Coil, r=2 cm
`
`
`
`J1,
`" I p.
`"4-W
`
`
`
`'-:3
`
`ésnfi
`
` _
`
`
`
`U
`
`m9|.084..Iu_.fl
`
`US 6,972,421 B2
`
`_.H.DN_A_.M23NmmmMwHtIH..IOmn.._u_OmWR..Emama3Pm2SE
`
`3m8dc«mmd:
`
`5:5.E:mas2:.am2:.92..Qas92.gm.2;am_.m.
`
`aw_.w.
`
`om.O_n_
`
`
`
`gnawoomvaaovcomm
`
`aeanoammcoca
`
`
`
`omu.0_u_
`
`
`
`
`U.S. Patent
`
`bee. 6,2005
`
`Sheet 49 of 50
`
`US 6,972,421 B2
`
`J?=o_:...~_co_-ma
`
`
`
`w9m:om_u_.__mE
`
`2.058
`
`/3
`
`_%__mBE.___:5
`
`
`
`Ramos..:m_o_.:m_
`
`mE_mE$ouo:u¢_a€95
`
`
`
`
`
`._o=m~_:2-ma¢m.m._om_uFEE
`
`:o__m~_co_-m.n_
`
`memma
`
`Fm.@E
`
`eczema.mmo
`
`I};
`
`mao_oo5§
`
`
`
`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 50 of 50
`
`US 6,972,421 B2
`
`m.m__._n_
`E3"E9$E,_o._m:m#coammasoo3920am“.8__&=m_m_son_2._.,.__am
`
`
`
`
`
`o._§_mm_2.:&=o%-.§m_m$Emmc_§.§wmm._a$cmEm:o8mmmm_m>¢:9:mw_=n_
`
`émcmmg§$_m=$._.§son_
`
`
`
`
`
`
`
`
`
`
`
`
`
`_m.___:_%_>9n_$__&:w$30;$_%os§.2om;Egon.mmm_m><:9:.
`
`
`
`
`
`
`
`
`
`
`
`cozemaomfimdmm:9:3&5BcozmsmmmEm:53>E996
`
`
`
`
`
`
`
`
`
`.8;Emacmocommmaeoomm_:n_ozmcmméEm9___§_;wgemEow.
`
`
`
`
`
`
`
`
`
`8mme8_.8c£8E_3355>azcemcmfi85¢335.53.
`
`$222Q3§§-%m3:E&o38___..3m82$
`
`
`
`
`
`2____$_~_58m:_:_m§m§___mgas5,Emm9_o>wm_:n_
`
`
`
`v_$n_:9:m:.__am:m.8:m§6:_3355.,_8o._“E9935cmems;
`
`
`
`
`
`
`
`
`
`:o__E8oE:_n_Em_oEm_5..858m6%:9:EmmEm._5o
`
`mm.07.
`
`
`
`
`
`.69_E2.__smm_gm__mw_.E$m_m:oo8u_>2n_cossmozmzmmz.2320.
`
`
`
`
`
`
`
`
`
`
`
`Esomu$_=n_.63920am;8c_>2n_,_m§_mF3§m_Emcommm.
`
`
`
`
`
`
`
`
`
`
`
`mac:§son_o<Eoi:o_2m>coo§._<mmm=o>m:_9m__oom
`
`
`
`
`
`
`
`US 6,972,421 B2
`
`1
`EXTREME ULTRAVIOLET LIGHT SOURCE
`
`This application is a continuation-in-part of U.S. Ser. No.
`10t384,96'r' filed Mar. 8, 2003, Ser. No. 10t189,824 filed Jul.
`3, 2002 now US. Pat. No. 6,815,700, U.S. Ser. No. 10,020,
`655 filed Apr. 10, 2002, now U.S Pat. No. 6,744,060, Us.
`Ser. No. 09r'875,719 filed Jun. 6, 2001 now U.S. Pat. No.
`6,586,757. and U.S. Ser. No. 09l875,721 filed Jun. 6, 2001
`now U.S. Pat No. 6,566,668, US. Ser. No. 09;’690,084 filed
`Oct. 16, 2000 now US. Pat. No. 6,566,667 ; and claims the
`benefit of patent application Ser. No. 60;’422,808 filed Oct.
`31, 2002 and patent application Ser. No. 60t4l9,805 filed
`Oct. 18, 2002; all of which is incorporated by reference
`herein. This invention relates to high—energy photon sources
`and in particular highly reliable x—ray and high-energy
`ultraviolet sources.
`
`BACKGROUND OF THE INVENTION
`
`The semiconductor industry continues to develop litho-
`graphic technologies, which can print ever—smallcr inte-
`grated circuit dimensions. These systems must have high
`reliability, cost ellective throughput, and reasonable process
`latitude. The integrated circuit
`fabrication industry has
`recently changed over from mercury G-line (436 nm) and
`I-line {.365 nm) exposure sources to 248 nm and 193 nm
`excimer laser sources. This transition was precipitated by the
`need for higher lithographic resolution with minimum loss
`in depth-of-focus.
`The demands of the integrated circuit industry will soon
`exceed the resolution capabilities of 193 nm exposure
`sou rees, thus creating a need for a reliable exposure source
`at a wavelength significantly shorter than 193 nm. An
`excimer line exists at 15? nm, but optical materials with
`sutficient transmission at this wavelength and sufficiently
`high optical quality are difficult to obtain. Therefore, all-
`reflective imaging systems may be required. An all reflective
`optical system requires a smaller numerical aperture (NA)
`than the transmissive systems. The loss in resolution caused
`by the smaller NA can only be made up by reducing the
`wavelength by a large factor. Thus, a light source in the
`range of 10 to 20 nm is required if the resolution of optical
`lithography is to be improved beyond that achieved with l93
`nm or 157 nm. Optical components for light at wavelengths
`below 157 nm are very limited. I-Iowever, effective incidents
`reflectors are available and good reflectors multi-layer at
`near normal angles of incidence can be made for light in the
`wavelength range of between about 10 and 14 nm. (Light in
`this wavelength range is within a spectral range known as
`extreme ultraviolet light and some would light in this range,
`soft x-rays.) For these reasons there is a need for a good
`reliable light source at wavelengths in this range such as of
`about 13.5 nm.
`
`3‘
`
`I0
`
`15
`
`30
`
`[Jon
`
`30
`
`40
`
`45
`
`S0
`
`The present state of the art in high energy ultraviolet and
`x-ray sources utilizes plasmas produced by bombarding _
`various target materials with laser beams, electrons or other
`particles. Solid targets have been used, but the debris created
`by ablation of the solid target has detrimental elfects on
`various components of a system intended for production line
`operation. A proposed solution to the debris problem is to
`use a frozen liquid or liquidfied or frozen gas target so that
`the debris will not plate out onto the optical equipment.
`However, none of these systems have so far provcn to be
`practical for prodttction line operation.
`It has been well known for many years that x—rays and
`high energy ultraviolet radiation could be produced in a
`plasma pinch operation. In a plasma pinch an electric current
`
`60
`
`2
`is passed through a plasma in one of several possible
`configuration such that
`the magnetic field created by the
`llowing electric current accelerates the electrons and ions in
`the plasma into a tiny volume with sufficient energy to cause
`substantial stripping of outer electrons from the ions and a
`consequent production of X-rays and high energy ultraviolet
`radiation. Various prior art techniques for generation of high
`energy radiation from focusing or pinching plasmas are
`described in the background section of US. Pat. No. 6,452,
`199.
`
`Typical prior art plasma focus devices can generate large
`amounts of radiation suitable for proximity x-ray
`lithography, but are limited in repetition rate due to large per
`pulse electrical energy requirements, and short lived internal
`components. The stored electrical energy requirements for
`these systems range from 1 kJ to l00 kl The repetition rates
`typically did not exceed a few pulses per second.
`What is needed are production line reliable, systems for
`producing collecting and directing high energy ultraviolet
`x—radiation within desired wavelengtl‘I ranges which can
`operate reliably at high repetition rates and avoid prior art
`problems associated with debris formation.
`SUMMARY OF THE IN\I'EN"I‘l0N
`
`The present invention provides a reliable, high-repetition
`rate, production line compatible high energy photon source.
`Avery hot plasma containing an active material is produced
`in vacuum chamber. The active material is an atomic ele-
`ment having an emission line within a desired extreme
`ultraviolet [EUV) wavelength range. A pulse power source,
`comprising a charging capacitor and a magnetic compres-
`sion circuit comprising a pulse transformer, provides elec-
`trical pulses having suffieient energy and electrical potential
`sufficient to produce the EUV light at an intermediate focus
`at rates in excess of 5 WatLs on a continuous basis and in
`
`excess of 20 Watts on a burst basis. In preferred embodi-
`ments designed by Applicants in-band, EUV light energy at
`the intermediate focus is 45 Watts extcndable to 105.8 Watts.
`
`In preferred embodiments the high energy photon source
`is a dense plasma focus device with co-axial electrodes. the
`electrodes are configured co-axially. The central electrode is
`preferably hollow and an active gas is introduced out of the
`hollow electrode. This permits an optimization of the spec-
`tral line source and a separate optimization of a buffer gas.
`In preferred embodiments the central electrode is pulsed
`with a high negative electrical pulse so that
`the central
`electrode functions as a hollow cathode. Preferred embodi-
`
`ments present optimization of capacitance values, anode
`length and shape and preferred active gas delivery systems
`are disclosed. Special techniques are described for cooling
`the central electrode. In one example, water is circulated
`through the walls of the hollow electrode.
`In another
`example, a heat pipe cooling system is described for cooling
`the central electrode.
`An external reflection radiation collector-director collects
`
`radiation produced in the plasma pinch and directs the
`radiation in a desired direction. Good choices for the reflec-
`tor material are molybdenum, palladium,
`ruthenium,
`rhodium, gold or tungsten. In preferred embodiments the
`active material may be xenon, lithium vapor, tin vapor and
`the buffer gas is helium and the radiation-collector is made
`of or coated with a material possessing high grazing inci-
`dence reflectivity. Other potential active materials are
`described.
`
`In preferred embodiments the buffer gas is helium or
`argon. Lithium vapor may be produced by vaporization of
`
`
`
`US 6,972,421 B2
`
`3
`solid or liquid lithium located in a hole along the axis of the
`central electrode of a coaxial electrode configuration.
`Lithium may also be provided in solutions since alkali
`metals dissolve in amines. A lithium solution in ammonia
`
`(NI-I3) is a good candidate. Lithium may also be provided by
`a sputtering process in which pre-ionization discharges
`serves the double purpose of providing lithium vapor and
`also prc-ionization.
`In preferred embodiments, debris is
`collected on a conical nested debris collector having sur-
`faces aligned with light rays extending out from the pinch
`site and directed toward the radiation collector-director. The
`retlection radiation collector-di rector and the conical nested
`
`debris collector could be fabricated together as one part or
`they could be separate parts aligned with each other and the
`pinch site.
`This prototype devices actually built and test by Appli-
`cants convert electrical pulses (either positive or negative) of
`about 10 J of stored electrical energy per pulse into approxi-
`mately S0 ml of in-band 13.5 1'1l'I'I radiation emitted into 2::
`steradians. Thus, these tests have demonstrated a conversion
`elliciency of about 0.5%, Applicants estimate that they can
`collect about 20 percent of the 50 mi 13.5 nm radiation so
`that this demonstrated collected energy per pulse will be in
`about of 10 ml. Applicants have demonstrated 1000 I-17.
`continuous operation and 4000 I-12 short burst operation.
`Thus, 10 Watt continuous and 40 Watt burst outputs have
`been demonstrated. Using collection techniques designed by
`Applicants about half of this energy can be delivered to an
`intermediate focus distant from the plasma source. Thus
`providing at
`least 5 Watts of in band EUV light at
`the
`intermediate focus on a continuous basis and at
`least 20
`
`Watts on a burst basis. Applicants have also shown that the
`techniques described herein can be applied to provide out-
`puts in the range of 60 Watts at repetition rates of5,()0(l H9:
`or greater. At fill Hz, the measured pulse-to-pulse energy
`stability, (standard deviation) was about 9.4% and no drop
`out pulses were observed. The electrical ci