throbber
LASER FUNDAMENTALS
`
`SECOND EDITION
`
`WILLIAM T. SI LFVAST
`
`School ul Oplits I CRECIL
`Lhilmlsily of Centrd Florida
`
`CAMBRIDGE
`IINIVERSITY PRESS
`
`
`
`
`
`
`
`ASML 1206
`ASML 1206
`
`

`
`PUBLISHED BY THE Fl 5‘|"N']HZ.h'l'E OF THE. UNIVERSITY l}FCfl.kIBI]IIIE
`The Fit lllilfilg, 'l'rI.:Ipi:ghn 5II'$..G.I2IIl'@, lliilad K.i.ny:Inm
`
`CJHIRJEKIIE UNIVERSITY l-‘R
`T|1aEri|i1I.lghBuiIi.|g.Ca.Iin'ic|geC|52 znuux
`-1D1lhst31hSlnaaI,Naw1hd,N'I'lIl]ll-42ll,lISA
`41T‘II|ilIi.a|IsI:I|rnItnld.I'bIIMalbu|IIen, '|||'[C_'a*2D'J',AlsInl'n
`lLu'n'.|la.ll.a.Iu5tll3.28l]l1 IluiI'icI.Spu'n
`Dnc1Hu1sa,1IB'|fl|hmIfiul,CqIa1i:IrnflI)LScuiIAfriIa
`hwfl
`
`Fustpllalidnadlflflfi
`|!:q)ri|'udI'WD.2lID.2€D3
`
`'fi.IHfli.I2iCl2I€iCflII2Ii.II#l.Il2i'l'E'B-I]PI'$§
`SamI'|tla|IiinI'I€.1‘||I'IlIal1T_fi.lfIa5t3Il-I
`
`Ihisbnulisiampgrriyu. Sd:jeIxI}nlI.mry:mcq'.IliulaIIl
`mfluptutiinmdnbnumflauivelhufirngaglnnnis.
`lumpudminnduypnnaylteflamflflmm
`fl|eII1i1Ienpu'|IisI'nI1ufCanh|ims|J.|ira|1sil3'Prnss.
`
`fimtpuuimedzm-I
`
`Priuncli1I1al.TriIai5I:.Inuf.A.11mi.-.a.
`
`rgupgsmwinm m.-mas mdAuati' 3_ugmu.1s.1|5::
`
`|FE[]
`
`.4 mhmgrEm:i_fiu'fli:boatiI-am-flnfiefmm'!Ie£Ii.Hifi-fibmwy.
`
`1ibJu!'r_\uu_f'Can-g\IE:sGI.In'aga'l:g£nPdl'ic:IffIlI.da!a'
`si1rrut.w'uim11nuu.l93'.r—
`1.mrT|I'Ih|IetIn]s.f'|fl|1IliInT.§1fnst.—2|r]ed.
`p.
`cm.
`Iu1dm rafielzatnasuli iIda\I._
`ISBN l]—52l—333-15-0
`I. Lula ]_ 'I"|‘.h.
`
`T341575.S52 HI]!
`GIIJIS"6 — dfll
`
`ISBN I] SEIE1-I-1-SI] hlllaml
`
`1(I|3fl55.’.".i2
`
`
`
`
`
`
`
`

`
`Contents
`
`Pr:-_.Iin:£ Io Ike Second .I.-isiilion
`
`Prefixes to the Firm‘ Edition
`
`Jlcinowfetflgywcnis
`
`INTRODUCTION
`UVEILVIEW
`[ntru-Iludiun
`Deliilion of llle Luci‘
`
`Simplicily 0|’ 2 Laser
`Unique
`of :| Laser
`The Laser Sperlrum and Hfawleiigtlls
`A Brief Hislnry oflhe Laser
`D1wL~I'I"Ie'lIr of the Book
`
`SE'l.'l'1C|N 1- FLIHDAIIEIITIL WAVE FIIDPERTTIE5 BF LIGHT
`
`2 WAVE NATURE OF LIGHT — THE INTERACTION CIF LIAGI-IT
`WITH MATE!-IIALS
`CW'EJl‘|?IlZ‘Il'
`
`2.1 Maxi-rt-Il"s Eqlations
`2.2 II'[a:In-hell’; Wave Equaliuns
`Maxwell‘: ‘Wave Equaliona for a Vacuum
`Solution ofthe Genera] Wave Equation — Equivalenee of Light and
`Electromagnetic Radiation
`Wave "IIe|o::il}r — Plaaae and. Group Ve|ou'I.ies
`Generalized So-Iulion ofthewave Equaiiun
`Transverse EIecIroI1::ag}:ne£iJ: Waves and Polarized ]..igIII
`Flow of Electromagnetic Energy
`Radialjon [mm a Point Suuree (EI:et:u:ic Dipole Radiation]
`2.3- lntauclion uf Elecirunagnclic Radiation {light} will Mall-er
`Speed of Light in a Medium
`Maxwell‘: Equaliuns in a Medium
`Application of Maxwell's Equations lo Dieieclrir: Malerials —
`Laserflain Media
`
`Complex Index of Rofra.cI:ion —
`Absotpljon and Dispersion
`
`Constants
`
`page xix
`xxi
`
`xxiii
`
`
`
`EH3EHNBEEECEG55¢-.a~au«.n.u..w.na-—-——-—
`
`
`
`
`
`
`
`
`
`VII
`
`
`
`

`
`CONTENTS
`
`Estimating 1'-‘anziclae Densities oflflatetials for Use in the
`Dispersion Equations
`L-I Coherence
`
`Temporal Coherence
`Spatial Coherence
`IEFEIENCE
`IIIJIILEIIS
`
`SECTION 2. FIJHDIHEHTAL CHJAHTUH FIIDPEIITIES OF I.I.~'nHT
`
`I-I
`
`I'AR'Il£I.E NAII'l.ll1E OF LIGHT — DISCRETE ENERGY LEVELS
`\lIII"EI‘I".IE'W
`
`3.] Bohr Theory olthe Ilydrogen Alum
`Historical Development ofshe Concept of Discrete Energy Levels
`Enesgy Lelnels of the Hydrogen Atom
`Frequency and Wavelength of Emission lines
`Ionization Energireaand Energy levels o-flona
`Photons
`
`offittoulit Fnergy I.e'neIs
`3.! Quantum
`Wave Nature. ofPaniol:es
`
`Heisenberg lJncerta.int3r Principle
`Watre'I'lteoI]r
`Wave Functions
`Quantum States
`The Srlirfitlinger ‘Wave Equation
`Energy and Wave Function for d'!.I'.'G!lJIItl.l2I State of the
`Hydrogen Atom
`Excited States of H3-tkogen
`Allowed Quanturu Numbers for Hydrogen Atomwave Functions
`3.] Angular Monltnltll ti Alums
`Orbital Angular Momentum
`Spin Angulx Mornentum
`Total Angular Molum
`Jul Erterg: lmrels Ago-rialed with Due-Electron Atoms
`Fine Stnuzture of Spectra] Lines
`Pauli Exclusion Principle
`J5 Periodic Table ol‘ the Elements
`
`Quantum Conditions Associated with Multiple Electrons Attached
`H: Nuclei
`
`Shonhand Notation for Electronic Configurations offittorus Having
`More Than Clue Electron
`
`3.6 Fnergy Levels uI‘l'tItlli-Eleclmu Atoms
`Eneegy-l.eIreI Designation for Mulli-El‘.ectn1n States
`Ruseell—Sauru:Ie:s or LS Coupling — Notation forEnetg3r levels
`Energy Levels Associated with Two Electrons in Unlilletl Shells
`Rules for Obtaining 5, L. and J for L5 Coupling
`Degeneracjr and Statistical Weights
`Coupling
`Iaoelectronic Scaling
`
`$$%fl#fi
`
`IS?
`
`3Eflééfifi
`fififififlfiflflfi
`
`
`
`
`
`
`
`

`
`COHTEIT5
`
`n.sn:amc.ss
`FROILEIIS
`
`-I
`
`IIADIATNE TIIAHSITIJNS AND EIIIISSIDN LINEWIDTH
`onrsiwlew
`
`4.1 Dora} of F.:n:'lted Stalos
`R.adiaIi\reDeca3r ofE:rciteriStates o1'IsoIate:rIAtoms—
`Spontaneous Emiion
`Spontaneous Emission Decay Rate — Radiative Transition
`Probability
`Lifetime ofa Radiating Electron — The Electron as a Classical
`Radiating Hamtonic Oscillator
`Nonradiative Decay of the Excitai States — Colfisional Decay
`-1.2 Emimion Bmadering and Iinewidlll Due to Radiative Decay
`Classical Emission l..inenridxl1 of a Radiating, Eliectron
`Natural Emission Linewidllr as L’IerIauceri by Quantum Meclranics
`(lu'Iini.ntorn Ljnewirlthjl
`4.3- Additiomd Faiission-llroadening Processes
`Broadening Due to hlomadialiue (Collisional) Decay
`Broarlening Due to Dephasing Collisions
`Allnrphous Crystal Brumlening
`Doppler Broadening in Gases
`Voigt Lihape Pmlile
`Broadening in Gases Due to lsolope Shifts.
`Comparison of Various Types ofE|n.ission Broadening
`-I.-4 Quanltli Mechanical Destriplion of Ratlizrtirtgfitonts
`Electric Dipole Radiation
`Electric Dipole Mani: Element
`Eiectric Dipole Transition Probability
`Oscillator Snengdi
`Selection Rules for Electric Dipole Transitions l[I1:"lJll".lIlg Atoms
`will} a Single Electron in an Unlilierl Subshell
`Seliection Rules for Raiialiue Transitions Involving Atoms with
`More Than One Electron in an Unfillietl Subsltell
`
`Parity Selection Rule
`[neflicient Radiatisre Transition: — Electric Quadrupole and Other
`Higher-Order Transitions
`IEFEIENCEE
`I'R0lI.EMS
`
`5 ENERGY LEVELS AND IIAEIATWE PROPERTIES OF MDlECl.II.ES.
`LIEIUIDS. AND SOLIDS
`onrsiwlew
`
`5.] Hlolrcular Energy Levels and Spot.-Ira
`Eatergjjr Levels of Molerailes
`Classification of Sirtple Molecules
`Rotational Energy Levels of Linear Molecules
`Rotational Energy Levels of fi'l2l'Il2l'BS.I'l1I.‘»—'['l:|]2Ir Molecules
`Selection Rules for Rotational Transitions
`
`BIS-
`86
`
`8'}
`B9
`
`9Il
`
`9|]
`
`94
`
`9'5
`93
`I01
`I0]
`
`I03
`I05
`I06
`I0?
`I09
`I09
`I I4
`I [5
`I 13
`I2]
`I21
`I23-
`I24
`I24
`
`I25
`
`I29
`
`|3Il
`
`I3]
`I31
`I31
`
`I35
`I35
`
`I35
`I35
`I 33
`I39
`I4]
`I-'-I-l
`
`
`
`
`
`
`
`

`
`CCIITENTS
`
`Wliratzional Energy Levels
`Selection Rule for Vibuational Trmitions
`Rota.tiona|—‘VibIatinnal Tramitioos
`Probabilities oflitotational and Vibrational Transitions
`
`Electronic Enesgy levels o-flflolaeculea
`Electronic Transitions and: Associated Selection Roles of
`Molecufies
`Emission Liruewidtti oflillolecutsr Transitions
`
`'I11e Franck—Com:lon Principle
`Excciroer Eneagy I..El"EIS-
`5.2 liquid Enu'g3'l4nrtIsand'I'I1eir]IatIiaIion Properties
`Strurxure of Dye Molecules
`Energy Levels of Dye Mo-laecuies
`Excitation and Emission of Dye Molecules
`Detrimental Triplet States. ol'Dye Molecules
`5.1 Fnergy Imnels in 5oIds— Dielectric Lmer Materials
`Host M:-Iecrialzs
`
`Laser Species — Dopant Ions.
`hlanoua-I_.ine'uI.ridth Laser Materials
`Broaifln-and Tundnle Laser Matm'ials
`
`Broadening Meciianistn for Solid—State Lasers
`541 Fnergyr Leflzls in 5nIds— m Laser Materiak
`Enexgy Bands in Cq-staliline Srifids
`Energy Levels in Periodic StIucIJ.u:es
`Energy Levels of CDl'tI2ltIi.'.I:tI5, Insulators. and Semioondzoctors.
`Excitation and Decay ot'E:ciIed Energy Levels — Recombination
`Radiation
`
`Direct and Indirect Bandgap Semiconductors
`Election Distribution Function and Density of States in
`Semiconductors
`Intrinsic Senzlioonductor Maleriais
`
`Extriruic Semiconductor Materials —Doping
`p—n Juncliolu. — Reoolzltlsination Radiation Due to Electrical
`Excitation
`
`Quantum Wells
`Vaiation of Eandgap Energy and Radiation lifawelengdt with
`Alloy Composition
`Ileoomlziination Radiation Transition Probability and Linaewidtii
`IEFEIENC
`PICIBLEIE
`
`ll RADIATION AIIJ THERMAL EQUILIBRIUM — ABSCIIIFTIDH AND
`§I'H|lI.lIJE|'ED EIJIISSIJN
`UITEIHEW
`
`6.] Equililrrinli
`'I11erma| Equiliblium
`Thermal Equilibrium via. Conduction and Convection
`Thermal Equilibtiuro via. Radiation
`
`I43
`I43
`I44
`I48
`I49
`
`I50
`I51}
`Ifil
`I52
`I53
`I53
`I55
`ISIS
`E5?
`[58
`I58
`I59
`lfil
`IE6
`IE8
`I68
`[63
`HI}
`IT2
`
`IT}
`IT4
`
`ITS
`H9
`H9
`
`IE2
`IE4
`IE6
`
`I9|
`I95
`I95
`I95
`
`I99
`I99
`I99
`I99
`
`
`
`
`
`
`
`

`
`ODNTHITS
`
`til Radiating Bodies
`Ste:I'an—BoItzn1ann law
`Wien‘s Law
`[rradianee and Radianee
`
`6.3 Cavity Iladiation
`Counting the Nuluhez offlavity Modes
`Ra.}rleigh—Jeans Fornurla
`Plano-Ts 1.aw for Cavity Radiation
`Relationship between Cavity Radiation and Elackbody
`Radiation
`
`Waveienglh Dependence of Blacibo-cl} Emission
`6.4 Absorption and Stimnlaled Emfion
`The Principle offleraiiod Ealanee
`Absorption and Stimulaaed Emission Coeflisccients
`EEFEIIJHICES
`PROBLEMS
`
`SECTION 3. LASER AMPLIFIERS
`
`'.l' CONDITIONS FOR PROEIJEING A LASER — POPULATION
`| GAIN... AND GAIN SATURATION
`CHTRVIEW
`
`'.-'.l Absorption and Cain
`Absorption and Gain on a Homogenaeously Broadened Radiative
`Transi1ion(Lorent:':ian Frequency Distribulion)
`(kin Coecfficierit and Stimulated Emission Cross Section For
`
`Hontogeneous Broadening
`Absorption and Gain on an Irshomogerieously Broaadenead Radiative
`Transition (Doppler Broadening with a Gaussian Distribution)
`Gain Coeffioient and Stimulated Emission Crow Section for
`
`Doppler Broadening
`Saris-tical Weights and line Gain Equation
`Relationship of Gain Coe:li'1cier1t and Stimulated Emission
`{loss Section to
`Coefliacient and Absorption
`Cross Section
`
`12 Population Inversion I Net:-mar} Condition for an Lmer]
`13 Salumtioll Intensity: {SuffirienI Condition for a Laserll
`'.-‘.4 Ilevlloplnent and Growth of a Laser Beam
`Growth oflilieam for a Gain Medium with Homogeneous
`Broadening
`Slime or Geometr_-,r offitmplifiring Meriium
`Growlh offieam for Doppler Broadening
`'.-‘.5 Exponential Cronvllr Ii'1i.'tor{C:in}
`'.r'.li Tlireshold Reqtlinerlents for a Laser
`Laser with No Minors
`Laser with flue Minor
`laser with Two Mirrors
`EEFEEECEE
`PROBLEMS
`
`2!]
`214
`2I5
`2lI'i
`2!?
`22]
`22]
`
`225
`225
`225
`
`225
`
`229
`
`23!]
`
`23]
`231
`
`233
`234
`235
`233
`
`238
`2-1-1
`
`245
`24".?
`24".?
`
`249
`253
`253
`
`
`
`
`
`
`
`

`
`CEIITEHTS
`
`LASER OSEILIJITICIN ABOVE '|'l-IIESHDLD
`lII'l'I'.E”I"lE'I'
`8.] Ituer Gin Saturtrtion
`
`Rate Equations oftlte Laser levels Thai lneluate Stimulated
`Emission
`
`Population Densities of Upper and Lower Laser Levels with
`Brzam Present
`
`Slnall-Signal Gain Coefficient
`Saturation oftlte Laser Gain above Threshold
`
`8.! Later BIt.".l‘.tI‘t Growth l'E"_|'l2IIl. the Saturation Irttemity
`Orange from Exponential Growth to Linear Growth
`Steady-State Laser Intensity
`IL! Oplimireation of laser Output Plu-mar
`Optimum Output Minor Transmission
`Optimum Laser Output Intensity
`Estimating Optimum l..aserOutput Power
`BA Fnergy Exchange between Upper Laser I..-enrol Population and
`Later Photons
`
`Decay Time o-fa laser Beam within an OptiealCa1.ritjr
`Basic Laser Cavity Rate Equations
`Sle.ad]'-State Solutions below Laser Threshold
`S1eaI:l3r—State Operation above Laser'['hresholt:l
`S5 Luer Oulpll FIIIt:t'u:iions
`Laser Spilcing
`Relaxation Oscillations
`
`8.6 Laser Amplifiers
`Basie Arnplilier Uses
`Pn:-pagatioo ofa High-Power, Short—Dura£ion Optical Pulse through
`an fitmpiifier
`Sanitation Enesgy Fluenoe
`Amplifying Long Laser Pulses
`Amplifying Short Laser Pulses.
`Cornparison oEEFfIcient Laser Atnplifiess Based upon Funtlalznentai
`Saturation limits
`
`lt'Iin'or fitrray and Resonator (Regenerative) Amplifiers
`IEFEIENC
`IIDBLEJE
`
`REQUIREMENTS FOR OBTAINING PCIPIJLATION INVERSIOHS
`UITEEVIEW
`
`9.] l|I're1's'|ons and Two-Itevel Systems
`9.2 llelaiine Decay Rates — Ilatliati-re verslm Collhional
`9.3 Steady-Slate llwersiolts in Three- and Four-I_.e1'eI Systems
`Tlueae-l_.evel Laser with The Interroerliate level as the Upper Laser
`level
`
`Three-l_.ew:l Laser with the Upper Laser I_.evel as the Highest Level
`Four-Level Laser
`
`‘LII Transient Population [n1rera'ons
`
`255
`255
`255
`
`255
`
`25'?
`25?
`253
`258
`2t5|
`lfil
`MI
`
`26'?
`
`ETD
`IR
`27".’:
`23"}
`276
`
`295
`2'98
`?rll l
`
`
`
`
`
`
`
`

`
`COIHEIITS
`
`9.5 Pmoesses Thal lrlliliit orDestro3' Inversions
`Radiation Trapping in Atonzts anad loos
`Electron Collisional Thezmalization of the Laser Levels in Atoms
`and long
`
`Comparison of Radiation Trapping and Election. Collisional Mixing
`in a. Gas Laser
`
`Absorption within the (En Medium
`|IEI'EE'ENII.5
`PIIDILEMS
`
`1D LASER Pl.I|5tI3ING REQUIREMENTS AND TECIIMIDUES
`CWEI‘.'I'IE'I|l'
`
`10.1 Excitation: or PtlIp'IIgTItresIJoId Ileqnirements
`10.2 Ftmtping Pathways
`Excitation by Direct Pumping
`Excitation by Indirect Pumping (Pump and Transfer]
`Specific Pump-an.d—Transfer Proeesses
`10.3 Speeifie Esoeilalittn Parameters Afioeialed with
`
`Optical P'ttntp|'_ng
`Pumping Geooteines
`Pumping Requirements.
`A Simplified Optics] Pumping Approximation
`Transverse Pumping
`End Pumping
`Diode Pumping of Soiitt—Stale Lasers
`Characterization eta Laserflain. Medium with Optical Pumping
`{Stope El'fiCiE!'IC‘f3
`ll}.-4 Speeifie I-Imeilalitt-I1 Parameters Assoeialed with
`Partirle Ptmtpiug
`Electron Collisional Pumping
`HE-al"_'||' Pmtiele Pumping
`A lk'|oreAe1:uraIe Description -ofEleetron Excitation Rate to a
`Specific Enesgy Level inaGas Discharge
`Elecit'ical Pumping offlemiconduetors
`|lEI'EI'ENIlI.5
`FRDILEMS
`
`SECTION II. LASER RESONATORS
`
`11 LASER CAVITY MODES
`D"-I'El‘|"IEI|"
`lI.1 Introduction
`
`lI.1 Longitudinal Laser Ca1'i3.' Modes
`Fal:tr)r—Pe1.'ot Resonator
`Fahry—Pet:ot Cavity Modes
`Lon.gitJtdina!. Laser Cavity Modes
`Longituttinai lttlodae Number
`Requirements for the t oi L.ong;itudina]
`Laser Modes
`
`3!]
`
`315
`3!I‘i
`319
`319
`322
`322
`322
`324
`324
`323
`33!]
`
`339
`339
`
`352
`
`355
`355
`359
`
`359
`36]
`363
`
`3'3]
`3'3]
`3'3]
`3'32
`3'32
`3'39
`3l3rIJ
`3l3rI]
`
`332
`
`
`
`
`
`
`
`

`
`CIIITEHTS
`
`I13 TI'.=||IeIrcrae Laser Cari} Modes
`l-'-'resr|eI—Kin:hhofl' Diflraotion Integral Formula
`Developlizrent oclTtans1rerse Moder. in a Canrily with Plane-Parallel
`Mirrors
`
`Transverse Modes Usingflurirod Mirrors
`Transverse Mode Spatial Distributions
`Transverse. Mode Frequencies
`Gaussian-S|1ape¢!Transvezse Modes wiilijn and beyond the
`Laer Cavity
`ll.-I Properlies of laser Modes
`Mock-. Characteristics
`Effect of Hades on the Gain Medium Profile
`IEFEIENC
`PROBLEMS
`
`12 STABLE LASER IIESDHATDIIS JLHD Ghl.ISSlA.N BEAMS
`OVERVIEW
`Ill Stable Cu11'ed Mirror Cavities
`Curved lrlirror Cavities
`.-{BED Matrices
`
`Cavity Stability (}iIIer1'a
`I12 Proper-lies of [Iranian Beams
`Propagation of aflaussian Beam
`Cr..uis.sian Beam Ploperties ofTw'o-Minor 1.aserCavities
`Properties ofspeeilir: Two-M.inor Laser Cavities
`Mode Volume ofa I-lero1i1.e—Gaussian Mode
`
`of Real Laser Heals
`IL!
`IL! Propagafion offlaimial Ileana lJsingJl.H’CI.'l Matrices-
`Complex Ilearl Paramcll.-r
`Complex Beam PararoelJer'App|ierl to a Two-llnlirmr 1.aser'[.'avit.y
`IEFEIENC
`PIOIIEHS
`
`13 SPECIAL LASER CAHITIES AND CAVITY EFECTS
`OVERVIEW
`l3.l Umiable llesonaflors
`
`I32 Q-Slrilxlling
`General Description
`Theory
`Methocls o-fPIod.uc:ing Q—Swi§x:hing wilhin a Laser Cavity
`ILL! Gin-Switching
`I3.-1 Mod:-Inciting
`
`Thmrir
`Techniques for Pro-rlueing lilo-I:le—Lo-elcing
`I35 Pulse SI1orleoingTedII'ques
`Self-Pllase Morlulaaljon
`
`Pulse Shorlnerting or l..engshening Using Group Velocity Dispersion
`Pulse Compression [SlIrn'terI.ing] with Gratings or Prisrns
`l.]'lt:as..‘.|orl—Pulse Liseranrl Aroplifer System
`
`-ill
`
`4-15
`423
`-132
`432
`
`
`
`
`
`
`
`

`
`ODHIHITS
`
`lJ.li Ring Lasers
`Monolithic Unidisecljonai Single-Mode Nd:‘I'A:G Ring Laser
`Two-Minor Ring Laser
`ll".-' Complex Beam Parameter Analysis Applied to Mtlti-Mirror
`Lmer Cawilies
`
`Three-Mirror Ring Laser Cavity
`Three- or Four—lulin'or Fou::uaet| Cavity
`I33 Cavities for Producing Spectral Narrowing of
`Laser Output
`Cavity with Additional Fabr3r—Pes:ot Ezalon for hIa:1'ow—]-'-'re1p1eoc:_v{
`Selection
`
`Tunahle Cavity
`Bmadband Tunable cw Ring Lasen;
`Tunable Cavity for Ultlanalm-w-Eequencjr Output
`Diso1'buu31:| Feed.l1ack{DFB} lasers
`Dislributeacl Bragg Reflection Lmers
`1.3.9 Laser Cavities Ileqoiliog Small-Diameter Gin Ilefiolls —
`Asligllalically Compensated Carin‘;-.-s
`13.10 Waveguide Cavities fior flas Imus
`REFERENCES
`rnoemus
`
`SECTION 5. SPECIFIC LASER S"I"':TI'EHS
`
`14 LASER SYSTEMS |N"H"DL"o"IHG LOW-DEHSFFY GAIN IIIEDIA
`DVEIVIEW
`I-4.1 Atomic Case Inaeas
`Introduction
`I-lelilI—Neon Laser
`
`General Description
`Laser Souclxlm
`Excita-fion Mechanism
`
`Applications
`Argon Ion Laser
`General Dessziplion
`Laser Smuzturc
`Excitation Mechanism
`
`Krjrpton [on Laser
`Applications
`I-leliII—Cadmi|ro1 laser
`
`General Description
`Laser Souctore
`Excitation Mechanism
`
`Applications
`Copper Vapor Lmer
`General Des-csiplion
`Lesser So1u:I:ore
`Excitation Mechanism
`
`Applications
`
`46-E
`4-6-9
`4'i'l]
`
`4'i|'l]
`
`4?!)
`4'13
`
`4'13
`
`4?!!-
`
`4'i'E
`451]
`4Erl]
`4!!
`434
`
`454
`435
`-456
`433
`
`49|
`49|
`49|
`491
`492.
`
`%
`493
`494
`
`49?
`49?
`497
`493
`499
`
`5011
`50]
`50]
`
`50]
`502
`504
`
`505
`505
`505
`50.7
`50.?
`
`‘.509
`
`
`
`
`
`
`
`

`
`CIHITENTS
`
`I-L2 Molecular -flax Lasers
`Introduction
`Carlmn Dimtide Lml.-r
`
`General Eleaicripliun
`Laser Structure
`Exciiatiun Mechanism
`
`Applications
`E‘.I:l.'I.I'IE1' Lasers
`
`General Descripliun
`laser Slmcmre
`
`General Elescripliun
`laser Structure and Eruccilaliun Mechanism
`
`Applicaliona
`Far-lltfrarnl Gas Lasers
`
`General Desncripliun
`Laser Slmculrc
`Exciiafiun Mechanism
`
`Jhpplicaiiciis
`Clunliral Lasers
`
`General Eleaicripliun
`Laser Snucsmrc
`Excitation Mechanism
`
`Applicalicns
`I4.3 I-Ray Plasnn I..‘.Isers
`Inlmihictiun
`
`Partying Energy Ilequiremcms
`Exciiafiun Mechanism
`
`Optical Cavities
`X—Ray Laser Tiansitiuns
`Application.-5
`I-1.11 Flwce-I-Electron liners
`Intmducziun
`laser Slrncture
`
`Applications
`REFERENCES
`
`15 LASER SYSTEMS IIIUDLVING HIGH-DENSITY GAIIII MEDIA
`0'|'ER1|']'EH'
`
`l5.l flrganic D3-e Lasers
`Immductiun
`Laser Stmcmre
`Exciiatinn Mechanism
`
`Applicaliona
`I52 Solid-State Lasers
`Inlrcnhictiun
`
`fill]
`SH]
`5] I
`5] I
`5] I
`515
`515
`516
`516
`5]?
`518
`521]
`52!]
`521]
`52I
`512
`522
`512
`523
`523
`514
`524
`52.4
`524
`524
`525
`525
`525
`525
`528
`532
`532
`532
`535
`535
`5315
`537
`53-7
`
`539
`53-9
`539
`539
`
`543
`
`545
`545
`
`
`
`
`
`
`
`

`
`55 l
`553
`554
`555
`555
`556
`556
`55?
`553‘
`55?
`55?
`553
`553
`559
`559
`
`CDIIIEITS
`
`Ruby Laser
`General Description
`Laser SI1!1.II1ll!E
`Excitalion lbloclumism
`
`Applicaiions
`Neoiiynium TAG and (11% liners
`Genera! Description
`laser Slnicture
`Excil:-nion Mecharlism
`
`.hppl'u;:aIio|15
`Neodg-nI'I1m:YLF Lasers
`General Description
`laser Sll1lI:£llrE
`Excitaiion Mocliariism
`
`hpplicalions
`Neod3.'nI'um:Yll.rim1 Vanadate I N|i:YV04]I Lasers
`General Description
`Laser Slnicture
`Excilalion Mecllanism
`
`Applicalions
`Yllcrb1'ml:YAC Lasers
`
`(cal Description
`laser SI1!1.Il1ll!E:
`Excitation Meclunism
`
`Applicalions
`Aluandrile Luer
`
`General Description
`laser Slnicture
`Exciuuion Mechanism
`
`Applicafions
`Ti.IiI'IIi.IlI'I Sapplire Laser
`General Description
`laser Stmciure
`Excilaiion Mnslunism
`
`hpplicalions
`Chronill IJSJLF and I.-iCA.F Insets
`
`General Description
`laser 5I!1lI.‘.[I.IlE
`Excilalion lIn'Iec|unisu1
`
`iitpplicalions
`Fiber Lasers
`
`General Description
`Laser Slmciure
`Excilalion h'Iec|I:.u1isu1
`
`Applicaliotls
`Color Cent-e1'I..He1's
`
`Genera! De.sI:ription
`Laser Slnicture
`
`
`
`
`
`
`
`

`
`CIIITEHTS
`
`Excitafiun Mechanism
`
`Applicaljorls
`I53 Semiconductor Diode Lasers
`lmmdsuctiun
`
`Fail: Bait: Types of laser h‘[a;teri:||s
`Laser Struczulrc
`
`F!EqlBDC'j|' Comm! of l..aser Output
`Quantum Cascade Lasers
`p—DcIp-ed Gennanium Lasers
`Excitation Mechan.isn:.
`
`Applicmiens
`IIEFEIENCES
`
`SECTIIEII 5. FREQUENCY HULTIPLIEATIDH OF LASER BEAMS
`1E FREQUENCY MLIl.T|Pl_|CA'|'lDlII OF LASERS AND DTHER
`HCIHLINEAR OPTICAL EFFECIS
`fll'Ell'I"]I'.'uI'
`
`lIS.l Wave Pmpafilion in an A.niaolroprir Crystal
`I62 Polarizalion Rcspurne nfhialerials In Light
`I63 Second-Order NnIi'nean' Optical Pnocc-mes
`Second Harrlmnic Genexatien
`
`Sam and Difference Frequency Generation
`Dpljcal Parametric Daccillaticn
`IISA Third-Order hlonlinear Optical Prncvmc-5
`Third Harmcnnic Generation
`
`[!'IlEllSil'_'||'—DEpEIIEi.EllI Refractive Index — Self-Focusing
`I65 Nonlinear flptical Materials
`lliti Phme Matching
`Description D-{Hume Matching
`Achieving Phase Matching
`Types of Phase Matching
`II‘3.'." Saturable Ahsnrpljcn
`I63 T1m1~Ph:nton Jlbetrrptinn
`ll5.5l Stimulated [human Scam.-ring
`lIS.lIl]' Ilanionic Generation in Case-5
`REFERENCES
`
`Appendix
`Index
`
`5?4
`STIIS
`STE:
`STE:
`5?‘)
`SEI
`59I
`5%
`594
`594
`596
`59'?
`
`62 I
`625
`
`
`
`
`
`
`
`

`
`1 I
`
`ntroduction
`
`-DUEIWIEW A laser is a vElE'l|'lI3B that amplifies light.
`tillil produces a highly directional. high-intemiry
`beam lhatmofioftenliasavety pure frequency or
` . It comes in sizes ranging From approx-
`iniatelyonetenlhthediamelerofahulnanliairlso
`Ihesi1:enfavetyla.rgehuilrIing.inpowersranging
`frorn I04‘ to lflm‘ ‘W, and in wavelengths ranging
`frornthen1icro'urairetotl|esoft—X-rayspecualmgiclls
`'l"l.'ll'I1I|.ITE.Epl2lI2llI1g freqneitcies from ID" to H1" H1.
`lissershsveptilseenezgiesas h.igl1.asll]‘J mdpnlse
`diuationsasshortimfi 3-: Il]''5 s. Theyeanly
`iiill holes in the rnostdurahle ofmslerialsand-can
`
`of I.'.'li.flEI1I:e!
`
`welddetacliedletiiiaswithinllieluirnaneye. They ate
`a key component ocfsnmenf our most modem enm-
`lrlinicatiolt systemsand a1elhe'"phonngraph needle"
`oloureornpocttfisc players. They perform heattIeat-
`lnentofhigh-strength materials. sueha the pistons ol'
`ourantornobile engines. and provide a special surgi-
`callznife for many types-nlmettical p|1:I:.'ednres_ They
`aclaslargetdesignstors for rnilitaty weapons malpra-
`vide for the rapid cheek-out we l'l;fl.'t'E come to expect
`at the supermaiket. What a rernarkahleIangeot'cl1a.I-
`aeleristics foradeviee Iiiatis in only its liflli deeade
`
`INTRDEIJCTIJN
`
`There is nothing magical shoot a laser. It can he thought ofasjust another type
`ol light source. Iteertainly has many unique propeni tliat make it a special light
`source. but these propestiesean be understood without tnonrledgeof sophisticated
`rnatlIemal‘.ica.I tecllniques oreomples ideas. It istlie objective olthis teat loesplain
`theoperationolthelaserina simple, logical approach l'ha1hui|ds fromone con-
`cept to the neittasthe chapters evolve. The oonoepts, M they are developed, will
`he applied to all classes of laser rnflerials, so that the reader will develop a sense
`ol the broad lield ol lasers while still acquiring the capability to study, design, or
`simply understand a specific type of laser system in detail.
`
`DEFINFHDH OF THE LASER
`
`'I'he word laser is an acronym for Light Amplilicilion by Stimulated Emissi-on ol
`Raditlion. The lmer makes use of processes that increase or amplify light signals
`aflerlllose gnals have been genetated by other means. These pm-cemes include
`(I) stimulated emission, is natunfl elfecl that was deduced by consideratinns re-
`lating to lhenliodynamic equilibrium. and {2} C|‘l3'l-lcal feedback {present in most
`
`
`
`
`
`
`
`

`
`lll'I'llC|Ill.I’l.'l'IDH
`
`Clplical resonator or cavity
`A
`
`Amplllyilg medlurn
`
`
`
`5. 1-1 Flllphlielsl
`sdmelnaticoftypical hit
`
`Fully re1|e-sting
`rriror
`
`Parllall-.;1rensm1ting
`rriror
`
`Imers) that is usually pnovided by nlirmrs. Thus, in ils simplest forni, a lmen:on—
`sists of a gain or amplifying medium {erheie stirnulated ernimion occurs], and a
`setofmirrors to feed Ihe Iighthack intolhe alnplitierforcontinued growthofthe
`developing beam, as seen in figtre I-L
`
`5IhI'l.lCI'I"f OF A LASEII
`
`Tlvesinlpliciryofalasercan heunderstoodbgr considering the light from acandle.
`Normally, a hunting candle radiates light in all directions, and therefore illumi-
`nates various objects equally if they are equidistant fmrn the caidle. A. lasertates
`light that would nnnrndly be emitted in all directions, such as from a candle, and
`concentrates that light inlso a single direction. Tllns, iflhe light radifling in all di-
`reofionshumacaruilewerenahedinhiasingleheanolflrediuwelerofthe
`pupil ofyour eye (approxinlalely 3 nun), and ifyml were
`adistanee of
`I In from the candle, then the ligllt inleruily would he |,[I]l.lII1 times a bright as
`the light Ihal you norrnally see radiating from the candle! That is essenliallgr the
`tuiderlying-coneeptofthe operil.i1::II1 -ofalaser. However, acaridle is not Ihe kind of
`medium that prodices amplification, and thus there are no canrle Imers. It takes
`relatively special coruzlitiorns within the [met medium for amplification to occur,
`but i1 islllat cqiahilityoflaking light that would nonlially radisle from assume in
`all l2ll.I'El:lZlClI'B — and ccncentriiing that ligllt into abean traveling in a single direc-
`1ion—Ihai is involved in rnitingalaser. These specid conditions, and Ihe media
`within which they are prmluced, will In described in some deiail in Ihis I:IJol£.
`
`UNIGE PIIOFEIITES OF A LASER
`
`'l'I'eehean1of|iglilger|eruedl:I}ratypical lasercarIha\rernan'_I,rpItJperties1iIata'e
`unique. When oompa1ingIaserpropertiestofl1oseofoiherIightsourees.itr:lJ
`be readily recognized that the values of various puamerers for laser light the:
`gjeailyexeeedoraremuchnmiereslticfivedianfllevaluesfinnumycomnnn
`Iighlsources. We never use lasers for street illumination, orforillulnination within
`our houses. We don't use them for searchlights or flashlights or as headlights in
`
`
`
`
`
`
`
`

`
`IN1'IIDI'.|IJCTIDN
`
`our ears. Lasers generally have a narrower fit.-qrreoegr distribrrtiul, or much higher
`iotenscity, or a much greaterdegree oloolI.imstion, or much shorter pulse duraion,
`lhanlhat atnildale [mm more common lylfloflight sources. Tlteaefure, we do use
`them in. oonrpact disc players, in superrnarket r:h.er:k—ou1 sr:m1r|.eIs,io surveying in-
`struments, and in mediuil appliealiorrss as a surgical Ianife or for welding detadterl
`retinas. We also use them in eomrruroieatiorzm systems and in Iarhr and military
`targeting appljeafiorrs, as well as many other areas. A laser is a specialized light
`source that should be used only when fr: uniquepmpenies are required.
`
`THE IJISER SPECTRUM All} WAVELENGTPES
`
`A portion oflhe e|er:trorrragrreti:r: radiation qreetrum is drawn in Figure I-2 for the
`region emrered by currently existing lasers. Such lasers span the wmrekurglh range
`from the lariofrxert pert ofdme spectrum {I = l,(III1 pro} to the sofl—X—ra}I region
`Ur. = 3 nm), thereby eoverirrg a range of wavnelengtlts ofalrocnt six orders ofrrrag-
`nitude. There are several types ol' units that are used to define laser wavelerrglhs.
`These range from llIlI:l‘lJlIIEl£:l'S|.'II'ITI.ll3l'lI.'IlS {pm} in the inlmmd to nanornetelsfnrn)
`and angstroms {rat} in the visible, ultras-'iolet{UV ), vacuum ultraviolet {VUVL ex-
`treme ullrmriolet {EUV or}CUV'], and sofl—X-ray [SXR] spectral regions.
`
`|‘£IH'ELEHG"I'H I.|llI'I'S
`
`I_r.rm = 1045 In:
`rs: to-“m;
`Inm= [D4 In.
`
`Consequently, I ntieroo {um} : Illlilfllangstrorrrs {ii} : l,{I.'II}naooroete:'s {run}.
`Forearample. green lightbas awarveleogrhoffi 3-: H14 l]'I: =l}.5 run = 5,[I]€IA. =
`SEN) run.
`
`.____
`
`.
`
`_
`HF
`
`I
` _._l___
`
`9”“
`*9 '3"
`Ar
`..
`..
`
`.,
`
`CD
`
`_
`
`__
`
`_.
`
`I
`I
`#21"
`H
`ratge ofva'ioLr5 beers
`
`_
`i
`.
`.. .
`.
`.
`.-
`_ FIR La.-nor:
`
`co,
`
`Far: Infrared
`
`supm tlikpm
`
`N:
`Ruby
`KrF
`Ha-Ne
`mama
`1-In I'.‘.u
`
`sun-I.Hqy
`..
`—
`Lasers
`
`Inlrurtd
`
`Ha Ha
`
`_C~g:s:1m D.r~a_
`nu:
`T|..B.Iz03
`EDP‘ Ill Ray:
`LJi‘rrr\-|cI|eL
`".I'iu|:I|u
`'_.. _-.__.__ j _.__
`1=,.:n1
`3I:HJnm1I:HJnm sunm mnm
`apm
`.. is
`he
`ENERGY {T} --..
`
`
`
`
`
`
`
`

`
`IHTIDBUCTIDH
`
`IIHIELEIIGTH IIEGIDHS
`
`Far infrared: II] to I,tII1 _um;
`mirldle infrared: I to 11) _um;
`near intrared: I}.''.-' to tom;
`visible: 0.4- to I17 run. or 4[I}to ?{I.‘I mo:
`ultraviolet: fl'.2uJI}.r-1 p.m, or2lIlto-1-Illrtm;
`vacuum ultraviolet: 9.] to 0.2 pm, or It'll to Ztllnrn;
`extreme ultraviolet: 10 to It'll] om;
`soft X-ra3rs: ] nm to approximately 211-30 nm {some overlap with EUV].
`
`A BEEF HISTORY OF THE LASER
`
`Cha:rlesTowrres took advantage ofdzre stimulated emission process toconstruct a
`microwave amplifier, refenedtoasamaser. This device pn::Iluce£lacoherenl beam
`of microwaves to be used for communications. The first Ioaser was proriucerl in
`ammonia vapor with the inversion between two energy levelslhat
`at
`a wavelength oi L25 cm. The wavelengths produced in me maserwere compara-
`ble to the dimerrsions -of the device, so exlnq:IJ-lalion to the optical regime — where
`wavelengths were live orders ofmagoitucle smaller— was not an obvionseirtension
`of thfl. work.
`
`In 1953, Townes an-d S-chawlow publisher! a paper concerning theiridem about
`e:rtending the rnaser concept to optical frequencies. They developed the concept
`ofan optical amplitier surronuorle-d by an optical rnirror resonant cavity to allow for
`glowfliottlrehealo. Towoesaodflclrawloweaeh reeeivedaflobel Prime forhis
`worl: in this field.
`
`In 1960, Theodore Maiman of Hughes Research Laboratories produced the
`first laser using aruby crystal as the arnplifreraodallasltlanipu the energy source.
`The helical flashlarnp sunoundert a rod-shaped rub}! cry-stal., and the optical cavity
`waslomiedhyulalingllreflattertalaidsofltnembgrrodwidnahighly reflecting
`material. Aninleaiseledbearnwasohservedtoeroergefromtheesid oflherod
`when the flashlarnp was tired!
`The t'|rs1gasla9erwudevelopedinl96|b}'A..lavan,W. Bennett. and D. Hm"-
`riott. ot Bell Laboratories, using a mixture of helium and neon gases. At the same
`labomtulies, L. F..lohnson and K. Nassau demonstrated the firsl neulymium laser,
`wllichhassirrcebecomeooeoftltemosueliahle Iasersavailable. Thiswas {allowed
`
`in [962 by the first semiconductor laser, demonstrated by R. Hall al the General
`Electric Research I_.:borato|'i. In 1963, C. K. N. Patel of Bell labo|a1oriesdis—
`covered the infrared carbon dioxide laser, which is one of the roost efiicient aid
`powerful lasers available today. Lmer that sa.Ioe year, E. Bell of Spectra Physics
`discovered the lirst ion laser, in l'DBI€l.l.I'}" vapor. In 1964 W. Bridges of Hughes Re-
`search Laboratori discovered the argon ion lmer, and in. I966 ‘W. Silfltflfl, G. ll.
`Fowles, and B. D. Hopkins produced the first blue helium—ca.dnLium metal vapor
`
`
`
`
`
`
`
`

`
`IHTIDDIJCTIDII
`
`laser. ]I|In'ingtltat.san1.eyear, P. P. Sorolzinand I. R..Lanltard ofthe IBM Research
`Laboratories developetlthe firm liquid laser ung anoigmticdyertissolved in am]-
`vent, theieb} leading to the category of broadly tunable lasers. Also at that time,
`W.‘Walleranrlco—worl:e:'s atTl3l.Greporled the litstcoppervaporlaser.
`The first vacuum ultraviolet laser was IB|2I3l'l£d to occur in molecular hydro-
`gen by R. Hodgson ofIBM and independently by IL Waynantet al. oflhe Naval
`Research Laboratories in I971). The lirst of the well—l:norwn rare-gas—ha]irie ear-
`ccinterlasets was observed inxenonfluorideb-}I'.l. J. Ewingandfl. Brauofthe
`Avco—EveIet1 Reseinvch lJ1lJEI'flIDl]r in I975. In that same year, the fits! quantum-
`well Iuer was made in agallium arsenirle semiconductor by I. van der Ziel and
`co—worlters at Bell Iaboratori. In I976, I. M. I. Made; and co-wvorliers H Stan-
`ford Univeasitgr dernonsnated the Iirst free—eler:troIt laserainplilieropelating in the
`inflated at the DD; laser wavelength. In |'Il'9, Walling and co—worlters 5: Allied
`Ch-ernicalcorpnration obtained lJ.I'Dflll}|' tunable laserotnputfrornasolid-statelaser
`material called adeitanrhite, and in I935 the lirst sofl—X—ra3r laser was successfully
`III-EI1IDI1SLfIl[£IliD£il]lglJI}Fl{Ill.l££lSE3lBI]ll]I1l
`D. ltllatthews andalslgenum—
`ber of co—worlt.ers at the lawrence Iivermore Laboratories. In IQEIS, P. Moulton
`discovered the titatitnn sapphire laser. ln l'99l, M. Hasse and co-workers rlievel—
`operl: the lilst blne—green diode laserin ZnSe. In 19943 F. Chpmso and co—worl:ers
`dewaloped tlte quantum cascade liner. In 1996, S. Nakamtuadeveloreii the lirst
`blue ttiotlie laser in GaN—baserl materials.
`
`In l96l, Fox and Li described the existence ofresonant tlansverse modes in
`a laser cavity. That same yea", Boyd and llhrrlon obtained solutions of the wave
`equation for confocal resonator modes. Unstable resonators were detnonstrated
`in 1969 by Krupke and Sony and were described tlteoretically by Siegtnan. Q-
`switching was lirst obtained by h'Ic.C."|ung and I-Iellwarth in 1962 altd described
`later by ‘Wagner and
`The first rnode-locking was obtained by l'IaIgnJ"-‘B,
`Fork. and Pollack in I964. Since then, minty special Ct!‘|."lE)' arrangements, feetfliaclt
`scltetnes, and otherdevices have been developed to improve thecontrol.openiioI1.
`and reliability of lasers.
`
`D"d‘EIlVIEW' OF '|1'lE BDCIK
`
`Isaac Newton described Iigltt as small bodies emitted from shining substances.
`This view was no doubt influenced by the fact that ligllt appears to propagate in a
`line. Efltrinian Huygens. on the other hutd. dmcrilied light as a wave mo-
`tion in which a small source sprearh out in all directions; most observed effects —
`including difliactinn, reflection, and refraction —ca1 he attribute::Ito-the expansion
`ofprimaryr waves and of secondary wavelets. The dual I'lflllI'E of light is still ausc-
`ful concept, wlteaeby the cltoice of particle or wave explanation depends upon the
`effect to be considered.
`
`Section One ofthis book deals with the fundamental wave properties of light,
`including hIl'.a:twe|]'s equations. the interaction of electromagn

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket