throbber
(12)
`
`United States Patent
`Melnychuk et al.
`
`(10) Patent N0.:
`(45) Date of Patent:
`
`US 6,972,421 B2
`Dec. 6, 2005
`
`US006972421B2
`
`(60) Provisional application No. 60/422,808, ?led on Oct. 31,
`2002, and provisional application No. 60/419,805, ?led on
`Oct- 18’ 2002
`(51) Im. c1.7 ............................................... .. H01J 35/20
`(52) U.S. c1. ............................. .. 250/504 R; 250/4931;
`378/119
`
`
`
`
`
`
`
`
`
`h f S 0 earc ........................ "378/119 37,2/5 R ’ ’
`
`
`
`F
`1e
`
`(
`
`)
`
`(56)
`
`(54) EXTREME ULTRAVIOLET LIGHT SOURCE
`
`(75) Inventors: Stephan T. Melnychuk, Carlsbad, CA
`(US); William N- Partlo, Poway, CA
`(US); Igor V- Fomenkflv, San Diego,
`CA (US); I. Roger Oliver, San Diego,
`CA
`Richard M- NESS, San Diego,
`
`CA (Us); Norbert Bowering, San Diego, CA (US); Oleh Khodykin, San
`
`Diego, CA (US); CllI‘tlS L. Rettlg,
`Vista, CA (US); Gerry M.
`Blumenstock, San Diego, CA (US);
`Tlmothy S‘ Dyer’ Oceanslde: CA (Us);
`Rodney D- slmmons, San D1eg°>_ CA
`(Us); Jerly R- Ho?mall, Escond1d°>
`CA (US); R. Mark Johnson, Ramona,
`CA (Us)
`
`(73) Assignee: Cymer, Inc., San Diego, CA (US)
`
`( * ) Notice:
`
`(21) Appl- NOJ 10/409!254
`(22) Filed:
`Apr. 8,2003
`(65)
`Prior Publication Data
`
`References Cited
`
`US PATENT DOCUMENTS
`. 250/53
`2,759,106 A
`8/1956 Wolter ............ ..
`60/355
`3,150,483 A
`9/1964 May?eld et al. ..
`3,232,046 A
`2/1966 Meyer ...................... .. 50/355
`
`.
`
`(Continued)
`
`ABSTRACT
`
`OTHER PUBLICATIONS
`ApruZese, J.P., “X—Ray Laser Research Using Z Pinches,”
`Subject to any disclaimer, the term of this Am Inst' of phys_ 399403, (1994)_
`patent is extended or adjusted under 35
`_
`U.S.C. 154(b) by 107 days.
`(Con?rmed)
`g y
`y
`Primar Examiner—Kiet T. N u en
`(74) Attorney, Agent, or Firm—William C. Cray; Cymar,
`I“
`(57)
`
`Us 2OO4/01O8473 A1 Jun 10’ 2004
`
`Related US Application Data
`
`(63) Continuation-in-part of application No. 10/384,967, ?led on
`Mar. 8, 2003, which is a continuation-in-part of application
`No. 10/189,824, ?led on Jul. 3, 2002, now Pat. No. 6,815,
`700, which is a continuation-in-part of application No.
`10/120,655, ?led on Apr. 10, 2002, now Pat. No. 6,744,060,
`which is a continuation-in-part of application No. 09/875,
`719, ?led on Jun. 6, 2001, now Pat. No. 6,586,757, which is
`a continuation-in-part of application No. 09/875,721, ?led
`on Jun. 6, 2001, now Pat. No. 6,566,668, which is a
`continuation-in-part of application No. 09/696,084, ?led on
`Oct. 16, 2000, now Pat. No. 6,566,667, which is a continu
`ation-in-part of application No. 09/590,962, ?led on Jun. 9,
`2000, now abandoned.
`
`The present 'invention provides a reliable, high-repetition
`rate, production lme compatible high energy photon source.
`Avery hot plasma containing an active material is produced
`in vacuum chamber. The active material is an atomic ele
`ment having an emission line Within a desired extreme
`ultraviolet (EUV) range. Apulse power source comprising a
`charging capacitor and a magnetic compression circuit com
`prising a pulse transformer, provides electrical pulses having
`suf?cient energy and electrical potential suf?cient to pro
`duce the EUV light at an intermediate focus at rates in excess
`of 5 Watts. In preferred embodiments designed by Appli
`cants in-band, EUV light energy at the intermediate focus is
`45 Watts eXtendable to 105.8 Watts.
`
`78 Claims, 50 Drawing Sheets
`
`RAZING INCIDENCE COLLECTOR
`r _,/
`
`//
`
`ASML 1230
`
`

`
`US 6,972,421 B2
`Page 2
`
`Us. PATENT DOCUMENTS
`
`3,279,176 A 10/1966 Boden ....................... .. 60/202
`3,746,870 A
`7/1973 Demarest .
`.. 250/227
`
`3,960,473 A
`
`6/1976 Harris . . . . .
`
`6/1976 Dawson
`3,961,197 A
`7/1976 Roberts et al. .
`3,969,628 A
`8/1977 Lee .............. ..
`4,042,848 A
`5/1978 Samis .......... ..
`4,088,966 A
`3/1979 Mallozzi et al.
`4,143,275 A
`7/1979 Witter .......... ..
`4,162,160 A
`5/1980 Giardini ..
`4,203,393 A
`4,364,342 A 12/1982 Asik ..... ..
`
`. . . .. 425/467
`
`250/493
`250/402
`.. 313/231.6
`.. 313/231.5
`250/503
`75/246
`123/30
`.. 123/143
`
`4,369,758 A
`
`1/1983 Endo . . . . . . . . . . .
`
`. . . .. 123/620
`
`4,504,964 A
`
`3/1985 Cartz et al. . . . . . . . . .
`
`. . . .. 378/119
`
`4,507,588 A
`
`3/1985 Asmussen et al.
`
`315/39
`
`4,536,884 A
`
`8/1985 Weiss et al. . . . . . . . .
`
`. . . .. 378/119
`
`4,538,291 A
`
`8/1985 IWamatsu
`
`378/119
`
`4,561,406 A 12/1985 Ward . . . . . . . . . . . . . .
`
`. . . .. 123/536
`
`378/119
`6/1986 Herziger et al.
`4,596,030 A
`378/34
`4,618,971 A 10/1986 Weiss et al.
`431/71
`4,626,193 A 12/1986 Gann ........... ..
`378/119
`4,633,492 A 12/1986 Weiss et al.
`..... .. 378/34
`4,635,282 A
`1/1987 Okada et al.
`4,751,723 A
`6/1988 Gupta et al. .............. .. 378/119
`4,752,946 A
`6/1988 Gupta et al. .............. .. 378/119
`
`4,774,914 A 10/1988 Ward . . . . . . . . . . . . . .
`
`. . . .. 123/162
`
`4,837,794 A
`
`6/1989 Riordan et al. .
`
`378/119
`
`4,928,020 A
`5,023,897 A
`5,027,076 A
`5,102,776 A
`
`5/1990 Birx et al. . . . . . .
`. . . .. 307/106
`6/1991 Neff et al. ................ .. 378/122
`6/1991 Horsley et al. ........... .. 324/674
`4/1992 Hammer et al.
`430/311
`
`6/1992 Dethlefsen . . . . . .
`5,126,638 A
`8/1992 Birx .......... ..
`5,142,166 A
`5,175,755 A 12/1992 Kumakhov
`5,313,481 A
`5/1994 Cook et al.
`5,411,224 A
`5/1995 Dearman et al.
`5,448,580 A
`9/1995 Birx et al. .... ..
`5,504,795 A
`4/1996 McGeoch
`5,729,562 A
`3/1998 Birx et al.
`5,763,930 A
`6/1998 Partlo .... ..
`5,866,871 A
`2/1999 Birx .......... ..
`5,936,988 A
`8/1999 Partlo et al.
`5,963,616 A 10/1999 Silfvast et al. ..
`6,031,241 A
`2/2000 Silfvast et al. ..
`6,039,850 A
`3/2000 Schulz ...... ..
`
`. . . .. 315/326
`307/419
`378/34
`372/37
`244/53
`372/38
`378/119
`372/38
`250/504
`.. 219/121
`..... .. 372/38
`378/122
`250/504
`204/192.15
`
`6,051,841 A
`
`4/2000 Partlo . . . . . . . . . .
`
`. . . .. 250/504
`
`250/504
`5/2000 Partlo et al. .
`6,064,072 A
`1/2001 Birx .................... .. 219/121.57
`6,172,324 B1
`2/2001 Pascente .................... .. 363/21
`6,195,272 B1
`5/2003 Partlo et al.
`250/504
`6,566,667 B1
`5/2003 Rauch et al.
`250/504
`6,566,668 B2
`6,567,499 B2 * 5/2003 McGeoch ................. .. 378/119
`6,586,757 B2
`7/2003 Melnychuk et al. ...... .. 250/504
`2001/0055364 A1 12/2001 Kandaka et al. .......... .. 378/119
`
`2002/0100882 A1
`
`8/2002 Partlo et al. . . . . . . . .
`
`. . . .. 250/504
`
`378/119
`2002/0168049 A1 11/2002 Schriever et al.
`2003/0068012 A1
`4/2003 Ahmad et al. ............ .. 378/119
`
`OTHER PUBLICATIONS
`Bollanti, et al., “Compact Three Electrodes Excimer Laser
`IANUS for a POPA Optical System,” SPIE Proc.
`(2206)144—153, (1994).
`Bollanti, et al., “Ianus, the three—electrode excimer laser,”
`App. Phys. B (Laser & Optics) 66(4):401—406, (1998).
`Choi, et al., “A 1013 A/s High Energy Density Micro
`Discharge Radiation Source,” B. Radiation Characteristics,
`p. 287—290.
`Choi, et al., “Fast pulsed holloW cathode capillary discharge
`device,” Rev. of Sci. Instrum. 69(9):3118—3122 (1998).
`
`Fomenkov, et al., “Characterization of a 13.5nm Source for
`EUV Lithography based on a Dense Plasma Focus and
`Lithium Emission,” Sematech Intl. Workshop on EUV
`Lithography (Oct. 1999).
`Hansson, et al., “Xenon liquid jet laser—plasma source for
`EUV lithography,” Emerging Lithographic Technologies IV,
`Proc. Of SPIE , vol. 3997:729—732 (2000).
`Kato, Yasuo, “Electrode Lifetimes in a Plasma Focus Soft
`X—Ray Source,” J. Appl. Phys. (33) Pt. 1, No. 8:4742—4744
`(1991).
`Kato, et al., “Plasma focus x—ray source for lithography,”
`Am. Vac. Sci. Tech. B., 6(1): 195—198 (1988).
`Lebert, et al., “Soft x—ray emission of laser—produced plas
`mas using a loW—debris cryogenic nitrogen target,” J. App.
`Phys., 84(6):3419—3421 (1998).
`Lebert, et al., “A gas discharge based radiation source for
`EUV—lithography,” Intl. Conf. Micro and Nano—Engineer
`ing 98 (Sep. 2—24, 1998) Leuven. Belgium.
`Lebert, et al., “Investigation of pinch plasmas With plasma
`parameters promising ASE,” Inst. Phys. Conf. Ser No. 125:
`Section 9, pp. 411—415 (1992) Schiersee, Germany.
`Lee, Ja H., “Production of dense plasmas in hypocyloidal
`pinch apparatus,” The Phys. Of Fluids, 20(2):313—321
`(1977).
`LeWis, Ciaran L.S., “Status of Collision—Pumped X—ray
`Lasers,” Am Inst. Phys. pp. 9—16 (1994).
`Malmqvist, et al., “Liquid—jet target for laser—plasma soft
`x—ray generation,”Am. Inst. Phys. 67(12):4150—4153 1996).
`Mather, et al., “Stability of the Dense Plasma Focus,” Phys.
`Of Fluids, 12(11):2343—2347 (1969).
`Mayo, et al., “A magnetized coaxial source facility for the
`generation of energic plasma ?ows,” Sci. Technol. vol. 4:pp.
`47—55 (1994).
`Mayo, et al., “Initial Results on high enthalpy plasma
`generation in a magnetized coaxial source,” Fusion Tech vol.
`26:1221—1225 (1994).
`Nilsen, et al., “Analysis of resonantly photopumped Na—Ne
`x—ray—laser scheme,” Am Phys. Soc. 44(7):4591—4597
`( 1991).
`Partlo, et al., “EUV (13.5nm) Light Generation Using a
`Dense Plasma Focus Device”, SPIE Proc, On Emergine
`Lithographic Technologies III, vol. 3676, 846—858 (Mar.
`1999).
`Price, Robert H., “X—Ray Microscopy using Grazing Inci
`dence Re?ection Optics,” Am. Inst. Phys. , pp. 189—199,
`(1981).
`Oi, et al., “Fluorescence in Mg IX emission at 48.340 A
`from Mg Pinch plasmas photopumped by Al XI Line radia
`tion at 48.338 A.” The Am. Phys. Soc., 47(3):2253—2263
`(Mar. 1993).
`Scheuer, et al., “A Magnetically—Nozzled, Quasi—Steady,
`MultimegaWatt, Coaxial Plasma Thruster,” IEEE: T ransac
`tions on Plasma Science, 22(6) (Dec. 1994).
`Schriever, et al., “Laser—produced lithium plasma as a
`narroW—band extended ultraviolet radiation source for pho
`toelectron spectroscopy,” App. Optics, 37(7):1243—1248,
`(Mar. 1998).
`Schriever, et al., “NarroWband laser produced extreme ultra
`violet sources adapted to silicon/molybdenum multilayer
`optics,” J. of App. Phys., 83(9):4566—4571, (May 1998).
`Zombeck, M.V., “Astrophysical Observations With High
`Resolution X—ray Telescope,” Am. Inst. Of Phys., pp.
`200—209 (1981).
`
`

`
`US 6,972,421 B2
`Page 3
`
`Choi et al., “Temporal development of hard and soft X—ray
`emission from a gas—puff Z pinch,” Rev. Sci. Instrum. 57(8),
`pp. 2162—2164 (Aug. 1986).
`Silfvast, et al., “High—poWer plasma discharge source at
`13.5 nm and 11.4 nm for EUV lithography,” SPIE, vol.
`3676:272—275, (Mar. 1999).
`Silfvast, et al., “Lithium hydride capillary discharge creates
`X—ray plasma at 13.5 namometers,” Laser Focus World, p.
`13. (Mar. 1997).
`Wilhein, et al., “A slit grating spectrograph for quantitative
`soft X—ray spectroscopy,” Am. Inst. Of Phys. Rev. of Sci.
`Instrum., 70(3):1694—1699, (Mar. 1999).
`Wu, et al., “The vacuum Spark and Spherical Pinch X—ray/
`EUV Point Sources,” SPIE, Conf On Emerging Tech. III,
`Santa Clara, CA vol. 3676:410—420, (Mar. 1999).
`Giordano and Letardi, “Magnetic pulse compressor for
`prepulse discharge in spiker—sustainer eXcitati technique for
`XeC1 lasers,” Rev. Sci. Instrum 65(8), pp. 2475—2481 (Aug.
`1994).
`Jahn, Physics of Electric Propulsion, McGraW—Hill Book
`Company, (Series in Missile and Space U.S.A.), Chap. 9,
`“Unsteady Electromagnetic Acceleration,” p. 257 (1968).
`
`Lebert et al, “Comparison of laser produced and gas dis
`charge based EUV sources for different applications,” Inter
`national Conference Micro— and Nano—Engineering 98,
`Sep. 22—24, 1998, Leuven, Belgium, 6 pages.
`LoWe, “Gas plasmas yield X rays for Lithography,” Elec
`tronics, pp. 40—41 (Jan. 27, 1982).
`Mather, “Formation of a High—Densty Deuterium Plasma
`Focus,” The Physics of Fluids, 8(2), 366—377 (Feb. 1965).
`MattheWs and Cooper, “Plasma sources for X—ray lithogra
`phy,” SPIE, 333, Submicron Lithography, pp. 136—139
`(1982).
`Pearlman and Riordan, “X—ray lithography using a pulsed
`plasma source,” J. Vac. Sci. Technol, pp. 1190—1193 (Nov./
`Dec. 1981).
`Shiloh et al., “Z Pinch of a Gas Jet,” Physical RevieW Lett.,
`40(8), pp. 515—518 (Feb. 20, 1978).
`Stallings et al., “Imploding argon plasma experiments,”
`Appl. Phys. Lett., 35(7), pp. 524—526 (Oct. 1, 1979).
`
`* cited by examiner
`
`

`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 1 of 50
`
`US 6,972,421 B2
`
`§._§mz§_-o§
`
`3%
`
`3:5
`
`NB
`
`If+>82
`-+E
`
`:5:
`
`5%8.5.3
`
`w 9
`
`.
`
`
`
`

`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 2 0f50
`
`US 6,972,421 B2
`
`BLACK: VOLTAGE ON C2
`
`RED: VOLTAGE ACROSS
`ELECTRODES
`
`1 ~ 4 4
`
`J 3
`
`.-1 2
`
`
`
`Q3 W059 Q33:
`
`_1
`
`_2 -
`
`-3
`
`.
`
`,
`
`.
`
`,
`
`,
`
`1
`
`'
`
`I
`I
`I
`I
`—5OO —5OO -40O —I'>OO -2OO —100
`0
`TIME (ns)
`FIG, "/11 g
`
`I
`
`'
`
`'
`
`I
`
`'_| ""‘1
`
`I
`100 200 300 400 500
`
`0. 0 O 0 3 5% M85 805
`
`_ . _ - _ q _ 5 4 3. 2
`
`13OOV OPERATION
`
`INTEGRAL = 3.1E-8 Vsec
`
`OUTPUT = 12.7mJ/21r
`
`HG, ‘11C
`
`

`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 3 0f50
`
`US 6,972,421 B2
`
`
`
`35m ozama
`
`
`
`$936 228%
`
`o2 2%
`
`\/ $2
`
`

`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 4 0f50
`
`US 6,972,421 B2
`
`zoCowEo N
`
`mow 02.
`
`2 mumSm
`
`>1 /
`o9
`
`ON .0.“
`
`ON .QE
`
`mm .07.
`
`ZQEBEQ N
`
`zoEowEQ N
`
`

`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 5 0f50
`
`US 6,972,421 B2
`
`404
`
`
`
`FUG, 2AM)
`
`

`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 6 0f50
`
`US 6,972,421 B2
`
`158
`)
`
`q
`
`\
`
`88
`
`8A
`
`/ 15a
`
`401
`
`:
`
`Fug, 2M2)
`
`s
`COAXIAL
`ELECTRODE
`
`Km
`SWITCHES
`
`3
`_/vAcuuM VESSEL
`
`42
`SATURABLE
`INDUCTOR
`
`‘\c CAPACITOR
`1
`/ DECKS
`1C0 CAPACITOR
`
`DECKS
`
`Fug, 2M3)
`
`

`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 7 0f50
`
`US 6,972,421 B2
`
`mciEam
`2389‘
`
`7
`
`@
`
`
`
`tom 9.68am
`
`6:8?00 Eu
`
`238i
`
`6E6:
`
`5% @E
`
`30$
`82.. DI
`
`6:05:00
`
`

`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 8 0f50
`
`US 6,972,421 B2
`
`v , /
`
`/
`
`
`
`@5 .0; EEQOEX
`
`Q 9, mm 8 8 ON 2 2 O
`
`2 . . . . 0
`
`+/ OwPOmwZwI X
`
`/,, WWW? RX»
`
`/ /
`/ I . /
`
`wOOZ< P< \ mF
`I: \\ /
`/ / , O
`1 / _ on
`
`\ / I \ p / / COP
`
`/ . . . _ , . . . 8w
`
`

`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 9 of 50
`
`US 6,972,421 B2
`
`Xe “°“FC°n5t- Ydij
`
`Helium Pressuren—— 200 mT
`
` .._ -. -_... ..._..._-_
`1.. -
`0
`_.
`
`——
`
`.1200
`
`1400
`
`1600
`T [ns]
`
`1800
`
`2000
`
`FHG. 2/M0)
`
`-fl
`
`:1 ~,
`I >
`I 5E
`Z =
`__
`.9
`iii ‘D(1)
`IIIIIIIIII
`U.9
`IIIIIIIIII
`2
`I
`‘l‘O
`I
`jg 2
`j
`Q
`11 0»93
`11 E
`
`U%
`
`C2Energy[J]
`
`0
`
`200
`
`400
`
`600
`
`800
`
`1000
`
`1200 1400
`
`1600
`
`Pressure [mTorr]
`
`HG. 2/W)
`
`.0
`
`vczwv]
`
`
`
`
`
`PhotodiodeSignal[V]
`
`I
`
`

`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 10 0f 50
`
`US 6,972,421 B2
`
`w
`
`926mm EE Nd Q
`
`
`
`
`
`/ w co =8 mm :0 262.3 mmmo
`
`5% @E @g @E
`
`963% @E 252% games“? 2©2<m @E
`
`/ m/ _ 00 cm a
`
`
`
`
`
`

`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 11 0f50
`
`US 6,972,421 B2
`
`0 0
`
`—u— Radial Centrold Displacement
`
`
`
`368925 2368235
`
`Pulse Number
`
`T
`
`100
`
`U
`
`PUG, ZAMZ)
`
`2 2 4| 1
`
`M 9
`
`.“ $2
`
`D,‘ m 1.
`
`D ‘P 0 1|
`
`n lo
`
`. 4 In 0
`
`5 0 5 0 5 0
`~ 7.- 0
`
`0 1O
`
`on W
`
`n 5
`
`O
`
`o
`
`I 5 U o 2
`
`.l 3
`
`I 0
`
`I 0
`
`w
`
`O
`0 2
`Pulse Number
`
`0 0
`
`r
`
`unn a
`I100 b S
`.08 .m m adh m 3
`HAP O M n
`S .l v S
`\ Ww m m
`
`L
`5
`T R L
`= C
`
`.6“ e
`
`m .m
`
`w m
`
`3. 2 1. O 0 nu 0 0
`
`wucm?homndx
`
`0
`
`4”‘ A 2 @ F
`D 3 4d
`
`F
`
`D / m.
`
`F 0
`
`U 0
`5
`0‘
`O
`
`0 O
`
`0
`
`B4“ WA
`m2
`%1
`\p
`4.
`
`

`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 12 0f 50
`
`US 6,972,421 B2
`
`Cylinders
`\ \
`
`p, oh
`n
`l
`
`Witness
`sample
`/
`
`_____ -.
`
`1cm 1cm
`
`Single channel debris shield
`
`FHG, 2AM 5)
`
`Multichannel debn's shield.
`Number of channels=60. Length=l cm.
`
`PUG, 22mm
`
`Reduired Level
`
`109
`108
`107—— v * Single Channel Shield —~—
`
`
`
`Reduction factor
`
`w
`
`106 --— 0 - Multiple Channel Shield __
`105
`104
`103
`1o2
`101
`10°
`0
`
`la
`
`1
`
`3
`2
`Length, cm
`
`4
`
`5
`
`FUG, 2AM 7))
`
`

`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 13 0f 50
`
`US 6,972,421 B2
`
`Tungsten, Molybdenum
`
`Cooling 6
`Water
`
`Anode Cooling Water
`
`FllG, 22W 8»
`
`3000
`
`2 2500-
`‘“
`g 2000*
`
`U Anode
`° Cathode
`A Total
`
`, A
`I,’
`1/’
`
`,1 '
`o
`/‘'°
`,1
`'6 1500-
`/./'
`,A
`9
`Y 1000
`~
`A’
`I , ljy/l/f/
`%
`% 500' (La-3e”
`
`0 '
`
`0
`
`1
`
`.
`
`200
`100
`DPF Repetition Rate (Hz)
`
`EUV efficiency with Xe,
`EUV energy per pulse
`Source size
`Transverse source stability
`Out of band radiation
`Continuous repetition rate
`Burst repetition rate
`Energy Stability
`
`> 0.4 %
`45 m1
`0.25 x 2 mm
`50 um rrns
`< 0.5%
`200 Hz
`2000 Hz
`< 10 % rms
`
`File, znrzoi
`
`

`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 14 0f 50
`
`US 6,972,421 B2
`
`
`
`gvqw owl
`
`JUN
`
`i ii, i
`
`/
`
`
`
`$22 0mm?
`
`/
`
`om?
`
`

`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 15 0f 50
`
`US 6,972,421 B2
`
`R
`
`E50 l
`
`23 I
`
`b _ . _ b _ L _ _ _ _ _
`
`cow 3 .cozeownm £5, oX-_:> wx
`
`
`
`
`
`
`
`600E mEwmE mx
`
`
`
`AES 505552,
`
`m: 2 3 m.‘ N; I
`
`mam AQE
`
`(suun 'qje) Mgsuam
`
`2
`
`
`
`EEV £92925
`
`9 3 WP or m _ . 2 . _ _ o
`
`3:6 295 ,
`
`p _ _ , . _ oooow
`
`? 2
`
`1 - Sow
`
`I 18%
`
`, - cos
`
`I - ooow
`
`(suun 'qle) Ausuawl
`
`

`
`U.S. Patent
`
`6,
`
`5
`
`e
`
`US 6,972,421 B2
`
`
`
`
`
`Ema_mm>S-.52,_jss
`
`mmm2<:o
`
`W0/I2III/$ms_<_.é
`
`%..
`
`
`
`<22:E9:.1.u|nIl-.
`
`968E9:\_.|'l|.‘“.
`
`
`
`mommzzmobmjoo
`
`1/
`
`/EmmiA,
`//mmmmfi
`
`Fmmm<4
`
`mE_8s_mEz_9\\:._3
`
`maoom
`
`>mm>:wo
`
`
`
`zfimoz<wdwoz.EBmaommozoammW.@=.m_
`
`a\
`
`
`
` o>3\\Emmiwa\\\\\\Emmi2*M\\\\\\\\\mzm:«NMn\\\\oz_m8Emmoagz.9.
`
`
`

`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 17 0f 50
`
`US 6,972,421 B2
`
`LASER1
`
`45° MIRRORS
`
`WINDOW
`
`MLILTI-LAYER FIRST
`COLLECTOR MIRROR
`
`EUV LIGHT TO
`\ J INTERMEDIATE FOCUS
`
`v.‘
`
`\
`
`\ \ \ x \b
`
`LAsER FOCUS
`
`E k ~—L>
`
`I _, I’?
`
`/
`LAsER2
`
`FOCUSING
`LENS
`
`CHAMBER
`WALL
`
`WINDOW
`
`/ W
`
`LASER3
`\
`
`‘8&3’.
`
`/ I’
`/
`/ /
`
`,
`
`ESSQS'NG
`
`REGION OBSCURED
`BY NOZZLE AND
`BEAM DELIVERY
`
`LASER 4
`
`

`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 18 of 50
`
`US 6,972,421 B2
`
`LASER
`
`""9
`
`NOZZLE
`
`PROTECTIVE
`
`COATING
`
`DROP OF TARGET
`MATERIAL
`
`PROTECTIVE
`
`COATING
`
`FOCUSING
`LENS
`
`DUMP
`
`FIG, 48
`
`

`
`U.S. Patent
`
`_.n
`
`US 6,972,421 B2
`
`zocsoé:8zo:<uzoTH._E¢m_E95w>8.o Domhzzm\\x..uooE..mE
`6.,
`xx.bI\E27:
`
`89:8:8058:b\\..."‘4P’|.'.'.’..fil/‘I’A)\EB~§5=mz_
`
`
`xma$8532Bsooouwfié$50
`
`
`
`
`%\
`
`AT:$m5
`
`
`
`SAlism
`
`:2:01/w/mzfl
`2388u5ma
`04/SSE:9:Hwo<:o>
`
`:33u<>2/,..AT)meson.
`
`$2o5ooo;E§43"
`
`4moomnmd.B\
`
`h~§5:mz_
`
`
`
`

`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 20 of 50
`
`US 6,972,421 B2
`
`
`
`

`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 21 of 50
`
`US 6,972,421 B2
`
`O i
`
`\
`
`:22
`
`$53
`
`
`
`
`
`W
`
`m%&%
`
`Wm@@§§§E§§§%g§@@mI1))))I1)l
`O
`W
`0
`o
`©©<§>Q0&000000
`\ %%%9Q5 DQoOQ%W@W
`,
`% % ,
`
`
`
`,
`
`:
`[
`\
`
`
`
`<
`~
`0-
`_
`u.
`
`co

`
`.
`M, _.
`.2 u.
`
`

`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 22 of 50
`
`US 6,972,421 B2
`
`
`
`
`
`‘i
`
` 9
`
`

`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 23 of 50
`
`US 6,972,421 B2
`
`

`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 24 of 50
`
`US 6,972,421 B2
`
`I
`A'A'leA‘l'l'A'A'A'A'A'A'l
`
`A'A'l'A'AVAVA'A'A'A'A7A'L
`
`I‘“HIM:INAVAVAVAVJWQQVAUAVAK
`‘
`mVI4InV4uv4r4'4. '
`v4uuuu'4'4v4'
`
`
`//.uuuuv4'4ux¢7
`
`// V r vv r. :
`
`I,
`
`

`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 25 of 50
`
`US 6,972,421 B2
`
`106A
`
`\
`
` I
`xw///////A 102
`
`

`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 26 of 50
`
`US 6,972,421 B2
`
`Published Reflectivity of Mo/Si Mirror
`°°.
`“3.
`o
`o
`
`O.Y‘
`
`E
`
`>0
`
`Ewowuxmx.835cm:o:m~_:o_
`
`O.
`N
`
`L”.V*
`
`o._
`
`(A) |9U5!S _Lw3 J918LUOJ138dS
`
`
`
`AE5£mcm_m>m.>>
`
`or.O_m
`
`

`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 27 of 50
`
`US 6,972,421 B2
`
`§§_saa5o=/
`
`
`
`.3.30522M<5OEonaAVo§__oz_oznsa
`
`522525.92.wzmsa.2E§§_azmaa
`
`. 3
`
`
`
`
`
`

`
`U.S. Patent
`
`0
`
`US 6,972,421 B2
`
`
`....--‘HSzmib$30Swmzm8E>_domoDim-RLmgjm
`
`
`
`
`
`
`m:oz<zo_mm__2mz<Eom
`
`I»0Zm._#58esoof
`
`
`
`mi..©E
`
`kw‘?
`:1‘Q\
`
`
`flnxxnuHAD.
`
`
`
`
`
`6-/--\-.\\\\;.\cI.kt:\\\\mm.\\m-Czmmm..\,.2\u\\\M¢\
`\I.||...l.Q»:\n\V\\Lu‘6s\\\\h\\\\u\SY\\\\WI’!
`
`2,I:\.~\§\5\\same
`SEE8~m>:mono..\o:\\\\\
`.\o:\om<m<n:\\&.\\\8,
`
`\(\
`
`\
`
`>ozmEmo\o$.-\\SEE8E>_domo_.\_.m<GEE8$>_donofin
`
`
`‘No:om<m§..\amzasoe8:om<m§
`
`5zwEm..\..:
`
`
`
`

`
`U.S. Patent
`
`6
`
`S
`
`2
`
`5
`
`US 6,972,421 B2
`
`M.m.o8o,Qozoméé
`
`M3o:om<m<n_020
`
`.m092
`
`M.98mO
`
`083
`
`Emmasd
`
`||._|I|._.'V
`
`ommm
`
`A89mmEwacmcomwm_Em
`
`QFF..@E
`
`83
`
`88
`
`some
`
`88
`
`Aouapgg
`
`88
`
`80.0
`
`
`
`
`
`295co_mm_Ewm>>o:m.OEm5.02.00__mr_m-v
`
`

`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 30 of 50
`
`US 6,972,421 B2
`
`[Dillx\
`
`
`[In]\\\I"willI!/"I"I\.
`
`
`
`
`
`
`{Illi''/[:1]\If/In1/
`I/J’JI\\/I,
`IIIin:\IIIt\\
`
`/11‘I’I1/:\1//1II/!.\
`/1//-/,3w1/I
`Ill:
`/I/II\\
`/I/¥I\\/II’f\III
`
`:0IfI5/I1!In/\I!II/1II
`
`IIIII!!!01/1!\
`/11Ill!\II[IIll!\
`I‘:llllil\IIII!\
`IIIIIIIII]\
`I];la.’u-Il:(u\
`
`la:/no/A:l1IV.N\
`
`I'llav/val\\II:
`ill!/11!\Illa!
`Irl11!:\\\
`
`\\
`
`\\\
`
`\\
`
`nu\\
`
`
`.v\-a’nIuI:unu
`
`
`:u’lI‘I'|"I""!IIIIIIu\\
`
`
`
` I|u'nnI0II--II----8\II":
`
`
`
`l‘IIanIII
`
`
`
`
`
`152%.300;E58,:
`
`
`
`IIIIIIIIII\III\’:|“Il|‘xIIIIIIIIII.
`
`

`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 31 of 50
`
`US 6,972,421 B2
`
`I
`
`I
`
`/I
`/I
`
`/
`
`/
`
`I
`
`:
`'
`II ” H
`-'.-
`H
`
`-2.
`
`H
`
`I
`
`/
`
`II
`
`/I
`
`I
`
`/'
`~'»’
`II
`‘I
`
`I’ I
`I
`
`I
`
`I
`
`:-
`H
`3!
`H
`-'2
`n
`
`II
`W
`
`i
`:
`I
`I
`
`I
`
`I
`
`I
`
`Lu
`
`T‘
`E9
`Us
`
`.
`
`I
`
`I
`
`I
`,'
`I
`/I
`:
`
`I
`
`’
`
`I
`
`I
`
`xx
`,\'
`
`I
`
`\
`
`' I
`‘I
`\=
`1\
`.-N
`\
`\ .~’ \ ’
`‘\
`\_\
`‘\‘:\_\ \\ \
`.
`x
`
`:
`\ !
`\I
`“I
`,“~\
`
`‘-
`
`=9
`\I
`‘i
`i\
`
`p
`
`'
`
`5
`
`53
`E

`‘-
`
`

`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 32 of 50
`
`US 6,972,421 B2
`
`LQ
`F‘
`
`Q U
`
`;
`
`-
`
`_\\.a.,J2TNF.®E
`
`
`
`022%;85.8ozcao;
`
`395N...we3as
`
`3
`
`9.
`
`_M
`
`
`
`
`
`..._..__H__.mg.@EQ:.@=M_mi.@E<3..@E
`
`
`

`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 33 of 50
`
`US 6,972,421 B2
`
`...
`
`mmaouozoza<:mS¢.......
`
`
`,
`.....MWW.ou.n
`....Ev.0-
`
`Nd-
`
`Ga
`
`Vme:
`
`03comoomO9
`Q09.SN.Sn.8?oom-
`
`(pazneu.u0N) e6e:|o/\ apouv pue L3
`
`
`
`
`
`mE_._..m>>:m_§c_>Dmucm.muocm>_—U>umSwmm_2
`
`
`
`
`
`
`
`3
`
`3
`
`
`
`

`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 34 of 50
`
`US 6,972,421 B2
`
`
`
`.,
`
`\
`
`S ‘E
`2-.’
`\\ \\ {Z
`3': ,.
`
`=':
`
`4.
`
`:
`
`.
`
`.
`
`r
`
`1
`
`3 I’
`I
`
`_ , ''''®'<ID®®
`
`

`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 35 of 50
`
`US 6,972,421 B2
`
`Q23
`
`<to
`
`-
`
`\\\
`
`\ \\ \1
`
`///f//
`
`0 vo 0
`£333;
`.:.o‘9
`3'3’0'0’
`0 O
`::~:«:’
`==:2;s:2
`0 90.0
`0 0.0O O
`‘s 0°95
`
`
`
`

`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 36 of 50
`
`US 6,972,421 B2
`
`43.@_n_
`
`n:.,_:n_
`
`99.9
`
`oo§??§P
`.oIK§%§%%E
`}??§VO...x...».“
`
`9.
`
`oo.O
`
`oo»ouoo..9
`,,..»»“..ooooo
`
`
`
`
`

`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 37 of 50
`
`US 6,972,421 B2
`
`.32
`
`

`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 38 of 50
`
`US 6,972,421 B2
`
`
`
`om:.07.
`
`doooooooo
`0.00%..0oo.boo9,Qua.
`
`c0006:
`§$%§%.
`906000
`
`too
`
`C00
`
`0009..............
`6oo0000......»
`
`0.000000%»VOOOOA
`
`

`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 39 of 50
`
`US 6,972,421 B2
`
`§.
`#0696OhD
`
`238
`
`

`
`

`
`U.S. Patent
`
`Dec. 6,2005
`
`Sheet 41 of 50
`
`US 6,972,421 B2
`
`3:5mozEm_o-x
`
`S.3-
`
`—
`
`2::muzfima
`
`.o
`
`
`
`
`
`.._-.m-.m-
`
`O
`
`"°
`
`C’.
`V—
`
`C?('\J
`
`(ww) aowvislcr-A
`
`XITH 3/\|.|.V'I3EJ
`
`
`
`<@F,.@E
`
`(WW) 33NViS|Cl'A
`
`
`
`
`

`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 42 of 50
`
`US 6,972,421 B2
`
`FIG. 20
`
`FIG. 20A
`
`
`
`

`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 43 of 50
`
`US 6,972,421 B2
`
`/
`
`,»A gs},
`
`E"
`‘E
`A
`as’
`33
`
`
`
`
`
`,
`
`~.\'\\%\
`
`
`
`

`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 44 of 50
`
`US 6,972,421 B2
`
`<m
`
` $I
`3\Em
`
`N
`
`

`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 45 of 50
`
`US 6,972,421 B2
`
`METAL
`
`PINCH
`
`DISCHARGE
`
`S
`
`§%»
`
`9/ WO
`~>
`Mm
`KADDITIONAL
`
`GAS INLET
`
`FnG°
`
`>‘1 §
`
`' \
`
`PINCH
`
`SILICON
`
`0
`
`‘
` TUNGSTEN
`
`L/‘XENON GAS
`HG. 24
`
`FOIL TRAP
`
`§>,’<2a%%;%
`
`\
`
`SOURCE
`
`
`
`FUG, 26/A
`
`

`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 46 of 50
`
`US 6,972,421 B2
`
`PRIOR ART
`
`FUG. 27
`
`

`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 47 of 50
`
`US 6,972,421 B2
`
`
`
`FHG. 28A
`
`10 Turn Coil, r=2 cm
`
`I=vi:+*
`
`*
`
`g
`
`

`
`U S Patent
`
`Dec. 6 2005
`
`Sheet 48 of 50
`
`US 6,972,421 B2
`
`“E0m
`
`zom
`
`89
`
`2;
`
`as
`
`2:
`
`8m
`
`mamd:E.
`
`cm.0_n_
`
`IAMIZOA
`
`IA] epo!pow_ud
`
`tom
`
`zom
`
`82.2;an8..gm9
`
`.2:
`
`«am.0_.._
`
`V4?‘-“""
`nod:-drwcwtov-NCDQJ
`
`[ooz X] apoua A
`
`
`
`Emzmao.__8
`
`8%8383O8»88828385
`
`omw.9”.
`
`
`
`

`
`U.S. Patent
`
`w
`
`/09
`
`e
`
`05cl09
`
`US 6,972,421 B2
`
`DmEmm_a
`
`co_E~Eo_-wa
`
`
`
`mu.:Om
`
`
`
`wo§_om_oEma
`
`2658
`
`:o:mN_co_.wi
`
`:o_8o.E_£0
`1/
`
`
`
`
`
`220520mE9cm\wuo:uw_wm895M:O_~mN_cO_nw._Q0E5090 2%Bvs.2.358.80.C_mE
`
`4‘.t..._
`
`.m\S|//8mm8\
`
`Wm°@E
`
`
`
`mace;25mg:BoaBE1v_T:.\o
`
`I‘§—5.!OX
`
`
`

`
`U.S. Patent
`
`Dec. 6, 2005
`
`Sheet 50 of 50
`
`US 6,972,421 B2
`
`
`
`2.25%.5930qadgmJam“.newm:E2_>>mmm35cmEmcommm
`
`
`
`
`
`
`
`
`
`
`
`o_§_mms_.8§m:$._.E3“EaEefimcmtcoammaeoom=_9m5mm“.§son_2ceéwmm_:n_mmam$__&=m
`
`
`
`
`
`
`
`
`
`
`
`
`
`_m___:_mu_>en_$__&:m$301$_%os_\>>v_om;Egon.mmm_o><:9:.
`
`
`
`
`
`
`
`
`
`
`
`cozemaoQmmdmm:9:toaasm2co_§=mmmE3£_>>Eefiw
`
`
`
`
`
`
`
`
`
`$28u$_:n_63920am...82,05Ewen;EmcmEmcommm.
`
`
`
`
`
`
`
`8::§>on_o<Eoico_em>coo$5.mmE_o>m:_9m:oom
`
`
`
`
`
`
`
`
`
`_mmn_mfiacmoco_m8aEoomw_:n_ozmcmmzEm9___§_;w99wBow.
`
`
`
`
`
`
`
`
`
`
`
`mmmmm§__.8cm§6:_2355>_mE§w:m#$3;q:-q2wif.
`
`
`
`3:29mi§§-%m:9:a..E5Raga82$
`
`
`
`
`
`me_§_mE89__.__s___§____mm__£,>xvEmmE_o>$21
`
`
`
`
`
`
`
`
`
`magma.E9m_m:oom%_>2n_§_>>mozmcmmz58:0.xmoa:9:9__%.m_.8:9o:E_2355>um.o._mac9>995mean.69_Es_>>m
`
`
`
`
`
`
`
`
`
`
`
`
`
`cozfimaoSciEm_oEm_5.uesgm6%:9:Ba25:30
`
`mm.0_u_
`
`
`

`
`US 6,972,421 B2
`
`1
`EXTREME ULTRAVIOLET LIGHT SOURCE
`
`This application is a continuation-in-part of U.S. Ser. No.
`10/384,967 filed Mar. 8, 2003, Ser. No. 10/189,824 filed Jul.
`3, 2002 now U.S. Pat. No. 6,815,700, U.S. Ser. No. 10/120,
`655 filed Apr. 10, 2002, now U.S Pat. No. 6,744,060, U.S.
`Ser. No. 09/875,719 filed Jun. 6, 2001 now U.S. Pat. No.
`6,586,757, and U.S. Ser. No. 09/875,721 filed Jun. 6, 2001
`now U.S. Pat No. 6,566,668, U.S. Ser. No. 09/690,084 filed
`Oct. 16, 2000 now U.S. Pat. No. 6,566,667 ; and claims the
`benefit of patent application Ser. No. 60/422,808 filed Oct.
`31, 2002 and patent application Ser. No. 60/419,805 filed
`Oct. 18, 2002; all of which is incorporated by reference
`herein. This invention relates to high-energy photon sources
`and in particular highly reliable x-ray and high-energy
`ultraviolet sources.
`
`BACKGROUND OF THE INVENTION
`
`The semiconductor industry continues to develop litho-
`graphic technologies, which can print ever-smaller inte-
`grated circuit dimensions. These systems must have high
`reliability, cost effective throughput, and reasonable process
`latitude. The integrated circuit fabrication industry has
`recently changed over from mercury G-line (436 nm) and
`I-line (365 nm) exposure sources to 248 nm and 193 nm
`excimer laser sources. This transition was precipitated by the
`need for higher lithographic resolution with minimum loss
`in depth-of-focus.
`The demands of the integrated circuit industry will soon
`exceed the resolution capabilities of 193 nm exposure
`sources, thus creating a need for a reliable exposure source
`at a wavelength significantly shorter than 193 nm. An
`excimer line exists at 157 nm, but optical materials with
`sufficient transmission at this wavelength and sufliciently
`high optical quality are difficult to obtain. Therefore, all-
`reflective imaging systems may be required. An all reflective
`optical system requires a smaller numerical aperture (NA)
`than the transmissive systems. The loss in resolution caused
`by the smaller NA can only be made up by reducing the
`wavelength by a large factor. Thus, a light source in the
`range of 10 to 20 nm is required if the resolution of optical
`lithography is to be improved beyond that achieved with 193
`nm or 157 nm. Optical components for light at wavelengths
`below 157 nm are very limited. However, effective incidents
`reflectors are available and good reflectors multi-layer at
`near normal angles of incidence can be made for light in the
`wavelength range of between about 10 and 14 nm. (Light in
`this wavelength range is within a spectral range known as
`extreme ultraviolet light and some would light in this range,
`soft x-rays.) For these reasons there is a need for a good
`reliable light source at wavelengths in this range such as of
`about 13.5 nm.
`
`The present state of the art in high energy ultraviolet and
`x-ray sources utilizes plasmas produced by bombarding
`various target materials with laser beams, electrons or other
`particles. Solid targets have been used, but the debris created
`by ablation of the solid target has detrimental effects on
`various components of a system intended for production line
`operation. A proposed solution to the debris problem is to
`use a frozen liquid or liquidfied or frozen gas target so that
`the debris will not plate out onto the optical equipment.
`However, none of these systems have so far proven to be
`practical for production line operation.
`It has been well known for many years that x-rays and
`high energy ultraviolet radiation could be produced in a
`plasma pinch operation. In a plasma pinch an electric current
`
`5
`
`10
`
`15
`
`20
`
`25
`
`30
`
`35
`
`40
`
`45
`
`50
`
`55
`
`60
`
`65
`
`2
`is passed through a plasma in one of several possible
`configuration such that the magnetic field created by the
`flowing electric current accelerates the electrons and ions in
`the plasma into a tiny volume with suflicient energy to cause
`substantial stripping of outer electrons from the ions and a
`consequent production of x-rays and high energy ultraviolet
`radiation. Various prior art techniques for generation of high
`energy radiation from focusing or pinching plasmas are
`described in the background section of U.S. Pat. No. 6,452,
`199.
`
`Typical prior art plasma focus devices can generate large
`amounts of radiation suitable for proximity x-ray
`lithography, but are limited in repetition rate due to large per
`pulse electrical energy requirements, and short lived internal
`components. The stored electrical energy requirements for
`these systems range from 1 kJ to 100 kJ. The repetition rates
`typically did not exceed a few pulses per second.
`What is needed are production line reliable, systems for
`producing collecting and directing high energy ultraviolet
`x-radiation within desired wavelength ranges which can
`operate reliably at high repetition rates and avoid prior art
`problems associated with debris formation.
`SUMMARY OF THE INVENTION
`
`The present invention provides a reliable, high-repetition
`rate, production line compatible high energy photon source.
`Avery hot plasma containing an active material is produced
`in vacuum chamber. The active material is an atomic ele-
`
`ment having an emission line within a desired extreme
`ultraviolet (EUV) wavelength range. A pulse power source,
`comprising a charging capacitor and a magnetic compres-
`sion circuit comprising a pulse transformer, provides elec-
`trical pulses having suflicient energy and electrical potential
`suflicient to produce the EUV light at an intermediate focus
`at rates in excess of 5 Watts on a continuous basis and in
`
`excess of 20 Watts on a burst basis. In preferred embodi-
`ments designed by Applicants in-band, EUV light energy at
`the intermediate focus is 45 Watts extendable to 105.8 Watts.
`
`In preferred embodiments the high energy photon source
`is a dense plasma focus device with co-axial electrodes. the
`electrodes are configured co-axially. The central electrode is
`preferably hollow and an active gas is introduced out of the
`hollow electrode. This permits an optimization of the spec-
`tral line source and a separate optimization of a buffer gas.
`In preferred embodiments the central electrode is pulsed
`with a high negative electrical pulse so that the central
`electrode functions as a hollow cathode. Preferred embodi-
`
`ments present optimization of capacitance values, anode
`length and shape and preferred active gas delivery systems
`are disclosed. Special techniques are described for cooling
`the central electrode. In one example, water is circulated
`through the walls of the hollow electrode.
`In another
`example, a heat pipe cooling system is described for cooling
`the central electrode.
`An external reflection radiation collector-director collects
`
`radiation produced in the plasma pinch and directs the
`radiation in a desired direction. Good choices for the reflec-
`
`ruthenium,
`tor material are molybdenum, palladium,
`rhodium, gold or tungsten. In preferred embodiments the
`active material may be xenon, lithium vapor, tin vapor and
`the buffer gas is helium and the radiation-collector is made
`of or coated with a material possessing high grazing inci-
`dence reflectivity. Other potential active materials are
`described.
`
`In preferred embodiments the buffer gas is helium or
`argon. Lithium vapor may be produced by vaporization of
`
`

`
`US 6,972,421 B2
`
`3
`solid or liquid lithium located in a hole along the axis of the
`central electrode of a coaxial electrode configuration.
`Lithium may also be provided in solutions since alkali
`metals dissolve in amines. A lithium solution in ammonia
`
`(NH3) is a good candidate. Lithium may also be provided by
`a sputtering process in which pre-ionization discharges
`serves the double purpose of providing lithium vapor and
`also pre-ionization.
`In preferred embodiments, debris is
`collected on a conical nested debris collector having sur-
`faces aligned with light rays extending out from the pinch
`site and directed toward the radiation collector-director. The
`reflection radiation collector-director and the conical nested
`
`debris collector could be fabricated together as one part or
`they could be separate parts aligned with each other and the
`pinch site.
`This prototype devices actually built and test by Appli-
`cants convert electrical pulses (either positive or negative) of
`about 10 J of stored electrical energy per pulse into approxi-
`mately 50 m] of in-band 13.5 nm radiation emitted into 231
`steradians. Thus, these tests have demonstrated a conversion
`efliciency of about 0.5%, Applicants estimate that they can
`collect about 20 percent of the 50 m] 13.5 nm radiation so
`that this demonstrated collected energy per pulse will be in
`about of 10 m]. Applicants have demonstrated 1000 Hz
`continuous operation and

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket