`
`United States Patent
`Melnychuk et al.
`
`(10) Patent N0.:
`(45) Date of Patent:
`
`US 6,972,421 B2
`Dec. 6, 2005
`
`US006972421B2
`
`(60) Provisional application No. 60/422,808, ?led on Oct. 31,
`2002, and provisional application No. 60/419,805, ?led on
`Oct- 18’ 2002
`(51) Im. c1.7 ............................................... .. H01J 35/20
`(52) U.S. c1. ............................. .. 250/504 R; 250/4931;
`378/119
`
`
`
`
`
`
`
`
`
`h f S 0 earc ........................ "378/119 37,2/5 R ’ ’
`
`
`
`F
`1e
`
`(
`
`)
`
`(56)
`
`(54) EXTREME ULTRAVIOLET LIGHT SOURCE
`
`(75) Inventors: Stephan T. Melnychuk, Carlsbad, CA
`(US); William N- Partlo, Poway, CA
`(US); Igor V- Fomenkflv, San Diego,
`CA (US); I. Roger Oliver, San Diego,
`CA
`Richard M- NESS, San Diego,
`
`CA (Us); Norbert Bowering, San Diego, CA (US); Oleh Khodykin, San
`
`Diego, CA (US); CllI‘tlS L. Rettlg,
`Vista, CA (US); Gerry M.
`Blumenstock, San Diego, CA (US);
`Tlmothy S‘ Dyer’ Oceanslde: CA (Us);
`Rodney D- slmmons, San D1eg°>_ CA
`(Us); Jerly R- Ho?mall, Escond1d°>
`CA (US); R. Mark Johnson, Ramona,
`CA (Us)
`
`(73) Assignee: Cymer, Inc., San Diego, CA (US)
`
`( * ) Notice:
`
`(21) Appl- NOJ 10/409!254
`(22) Filed:
`Apr. 8,2003
`(65)
`Prior Publication Data
`
`References Cited
`
`US PATENT DOCUMENTS
`. 250/53
`2,759,106 A
`8/1956 Wolter ............ ..
`60/355
`3,150,483 A
`9/1964 May?eld et al. ..
`3,232,046 A
`2/1966 Meyer ...................... .. 50/355
`
`.
`
`(Continued)
`
`ABSTRACT
`
`OTHER PUBLICATIONS
`ApruZese, J.P., “X—Ray Laser Research Using Z Pinches,”
`Subject to any disclaimer, the term of this Am Inst' of phys_ 399403, (1994)_
`patent is extended or adjusted under 35
`_
`U.S.C. 154(b) by 107 days.
`(Con?rmed)
`g y
`y
`Primar Examiner—Kiet T. N u en
`(74) Attorney, Agent, or Firm—William C. Cray; Cymar,
`I“
`(57)
`
`Us 2OO4/01O8473 A1 Jun 10’ 2004
`
`Related US Application Data
`
`(63) Continuation-in-part of application No. 10/384,967, ?led on
`Mar. 8, 2003, which is a continuation-in-part of application
`No. 10/189,824, ?led on Jul. 3, 2002, now Pat. No. 6,815,
`700, which is a continuation-in-part of application No.
`10/120,655, ?led on Apr. 10, 2002, now Pat. No. 6,744,060,
`which is a continuation-in-part of application No. 09/875,
`719, ?led on Jun. 6, 2001, now Pat. No. 6,586,757, which is
`a continuation-in-part of application No. 09/875,721, ?led
`on Jun. 6, 2001, now Pat. No. 6,566,668, which is a
`continuation-in-part of application No. 09/696,084, ?led on
`Oct. 16, 2000, now Pat. No. 6,566,667, which is a continu
`ation-in-part of application No. 09/590,962, ?led on Jun. 9,
`2000, now abandoned.
`
`The present 'invention provides a reliable, high-repetition
`rate, production lme compatible high energy photon source.
`Avery hot plasma containing an active material is produced
`in vacuum chamber. The active material is an atomic ele
`ment having an emission line Within a desired extreme
`ultraviolet (EUV) range. Apulse power source comprising a
`charging capacitor and a magnetic compression circuit com
`prising a pulse transformer, provides electrical pulses having
`suf?cient energy and electrical potential suf?cient to pro
`duce the EUV light at an intermediate focus at rates in excess
`of 5 Watts. In preferred embodiments designed by Appli
`cants in-band, EUV light energy at the intermediate focus is
`45 Watts eXtendable to 105.8 Watts.
`
`78 Claims, 50 Drawing Sheets
`
`RAZING INCIDENCE COLLECTOR
`r _,/
`
`//
`
`ASML 1230
`
`
`
`US 6,972,421 B2
`Page 2
`
`Us. PATENT DOCUMENTS
`
`3,279,176 A 10/1966 Boden ....................... .. 60/202
`3,746,870 A
`7/1973 Demarest .
`.. 250/227
`
`3,960,473 A
`
`6/1976 Harris . . . . .
`
`6/1976 Dawson
`3,961,197 A
`7/1976 Roberts et al. .
`3,969,628 A
`8/1977 Lee .............. ..
`4,042,848 A
`5/1978 Samis .......... ..
`4,088,966 A
`3/1979 Mallozzi et al.
`4,143,275 A
`7/1979 Witter .......... ..
`4,162,160 A
`5/1980 Giardini ..
`4,203,393 A
`4,364,342 A 12/1982 Asik ..... ..
`
`. . . .. 425/467
`
`250/493
`250/402
`.. 313/231.6
`.. 313/231.5
`250/503
`75/246
`123/30
`.. 123/143
`
`4,369,758 A
`
`1/1983 Endo . . . . . . . . . . .
`
`. . . .. 123/620
`
`4,504,964 A
`
`3/1985 Cartz et al. . . . . . . . . .
`
`. . . .. 378/119
`
`4,507,588 A
`
`3/1985 Asmussen et al.
`
`315/39
`
`4,536,884 A
`
`8/1985 Weiss et al. . . . . . . . .
`
`. . . .. 378/119
`
`4,538,291 A
`
`8/1985 IWamatsu
`
`378/119
`
`4,561,406 A 12/1985 Ward . . . . . . . . . . . . . .
`
`. . . .. 123/536
`
`378/119
`6/1986 Herziger et al.
`4,596,030 A
`378/34
`4,618,971 A 10/1986 Weiss et al.
`431/71
`4,626,193 A 12/1986 Gann ........... ..
`378/119
`4,633,492 A 12/1986 Weiss et al.
`..... .. 378/34
`4,635,282 A
`1/1987 Okada et al.
`4,751,723 A
`6/1988 Gupta et al. .............. .. 378/119
`4,752,946 A
`6/1988 Gupta et al. .............. .. 378/119
`
`4,774,914 A 10/1988 Ward . . . . . . . . . . . . . .
`
`. . . .. 123/162
`
`4,837,794 A
`
`6/1989 Riordan et al. .
`
`378/119
`
`4,928,020 A
`5,023,897 A
`5,027,076 A
`5,102,776 A
`
`5/1990 Birx et al. . . . . . .
`. . . .. 307/106
`6/1991 Neff et al. ................ .. 378/122
`6/1991 Horsley et al. ........... .. 324/674
`4/1992 Hammer et al.
`430/311
`
`6/1992 Dethlefsen . . . . . .
`5,126,638 A
`8/1992 Birx .......... ..
`5,142,166 A
`5,175,755 A 12/1992 Kumakhov
`5,313,481 A
`5/1994 Cook et al.
`5,411,224 A
`5/1995 Dearman et al.
`5,448,580 A
`9/1995 Birx et al. .... ..
`5,504,795 A
`4/1996 McGeoch
`5,729,562 A
`3/1998 Birx et al.
`5,763,930 A
`6/1998 Partlo .... ..
`5,866,871 A
`2/1999 Birx .......... ..
`5,936,988 A
`8/1999 Partlo et al.
`5,963,616 A 10/1999 Silfvast et al. ..
`6,031,241 A
`2/2000 Silfvast et al. ..
`6,039,850 A
`3/2000 Schulz ...... ..
`
`. . . .. 315/326
`307/419
`378/34
`372/37
`244/53
`372/38
`378/119
`372/38
`250/504
`.. 219/121
`..... .. 372/38
`378/122
`250/504
`204/192.15
`
`6,051,841 A
`
`4/2000 Partlo . . . . . . . . . .
`
`. . . .. 250/504
`
`250/504
`5/2000 Partlo et al. .
`6,064,072 A
`1/2001 Birx .................... .. 219/121.57
`6,172,324 B1
`2/2001 Pascente .................... .. 363/21
`6,195,272 B1
`5/2003 Partlo et al.
`250/504
`6,566,667 B1
`5/2003 Rauch et al.
`250/504
`6,566,668 B2
`6,567,499 B2 * 5/2003 McGeoch ................. .. 378/119
`6,586,757 B2
`7/2003 Melnychuk et al. ...... .. 250/504
`2001/0055364 A1 12/2001 Kandaka et al. .......... .. 378/119
`
`2002/0100882 A1
`
`8/2002 Partlo et al. . . . . . . . .
`
`. . . .. 250/504
`
`378/119
`2002/0168049 A1 11/2002 Schriever et al.
`2003/0068012 A1
`4/2003 Ahmad et al. ............ .. 378/119
`
`OTHER PUBLICATIONS
`Bollanti, et al., “Compact Three Electrodes Excimer Laser
`IANUS for a POPA Optical System,” SPIE Proc.
`(2206)144—153, (1994).
`Bollanti, et al., “Ianus, the three—electrode excimer laser,”
`App. Phys. B (Laser & Optics) 66(4):401—406, (1998).
`Choi, et al., “A 1013 A/s High Energy Density Micro
`Discharge Radiation Source,” B. Radiation Characteristics,
`p. 287—290.
`Choi, et al., “Fast pulsed holloW cathode capillary discharge
`device,” Rev. of Sci. Instrum. 69(9):3118—3122 (1998).
`
`Fomenkov, et al., “Characterization of a 13.5nm Source for
`EUV Lithography based on a Dense Plasma Focus and
`Lithium Emission,” Sematech Intl. Workshop on EUV
`Lithography (Oct. 1999).
`Hansson, et al., “Xenon liquid jet laser—plasma source for
`EUV lithography,” Emerging Lithographic Technologies IV,
`Proc. Of SPIE , vol. 3997:729—732 (2000).
`Kato, Yasuo, “Electrode Lifetimes in a Plasma Focus Soft
`X—Ray Source,” J. Appl. Phys. (33) Pt. 1, No. 8:4742—4744
`(1991).
`Kato, et al., “Plasma focus x—ray source for lithography,”
`Am. Vac. Sci. Tech. B., 6(1): 195—198 (1988).
`Lebert, et al., “Soft x—ray emission of laser—produced plas
`mas using a loW—debris cryogenic nitrogen target,” J. App.
`Phys., 84(6):3419—3421 (1998).
`Lebert, et al., “A gas discharge based radiation source for
`EUV—lithography,” Intl. Conf. Micro and Nano—Engineer
`ing 98 (Sep. 2—24, 1998) Leuven. Belgium.
`Lebert, et al., “Investigation of pinch plasmas With plasma
`parameters promising ASE,” Inst. Phys. Conf. Ser No. 125:
`Section 9, pp. 411—415 (1992) Schiersee, Germany.
`Lee, Ja H., “Production of dense plasmas in hypocyloidal
`pinch apparatus,” The Phys. Of Fluids, 20(2):313—321
`(1977).
`LeWis, Ciaran L.S., “Status of Collision—Pumped X—ray
`Lasers,” Am Inst. Phys. pp. 9—16 (1994).
`Malmqvist, et al., “Liquid—jet target for laser—plasma soft
`x—ray generation,”Am. Inst. Phys. 67(12):4150—4153 1996).
`Mather, et al., “Stability of the Dense Plasma Focus,” Phys.
`Of Fluids, 12(11):2343—2347 (1969).
`Mayo, et al., “A magnetized coaxial source facility for the
`generation of energic plasma ?ows,” Sci. Technol. vol. 4:pp.
`47—55 (1994).
`Mayo, et al., “Initial Results on high enthalpy plasma
`generation in a magnetized coaxial source,” Fusion Tech vol.
`26:1221—1225 (1994).
`Nilsen, et al., “Analysis of resonantly photopumped Na—Ne
`x—ray—laser scheme,” Am Phys. Soc. 44(7):4591—4597
`( 1991).
`Partlo, et al., “EUV (13.5nm) Light Generation Using a
`Dense Plasma Focus Device”, SPIE Proc, On Emergine
`Lithographic Technologies III, vol. 3676, 846—858 (Mar.
`1999).
`Price, Robert H., “X—Ray Microscopy using Grazing Inci
`dence Re?ection Optics,” Am. Inst. Phys. , pp. 189—199,
`(1981).
`Oi, et al., “Fluorescence in Mg IX emission at 48.340 A
`from Mg Pinch plasmas photopumped by Al XI Line radia
`tion at 48.338 A.” The Am. Phys. Soc., 47(3):2253—2263
`(Mar. 1993).
`Scheuer, et al., “A Magnetically—Nozzled, Quasi—Steady,
`MultimegaWatt, Coaxial Plasma Thruster,” IEEE: T ransac
`tions on Plasma Science, 22(6) (Dec. 1994).
`Schriever, et al., “Laser—produced lithium plasma as a
`narroW—band extended ultraviolet radiation source for pho
`toelectron spectroscopy,” App. Optics, 37(7):1243—1248,
`(Mar. 1998).
`Schriever, et al., “NarroWband laser produced extreme ultra
`violet sources adapted to silicon/molybdenum multilayer
`optics,” J. of App. Phys., 83(9):4566—4571, (May 1998).
`Zombeck, M.V., “Astrophysical Observations With High
`Resolution X—ray Telescope,” Am. Inst. Of Phys., pp.
`200—209 (1981).
`
`
`
`US 6,972,421 B2
`Page 3
`
`Choi et al., “Temporal development of hard and soft X—ray
`emission from a gas—puff Z pinch,” Rev. Sci. Instrum. 57(8),
`pp. 2162—2164 (Aug. 1986).
`Silfvast, et al., “High—poWer plasma discharge source at
`13.5 nm and 11.4 nm for EUV lithography,” SPIE, vol.
`3676:272—275, (Mar. 1999).
`Silfvast, et al., “Lithium hydride capillary discharge creates
`X—ray plasma at 13.5 namometers,” Laser Focus World, p.
`13. (Mar. 1997).
`Wilhein, et al., “A slit grating spectrograph for quantitative
`soft X—ray spectroscopy,” Am. Inst. Of Phys. Rev. of Sci.
`Instrum., 70(3):1694—1699, (Mar. 1999).
`Wu, et al., “The vacuum Spark and Spherical Pinch X—ray/
`EUV Point Sources,” SPIE, Conf On Emerging Tech. III,
`Santa Clara, CA vol. 3676:410—420, (Mar. 1999).
`Giordano and Letardi, “Magnetic pulse compressor for
`prepulse discharge in spiker—sustainer eXcitati technique for
`XeC1 lasers,” Rev. Sci. Instrum 65(8), pp. 2475—2481 (Aug.
`1994).
`Jahn, Physics of Electric Propulsion, McGraW—Hill Book
`Company, (Series in Missile and Space U.S.A.), Chap. 9,
`“Unsteady Electromagnetic Acceleration,” p. 257 (1968).
`
`Lebert et al, “Comparison of laser produced and gas dis
`charge based EUV sources for different applications,” Inter
`national Conference Micro— and Nano—Engineering 98,
`Sep. 22—24, 1998, Leuven, Belgium, 6 pages.
`LoWe, “Gas plasmas yield X rays for Lithography,” Elec
`tronics, pp. 40—41 (Jan. 27, 1982).
`Mather, “Formation of a High—Densty Deuterium Plasma
`Focus,” The Physics of Fluids, 8(2), 366—377 (Feb. 1965).
`MattheWs and Cooper, “Plasma sources for X—ray lithogra
`phy,” SPIE, 333, Submicron Lithography, pp. 136—139
`(1982).
`Pearlman and Riordan, “X—ray lithography using a pulsed
`plasma source,” J. Vac. Sci. Technol, pp. 1190—1193 (Nov./
`Dec. 1981).
`Shiloh et al., “Z Pinch of a Gas Jet,” Physical RevieW Lett.,
`40(8), pp. 515—518 (Feb. 20, 1978).
`Stallings et al., “Imploding argon plasma experiments,”
`Appl. Phys. Lett., 35(7), pp. 524—526 (Oct. 1, 1979).
`
`* cited by examiner
`
`
`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 1 of 50
`
`US 6,972,421 B2
`
`§._§mz§_-o§
`
`3%
`
`3:5
`
`NB
`
`If+>82
`-+E
`
`:5:
`
`5%8.5.3
`
`w 9
`
`.
`
`
`
`
`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 2 0f50
`
`US 6,972,421 B2
`
`BLACK: VOLTAGE ON C2
`
`RED: VOLTAGE ACROSS
`ELECTRODES
`
`1 ~ 4 4
`
`J 3
`
`.-1 2
`
`
`
`Q3 W059 Q33:
`
`_1
`
`_2 -
`
`-3
`
`.
`
`,
`
`.
`
`,
`
`,
`
`1
`
`'
`
`I
`I
`I
`I
`—5OO —5OO -40O —I'>OO -2OO —100
`0
`TIME (ns)
`FIG, "/11 g
`
`I
`
`'
`
`'
`
`I
`
`'_| ""‘1
`
`I
`100 200 300 400 500
`
`0. 0 O 0 3 5% M85 805
`
`_ . _ - _ q _ 5 4 3. 2
`
`13OOV OPERATION
`
`INTEGRAL = 3.1E-8 Vsec
`
`OUTPUT = 12.7mJ/21r
`
`HG, ‘11C
`
`
`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 3 0f50
`
`US 6,972,421 B2
`
`
`
`35m ozama
`
`
`
`$936 228%
`
`o2 2%
`
`\/ $2
`
`
`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 4 0f50
`
`US 6,972,421 B2
`
`zoCowEo N
`
`mow 02.
`
`2 mumSm
`
`>1 /
`o9
`
`ON .0.“
`
`ON .QE
`
`mm .07.
`
`ZQEBEQ N
`
`zoEowEQ N
`
`
`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 5 0f50
`
`US 6,972,421 B2
`
`404
`
`
`
`FUG, 2AM)
`
`
`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 6 0f50
`
`US 6,972,421 B2
`
`158
`)
`
`q
`
`\
`
`88
`
`8A
`
`/ 15a
`
`401
`
`:
`
`Fug, 2M2)
`
`s
`COAXIAL
`ELECTRODE
`
`Km
`SWITCHES
`
`3
`_/vAcuuM VESSEL
`
`42
`SATURABLE
`INDUCTOR
`
`‘\c CAPACITOR
`1
`/ DECKS
`1C0 CAPACITOR
`
`DECKS
`
`Fug, 2M3)
`
`
`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 7 0f50
`
`US 6,972,421 B2
`
`mciEam
`2389‘
`
`7
`
`@
`
`
`
`tom 9.68am
`
`6:8?00 Eu
`
`238i
`
`6E6:
`
`5% @E
`
`30$
`82.. DI
`
`6:05:00
`
`
`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 8 0f50
`
`US 6,972,421 B2
`
`v , /
`
`/
`
`
`
`@5 .0; EEQOEX
`
`Q 9, mm 8 8 ON 2 2 O
`
`2 . . . . 0
`
`+/ OwPOmwZwI X
`
`/,, WWW? RX»
`
`/ /
`/ I . /
`
`wOOZ< P< \ mF
`I: \\ /
`/ / , O
`1 / _ on
`
`\ / I \ p / / COP
`
`/ . . . _ , . . . 8w
`
`
`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 9 of 50
`
`US 6,972,421 B2
`
`Xe “°“FC°n5t- Ydij
`
`Helium Pressuren—— 200 mT
`
` .._ -. -_... ..._..._-_
`1.. -
`0
`_.
`
`——
`
`.1200
`
`1400
`
`1600
`T [ns]
`
`1800
`
`2000
`
`FHG. 2/M0)
`
`-fl
`
`:1 ~,
`I >
`I 5E
`Z =
`__
`.9
`iii ‘D(1)
`IIIIIIIIII
`U.9
`IIIIIIIIII
`2
`I
`‘l‘O
`I
`jg 2
`j
`Q
`11 0»93
`11 E
`
`U%
`
`C2Energy[J]
`
`0
`
`200
`
`400
`
`600
`
`800
`
`1000
`
`1200 1400
`
`1600
`
`Pressure [mTorr]
`
`HG. 2/W)
`
`.0
`
`vczwv]
`
`
`
`
`
`PhotodiodeSignal[V]
`
`I
`
`
`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 10 0f 50
`
`US 6,972,421 B2
`
`w
`
`926mm EE Nd Q
`
`
`
`
`
`/ w co =8 mm :0 262.3 mmmo
`
`5% @E @g @E
`
`963% @E 252% games“? 2©2<m @E
`
`/ m/ _ 00 cm a
`
`
`
`
`
`
`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 11 0f50
`
`US 6,972,421 B2
`
`0 0
`
`—u— Radial Centrold Displacement
`
`
`
`368925 2368235
`
`Pulse Number
`
`T
`
`100
`
`U
`
`PUG, ZAMZ)
`
`2 2 4| 1
`
`M 9
`
`.“ $2
`
`D,‘ m 1.
`
`D ‘P 0 1|
`
`n lo
`
`. 4 In 0
`
`5 0 5 0 5 0
`~ 7.- 0
`
`0 1O
`
`on W
`
`n 5
`
`O
`
`o
`
`I 5 U o 2
`
`.l 3
`
`I 0
`
`I 0
`
`w
`
`O
`0 2
`Pulse Number
`
`0 0
`
`r
`
`unn a
`I100 b S
`.08 .m m adh m 3
`HAP O M n
`S .l v S
`\ Ww m m
`
`L
`5
`T R L
`= C
`
`.6“ e
`
`m .m
`
`w m
`
`3. 2 1. O 0 nu 0 0
`
`wucm?homndx
`
`0
`
`4”‘ A 2 @ F
`D 3 4d
`
`F
`
`D / m.
`
`F 0
`
`U 0
`5
`0‘
`O
`
`0 O
`
`0
`
`B4“ WA
`m2
`%1
`\p
`4.
`
`
`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 12 0f 50
`
`US 6,972,421 B2
`
`Cylinders
`\ \
`
`p, oh
`n
`l
`
`Witness
`sample
`/
`
`_____ -.
`
`1cm 1cm
`
`Single channel debris shield
`
`FHG, 2AM 5)
`
`Multichannel debn's shield.
`Number of channels=60. Length=l cm.
`
`PUG, 22mm
`
`Reduired Level
`
`109
`108
`107—— v * Single Channel Shield —~—
`
`
`
`Reduction factor
`
`w
`
`106 --— 0 - Multiple Channel Shield __
`105
`104
`103
`1o2
`101
`10°
`0
`
`la
`
`1
`
`3
`2
`Length, cm
`
`4
`
`5
`
`FUG, 2AM 7))
`
`
`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 13 0f 50
`
`US 6,972,421 B2
`
`Tungsten, Molybdenum
`
`Cooling 6
`Water
`
`Anode Cooling Water
`
`FllG, 22W 8»
`
`3000
`
`2 2500-
`‘“
`g 2000*
`
`U Anode
`° Cathode
`A Total
`
`, A
`I,’
`1/’
`
`,1 '
`o
`/‘'°
`,1
`'6 1500-
`/./'
`,A
`9
`Y 1000
`~
`A’
`I , ljy/l/f/
`%
`% 500' (La-3e”
`
`0 '
`
`0
`
`1
`
`.
`
`200
`100
`DPF Repetition Rate (Hz)
`
`EUV efficiency with Xe,
`EUV energy per pulse
`Source size
`Transverse source stability
`Out of band radiation
`Continuous repetition rate
`Burst repetition rate
`Energy Stability
`
`> 0.4 %
`45 m1
`0.25 x 2 mm
`50 um rrns
`< 0.5%
`200 Hz
`2000 Hz
`< 10 % rms
`
`File, znrzoi
`
`
`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 14 0f 50
`
`US 6,972,421 B2
`
`
`
`gvqw owl
`
`JUN
`
`i ii, i
`
`/
`
`
`
`$22 0mm?
`
`/
`
`om?
`
`
`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 15 0f 50
`
`US 6,972,421 B2
`
`R
`
`E50 l
`
`23 I
`
`b _ . _ b _ L _ _ _ _ _
`
`cow 3 .cozeownm £5, oX-_:> wx
`
`
`
`
`
`
`
`600E mEwmE mx
`
`
`
`AES 505552,
`
`m: 2 3 m.‘ N; I
`
`mam AQE
`
`(suun 'qje) Mgsuam
`
`2
`
`
`
`EEV £92925
`
`9 3 WP or m _ . 2 . _ _ o
`
`3:6 295 ,
`
`p _ _ , . _ oooow
`
`? 2
`
`1 - Sow
`
`I 18%
`
`, - cos
`
`I - ooow
`
`(suun 'qle) Ausuawl
`
`
`
`U.S. Patent
`
`6,
`
`5
`
`e
`
`US 6,972,421 B2
`
`
`
`
`
`Ema_mm>S-.52,_jss
`
`mmm2<:o
`
`W0/I2III/$ms_<_.é
`
`%..
`
`
`
`<22:E9:.1.u|nIl-.
`
`968E9:\_.|'l|.‘“.
`
`
`
`mommzzmobmjoo
`
`1/
`
`/EmmiA,
`//mmmmfi
`
`Fmmm<4
`
`mE_8s_mEz_9\\:._3
`
`maoom
`
`>mm>:wo
`
`
`
`zfimoz<wdwoz.EBmaommozoammW.@=.m_
`
`a\
`
`
`
` o>3\\Emmiwa\\\\\\Emmi2*M\\\\\\\\\mzm:«NMn\\\\oz_m8Emmoagz.9.
`
`
`
`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 17 0f 50
`
`US 6,972,421 B2
`
`LASER1
`
`45° MIRRORS
`
`WINDOW
`
`MLILTI-LAYER FIRST
`COLLECTOR MIRROR
`
`EUV LIGHT TO
`\ J INTERMEDIATE FOCUS
`
`v.‘
`
`\
`
`\ \ \ x \b
`
`LAsER FOCUS
`
`E k ~—L>
`
`I _, I’?
`
`/
`LAsER2
`
`FOCUSING
`LENS
`
`CHAMBER
`WALL
`
`WINDOW
`
`/ W
`
`LASER3
`\
`
`‘8&3’.
`
`/ I’
`/
`/ /
`
`,
`
`ESSQS'NG
`
`REGION OBSCURED
`BY NOZZLE AND
`BEAM DELIVERY
`
`LASER 4
`
`
`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 18 of 50
`
`US 6,972,421 B2
`
`LASER
`
`""9
`
`NOZZLE
`
`PROTECTIVE
`
`COATING
`
`DROP OF TARGET
`MATERIAL
`
`PROTECTIVE
`
`COATING
`
`FOCUSING
`LENS
`
`DUMP
`
`FIG, 48
`
`
`
`U.S. Patent
`
`_.n
`
`US 6,972,421 B2
`
`zocsoé:8zo:<uzoTH._E¢m_E95w>8.o Domhzzm\\x..uooE..mE
`6.,
`xx.bI\E27:
`
`89:8:8058:b\\..."‘4P’|.'.'.’..fil/‘I’A)\EB~§5=mz_
`
`
`xma$8532Bsooouwfié$50
`
`
`
`
`%\
`
`AT:$m5
`
`
`
`SAlism
`
`:2:01/w/mzfl
`2388u5ma
`04/SSE:9:Hwo<:o>
`
`:33u<>2/,..AT)meson.
`
`$2o5ooo;E§43"
`
`4moomnmd.B\
`
`h~§5:mz_
`
`
`
`
`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 20 of 50
`
`US 6,972,421 B2
`
`
`
`
`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 21 of 50
`
`US 6,972,421 B2
`
`O i
`
`\
`
`:22
`
`$53
`
`
`
`
`
`W
`
`m%&%
`
`Wm@@§§§E§§§%g§@@mI1))))I1)l
`O
`W
`0
`o
`©©<§>Q0&000000
`\ %%%9Q5 DQoOQ%W@W
`,
`% % ,
`
`
`
`,
`
`:
`[
`\
`
`
`
`<
`~
`0-
`_
`u.
`
`co
`£
`
`.
`M, _.
`.2 u.
`
`
`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 22 of 50
`
`US 6,972,421 B2
`
`
`
`
`
`‘i
`
` 9
`
`
`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 23 of 50
`
`US 6,972,421 B2
`
`
`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 24 of 50
`
`US 6,972,421 B2
`
`I
`A'A'leA‘l'l'A'A'A'A'A'A'l
`
`A'A'l'A'AVAVA'A'A'A'A7A'L
`
`I‘“HIM:INAVAVAVAVJWQQVAUAVAK
`‘
`mVI4InV4uv4r4'4. '
`v4uuuu'4'4v4'
`
`
`//.uuuuv4'4ux¢7
`
`// V r vv r. :
`
`I,
`
`
`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 25 of 50
`
`US 6,972,421 B2
`
`106A
`
`\
`
` I
`xw///////A 102
`
`
`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 26 of 50
`
`US 6,972,421 B2
`
`Published Reflectivity of Mo/Si Mirror
`°°.
`“3.
`o
`o
`
`O.Y‘
`
`E
`
`>0
`
`Ewowuxmx.835cm:o:m~_:o_
`
`O.
`N
`
`L”.V*
`
`o._
`
`(A) |9U5!S _Lw3 J918LUOJ138dS
`
`
`
`AE5£mcm_m>m.>>
`
`or.O_m
`
`
`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 27 of 50
`
`US 6,972,421 B2
`
`§§_saa5o=/
`
`
`
`.3.30522M<5OEonaAVo§__oz_oznsa
`
`522525.92.wzmsa.2E§§_azmaa
`
`. 3
`
`
`
`
`
`
`
`U.S. Patent
`
`0
`
`US 6,972,421 B2
`
`
`....--‘HSzmib$30Swmzm8E>_domoDim-RLmgjm
`
`
`
`
`
`
`m:oz<zo_mm__2mz<Eom
`
`I»0Zm._#58esoof
`
`
`
`mi..©E
`
`kw‘?
`:1‘Q\
`
`
`flnxxnuHAD.
`
`
`
`
`
`6-/--\-.\\\\;.\cI.kt:\\\\mm.\\m-Czmmm..\,.2\u\\\M¢\
`\I.||...l.Q»:\n\V\\Lu‘6s\\\\h\\\\u\SY\\\\WI’!
`
`2,I:\.~\§\5\\same
`SEE8~m>:mono..\o:\\\\\
`.\o:\om<m<n:\\&.\\\8,
`
`\(\
`
`\
`
`>ozmEmo\o$.-\\SEE8E>_domo_.\_.m<GEE8$>_donofin
`
`
`‘No:om<m§..\amzasoe8:om<m§
`
`5zwEm..\..:
`
`
`
`
`
`U.S. Patent
`
`6
`
`S
`
`2
`
`5
`
`US 6,972,421 B2
`
`M.m.o8o,Qozoméé
`
`M3o:om<m<n_020
`
`.m092
`
`M.98mO
`
`083
`
`Emmasd
`
`||._|I|._.'V
`
`ommm
`
`A89mmEwacmcomwm_Em
`
`QFF..@E
`
`83
`
`88
`
`some
`
`88
`
`Aouapgg
`
`88
`
`80.0
`
`
`
`
`
`295co_mm_Ewm>>o:m.OEm5.02.00__mr_m-v
`
`
`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 30 of 50
`
`US 6,972,421 B2
`
`[Dillx\
`
`
`[In]\\\I"willI!/"I"I\.
`
`
`
`
`
`
`{Illi''/[:1]\If/In1/
`I/J’JI\\/I,
`IIIin:\IIIt\\
`
`/11‘I’I1/:\1//1II/!.\
`/1//-/,3w1/I
`Ill:
`/I/II\\
`/I/¥I\\/II’f\III
`
`:0IfI5/I1!In/\I!II/1II
`
`IIIII!!!01/1!\
`/11Ill!\II[IIll!\
`I‘:llllil\IIII!\
`IIIIIIIII]\
`I];la.’u-Il:(u\
`
`la:/no/A:l1IV.N\
`
`I'llav/val\\II:
`ill!/11!\Illa!
`Irl11!:\\\
`
`\\
`
`\\\
`
`\\
`
`nu\\
`
`
`.v\-a’nIuI:unu
`
`
`:u’lI‘I'|"I""!IIIIIIu\\
`
`
`
` I|u'nnI0II--II----8\II":
`
`
`
`l‘IIanIII
`
`
`
`
`
`152%.300;E58,:
`
`
`
`IIIIIIIIII\III\’:|“Il|‘xIIIIIIIIII.
`
`
`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 31 of 50
`
`US 6,972,421 B2
`
`I
`
`I
`
`/I
`/I
`
`/
`
`/
`
`I
`
`:
`'
`II ” H
`-'.-
`H
`
`-2.
`
`H
`
`I
`
`/
`
`II
`
`/I
`
`I
`
`/'
`~'»’
`II
`‘I
`
`I’ I
`I
`
`I
`
`I
`
`:-
`H
`3!
`H
`-'2
`n
`
`II
`W
`
`i
`:
`I
`I
`
`I
`
`I
`
`I
`
`Lu
`
`T‘
`E9
`Us
`
`.
`
`I
`
`I
`
`I
`,'
`I
`/I
`:
`
`I
`
`’
`
`I
`
`I
`
`xx
`,\'
`
`I
`
`\
`
`' I
`‘I
`\=
`1\
`.-N
`\
`\ .~’ \ ’
`‘\
`\_\
`‘\‘:\_\ \\ \
`.
`x
`
`:
`\ !
`\I
`“I
`,“~\
`
`‘-
`
`=9
`\I
`‘i
`i\
`
`p
`
`'
`
`5
`
`53
`E
`§
`‘-
`
`
`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 32 of 50
`
`US 6,972,421 B2
`
`LQ
`F‘
`
`Q U
`
`;
`
`-
`
`_\\.a.,J2TNF.®E
`
`
`
`022%;85.8ozcao;
`
`395N...we3as
`
`3
`
`9.
`
`_M
`
`
`
`
`
`..._..__H__.mg.@EQ:.@=M_mi.@E<3..@E
`
`
`
`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 33 of 50
`
`US 6,972,421 B2
`
`...
`
`mmaouozoza<:mS¢.......
`
`
`,
`.....MWW.ou.n
`....Ev.0-
`
`Nd-
`
`Ga
`
`Vme:
`
`03comoomO9
`Q09.SN.Sn.8?oom-
`
`(pazneu.u0N) e6e:|o/\ apouv pue L3
`
`
`
`
`
`mE_._..m>>:m_§c_>Dmucm.muocm>_—U>umSwmm_2
`
`
`
`
`
`
`
`3
`
`3
`
`
`
`
`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 34 of 50
`
`US 6,972,421 B2
`
`
`
`.,
`
`\
`
`S ‘E
`2-.’
`\\ \\ {Z
`3': ,.
`
`=':
`
`4.
`
`:
`
`.
`
`.
`
`r
`
`1
`
`3 I’
`I
`
`_ , ''''®'<ID®®
`
`
`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 35 of 50
`
`US 6,972,421 B2
`
`Q23
`
`<to
`
`-
`
`\\\
`
`\ \\ \1
`
`///f//
`
`0 vo 0
`£333;
`.:.o‘9
`3'3’0'0’
`0 O
`::~:«:’
`==:2;s:2
`0 90.0
`0 0.0O O
`‘s 0°95
`
`
`
`
`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 36 of 50
`
`US 6,972,421 B2
`
`43.@_n_
`
`n:.,_:n_
`
`99.9
`
`oo§??§P
`.oIK§%§%%E
`}??§VO...x...».“
`
`9.
`
`oo.O
`
`oo»ouoo..9
`,,..»»“..ooooo
`
`
`
`
`
`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 37 of 50
`
`US 6,972,421 B2
`
`.32
`
`
`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 38 of 50
`
`US 6,972,421 B2
`
`
`
`om:.07.
`
`doooooooo
`0.00%..0oo.boo9,Qua.
`
`c0006:
`§$%§%.
`906000
`
`too
`
`C00
`
`0009..............
`6oo0000......»
`
`0.000000%»VOOOOA
`
`
`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 39 of 50
`
`US 6,972,421 B2
`
`§.
`#0696OhD
`
`238
`
`
`
`
`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 41 of 50
`
`US 6,972,421 B2
`
`3:5mozEm_o-x
`
`S.3-
`
`—
`
`2::muzfima
`
`.o
`
`
`
`
`
`.._-.m-.m-
`
`O
`
`"°
`
`C’.
`V—
`
`C?('\J
`
`(ww) aowvislcr-A
`
`XITH 3/\|.|.V'I3EJ
`
`
`
`<@F,.@E
`
`(WW) 33NViS|Cl'A
`
`
`
`
`
`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 42 of 50
`
`US 6,972,421 B2
`
`FIG. 20
`
`FIG. 20A
`
`
`
`
`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 43 of 50
`
`US 6,972,421 B2
`
`/
`
`,»A gs},
`
`E"
`‘E
`A
`as’
`33
`
`
`
`
`
`,
`
`~.\'\\%\
`
`
`
`
`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 44 of 50
`
`US 6,972,421 B2
`
`<m
`
` $I
`3\Em
`
`N
`
`
`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 45 of 50
`
`US 6,972,421 B2
`
`METAL
`
`PINCH
`
`DISCHARGE
`
`S
`
`§%»
`
`9/ WO
`~>
`Mm
`KADDITIONAL
`
`GAS INLET
`
`FnG°
`
`>‘1 §
`
`' \
`
`PINCH
`
`SILICON
`
`0
`
`‘
` TUNGSTEN
`
`L/‘XENON GAS
`HG. 24
`
`FOIL TRAP
`
`§>,’<2a%%;%
`
`\
`
`SOURCE
`
`
`
`FUG, 26/A
`
`
`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 46 of 50
`
`US 6,972,421 B2
`
`PRIOR ART
`
`FUG. 27
`
`
`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 47 of 50
`
`US 6,972,421 B2
`
`
`
`FHG. 28A
`
`10 Turn Coil, r=2 cm
`
`I=vi:+*
`
`*
`
`g
`
`
`
`U S Patent
`
`Dec. 6 2005
`
`Sheet 48 of 50
`
`US 6,972,421 B2
`
`“E0m
`
`zom
`
`89
`
`2;
`
`as
`
`2:
`
`8m
`
`mamd:E.
`
`cm.0_n_
`
`IAMIZOA
`
`IA] epo!pow_ud
`
`tom
`
`zom
`
`82.2;an8..gm9
`
`.2:
`
`«am.0_.._
`
`V4?‘-“""
`nod:-drwcwtov-NCDQJ
`
`[ooz X] apoua A
`
`
`
`Emzmao.__8
`
`8%8383O8»88828385
`
`omw.9”.
`
`
`
`
`
`U.S. Patent
`
`w
`
`/09
`
`e
`
`05cl09
`
`US 6,972,421 B2
`
`DmEmm_a
`
`co_E~Eo_-wa
`
`
`
`mu.:Om
`
`
`
`wo§_om_oEma
`
`2658
`
`:o:mN_co_.wi
`
`:o_8o.E_£0
`1/
`
`
`
`
`
`220520mE9cm\wuo:uw_wm895M:O_~mN_cO_nw._Q0E5090 2%Bvs.2.358.80.C_mE
`
`4‘.t..._
`
`.m\S|//8mm8\
`
`Wm°@E
`
`
`
`mace;25mg:BoaBE1v_T:.\o
`
`I‘§—5.!OX
`
`
`
`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 50 of 50
`
`US 6,972,421 B2
`
`
`
`2.25%.5930qadgmJam“.newm:E2_>>mmm35cmEmcommm
`
`
`
`
`
`
`
`
`
`
`
`o_§_mms_.8§m:$._.E3“EaEefimcmtcoammaeoom=_9m5mm“.§son_2ceéwmm_:n_mmam$__&=m
`
`
`
`
`
`
`
`
`
`
`
`
`
`_m___:_mu_>en_$__&:m$301$_%os_\>>v_om;Egon.mmm_o><:9:.
`
`
`
`
`
`
`
`
`
`
`
`cozemaoQmmdmm:9:toaasm2co_§=mmmE3£_>>Eefiw
`
`
`
`
`
`
`
`
`
`$28u$_:n_63920am...82,05Ewen;EmcmEmcommm.
`
`
`
`
`
`
`
`8::§>on_o<Eoico_em>coo$5.mmE_o>m:_9m:oom
`
`
`
`
`
`
`
`
`
`_mmn_mfiacmoco_m8aEoomw_:n_ozmcmmzEm9___§_;w99wBow.
`
`
`
`
`
`
`
`
`
`
`
`mmmmm§__.8cm§6:_2355>_mE§w:m#$3;q:-q2wif.
`
`
`
`3:29mi§§-%m:9:a..E5Raga82$
`
`
`
`
`
`me_§_mE89__.__s___§____mm__£,>xvEmmE_o>$21
`
`
`
`
`
`
`
`
`
`magma.E9m_m:oom%_>2n_§_>>mozmcmmz58:0.xmoa:9:9__%.m_.8:9o:E_2355>um.o._mac9>995mean.69_Es_>>m
`
`
`
`
`
`
`
`
`
`
`
`
`
`cozfimaoSciEm_oEm_5.uesgm6%:9:Ba25:30
`
`mm.0_u_
`
`
`
`
`US 6,972,421 B2
`
`1
`EXTREME ULTRAVIOLET LIGHT SOURCE
`
`This application is a continuation-in-part of U.S. Ser. No.
`10/384,967 filed Mar. 8, 2003, Ser. No. 10/189,824 filed Jul.
`3, 2002 now U.S. Pat. No. 6,815,700, U.S. Ser. No. 10/120,
`655 filed Apr. 10, 2002, now U.S Pat. No. 6,744,060, U.S.
`Ser. No. 09/875,719 filed Jun. 6, 2001 now U.S. Pat. No.
`6,586,757, and U.S. Ser. No. 09/875,721 filed Jun. 6, 2001
`now U.S. Pat No. 6,566,668, U.S. Ser. No. 09/690,084 filed
`Oct. 16, 2000 now U.S. Pat. No. 6,566,667 ; and claims the
`benefit of patent application Ser. No. 60/422,808 filed Oct.
`31, 2002 and patent application Ser. No. 60/419,805 filed
`Oct. 18, 2002; all of which is incorporated by reference
`herein. This invention relates to high-energy photon sources
`and in particular highly reliable x-ray and high-energy
`ultraviolet sources.
`
`BACKGROUND OF THE INVENTION
`
`The semiconductor industry continues to develop litho-
`graphic technologies, which can print ever-smaller inte-
`grated circuit dimensions. These systems must have high
`reliability, cost effective throughput, and reasonable process
`latitude. The integrated circuit fabrication industry has
`recently changed over from mercury G-line (436 nm) and
`I-line (365 nm) exposure sources to 248 nm and 193 nm
`excimer laser sources. This transition was precipitated by the
`need for higher lithographic resolution with minimum loss
`in depth-of-focus.
`The demands of the integrated circuit industry will soon
`exceed the resolution capabilities of 193 nm exposure
`sources, thus creating a need for a reliable exposure source
`at a wavelength significantly shorter than 193 nm. An
`excimer line exists at 157 nm, but optical materials with
`sufficient transmission at this wavelength and sufliciently
`high optical quality are difficult to obtain. Therefore, all-
`reflective imaging systems may be required. An all reflective
`optical system requires a smaller numerical aperture (NA)
`than the transmissive systems. The loss in resolution caused
`by the smaller NA can only be made up by reducing the
`wavelength by a large factor. Thus, a light source in the
`range of 10 to 20 nm is required if the resolution of optical
`lithography is to be improved beyond that achieved with 193
`nm or 157 nm. Optical components for light at wavelengths
`below 157 nm are very limited. However, effective incidents
`reflectors are available and good reflectors multi-layer at
`near normal angles of incidence can be made for light in the
`wavelength range of between about 10 and 14 nm. (Light in
`this wavelength range is within a spectral range known as
`extreme ultraviolet light and some would light in this range,
`soft x-rays.) For these reasons there is a need for a good
`reliable light source at wavelengths in this range such as of
`about 13.5 nm.
`
`The present state of the art in high energy ultraviolet and
`x-ray sources utilizes plasmas produced by bombarding
`various target materials with laser beams, electrons or other
`particles. Solid targets have been used, but the debris created
`by ablation of the solid target has detrimental effects on
`various components of a system intended for production line
`operation. A proposed solution to the debris problem is to
`use a frozen liquid or liquidfied or frozen gas target so that
`the debris will not plate out onto the optical equipment.
`However, none of these systems have so far proven to be
`practical for production line operation.
`It has been well known for many years that x-rays and
`high energy ultraviolet radiation could be produced in a
`plasma pinch operation. In a plasma pinch an electric current
`
`5
`
`10
`
`15
`
`20
`
`25
`
`30
`
`35
`
`40
`
`45
`
`50
`
`55
`
`60
`
`65
`
`2
`is passed through a plasma in one of several possible
`configuration such that the magnetic field created by the
`flowing electric current accelerates the electrons and ions in
`the plasma into a tiny volume with suflicient energy to cause
`substantial stripping of outer electrons from the ions and a
`consequent production of x-rays and high energy ultraviolet
`radiation. Various prior art techniques for generation of high
`energy radiation from focusing or pinching plasmas are
`described in the background section of U.S. Pat. No. 6,452,
`199.
`
`Typical prior art plasma focus devices can generate large
`amounts of radiation suitable for proximity x-ray
`lithography, but are limited in repetition rate due to large per
`pulse electrical energy requirements, and short lived internal
`components. The stored electrical energy requirements for
`these systems range from 1 kJ to 100 kJ. The repetition rates
`typically did not exceed a few pulses per second.
`What is needed are production line reliable, systems for
`producing collecting and directing high energy ultraviolet
`x-radiation within desired wavelength ranges which can
`operate reliably at high repetition rates and avoid prior art
`problems associated with debris formation.
`SUMMARY OF THE INVENTION
`
`The present invention provides a reliable, high-repetition
`rate, production line compatible high energy photon source.
`Avery hot plasma containing an active material is produced
`in vacuum chamber. The active material is an atomic ele-
`
`ment having an emission line within a desired extreme
`ultraviolet (EUV) wavelength range. A pulse power source,
`comprising a charging capacitor and a magnetic compres-
`sion circuit comprising a pulse transformer, provides elec-
`trical pulses having suflicient energy and electrical potential
`suflicient to produce the EUV light at an intermediate focus
`at rates in excess of 5 Watts on a continuous basis and in
`
`excess of 20 Watts on a burst basis. In preferred embodi-
`ments designed by Applicants in-band, EUV light energy at
`the intermediate focus is 45 Watts extendable to 105.8 Watts.
`
`In preferred embodiments the high energy photon source
`is a dense plasma focus device with co-axial electrodes. the
`electrodes are configured co-axially. The central electrode is
`preferably hollow and an active gas is introduced out of the
`hollow electrode. This permits an optimization of the spec-
`tral line source and a separate optimization of a buffer gas.
`In preferred embodiments the central electrode is pulsed
`with a high negative electrical pulse so that the central
`electrode functions as a hollow cathode. Preferred embodi-
`
`ments present optimization of capacitance values, anode
`length and shape and preferred active gas delivery systems
`are disclosed. Special techniques are described for cooling
`the central electrode. In one example, water is circulated
`through the walls of the hollow electrode.
`In another
`example, a heat pipe cooling system is described for cooling
`the central electrode.
`An external reflection radiation collector-director collects
`
`radiation produced in the plasma pinch and directs the
`radiation in a desired direction. Good choices for the reflec-
`
`ruthenium,
`tor material are molybdenum, palladium,
`rhodium, gold or tungsten. In preferred embodiments the
`active material may be xenon, lithium vapor, tin vapor and
`the buffer gas is helium and the radiation-collector is made
`of or coated with a material possessing high grazing inci-
`dence reflectivity. Other potential active materials are
`described.
`
`In preferred embodiments the buffer gas is helium or
`argon. Lithium vapor may be produced by vaporization of
`
`
`
`US 6,972,421 B2
`
`3
`solid or liquid lithium located in a hole along the axis of the
`central electrode of a coaxial electrode configuration.
`Lithium may also be provided in solutions since alkali
`metals dissolve in amines. A lithium solution in ammonia
`
`(NH3) is a good candidate. Lithium may also be provided by
`a sputtering process in which pre-ionization discharges
`serves the double purpose of providing lithium vapor and
`also pre-ionization.
`In preferred embodiments, debris is
`collected on a conical nested debris collector having sur-
`faces aligned with light rays extending out from the pinch
`site and directed toward the radiation collector-director. The
`reflection radiation collector-director and the conical nested
`
`debris collector could be fabricated together as one part or
`they could be separate parts aligned with each other and the
`pinch site.
`This prototype devices actually built and test by Appli-
`cants convert electrical pulses (either positive or negative) of
`about 10 J of stored electrical energy per pulse into approxi-
`mately 50 m] of in-band 13.5 nm radiation emitted into 231
`steradians. Thus, these tests have demonstrated a conversion
`efliciency of about 0.5%, Applicants estimate that they can
`collect about 20 percent of the 50 m] 13.5 nm radiation so
`that this demonstrated collected energy per pulse will be in
`about of 10 m]. Applicants have demonstrated 1000 Hz
`continuous operation and