throbber
(19) United States
`(12) Patent Application Publication (10) Pub. No.: US 2006/0145811 A1
`Nantz et al.
`(43) Pub. Date:
`Jul. 6, 2006
`
`US 20060145811A1
`
`(54) DUAL RANGE VEHICLE REMOTE
`
`(52) U.S. Cl.
`
`........................................ .. 340/5.72; 340/5.64
`
`(76)
`
`Inventors: John Nantz, Brighton, MI (US);
`Matthew Honkanen, Royal Oak, MI
`(US); Bruce D. Conner, Dearborn, MI
`(US)
`
`Correspondence Address:
`MACMILLAN SOBANSKI & TODD LLC
`720 WATER STREET
`TOLEDO, OH 43604 (US)
`
`(21) App], No;
`
`11/030,658
`
`(22)
`
`Filed?
`
`Jam 6: 2005
`
`Pubhcatlon Classlficatlon
`
`(51)
`
`Int CL
`H04Q 1/00
`G08C 19/00
`
`(2006.01)
`(200601)
`
`(57)
`
`ABSTRACT
`
`A method and system are disclosed for operating a controller
`of and a RKE system to provide for short distance functions
`h
`bl f
`k
`f b
`h
`d-
`f
`
`include receiving a desired type of radio frequency signal;
`actuating a high gain mode of a receiver of the controller;
`detecting a message from an acceptable remote keyless entry
`transmitter; decoding a function code portion of the mes-
`sage; changing the receiver from the high gain mode to a
`lower gain mode if the function code is not a long distance
`function; decoding a remaining portion of the message;
`determining if the remaining portion of the message was
`decoded properly; and performing the requested function if
`the remaining portion of the message was decoded properly.
`
`1
`
`ASSA 1022
`
`1
`
`ASSA 1022
`
`

`
`Patent Application Publication
`
`Jul. 6, 2006 Sheet 1 of 3
`
`US 2006/0145811 A1
`
`54
`
`Preamble
`
`Frame 1
`
`g
`
`/g
`
`/g
`
`Message ID
`
`Function Code Rolling Code Bits 4/
`
`64
`
`55
`
`68
`
`70
`
`2
`
`

`
`Patent Application Publication
`
`Jul. 6, 2006 Sheet 2 of 3
`
`US 2006/0145811 A1
`
`
`
`Sample RF data
`
`'
`
`Is
`
`preamble signal
`detected?
`
`
`
`
`100
`
`102
`
`104
`
`106
`
`
`
`Switch from polling mode to full
`run mode with high gain
`
`Receive message and begin to
`decode
`
`108
`
`sync portion of mesage
`detected?
`
`ls
`
`110
`
`Yes
`
`
`
`Decode message ID and
`function code
`
`3
`
`

`
`Patent Application Publication
`
`Jul. 6, 2006 Sheet 3 of 3
`
`US 2006/0145811 A1
`
`114
`
`Decrease
`receiver
`code for a long distance
`
` function?
`sensitivity
`
`
`
`
`
`Is function
`
`Decode remaining portion of
`message
`
`124
`
`Decode next
`
`message
`
`
`
`112
`
`116
`
`118
`
`120
`
`Was
`
`the message decoded
`properly?
`
`
`
`Was
`
`
`
`additional message
`received?
`
`
`
`Perform requested function-
`
`126
`
`4
`
`

`
`US 2006/0145811 A1
`
`Jul. 6, 2006
`
`DUAL RANGE VEHICLE REMOTE
`
`BACKGROUND OF INVENTION
`
`[0001] The present invention relates to remote keyless
`entry types of systems employed with automotive vehicles.
`
`[0002] Remote keyless entry systems are commonly used
`with automotive vehicles today. Such systems are including
`a wider range of functions that can be performed by the
`remote keyless entry system. For example, not only are the
`conventional lock, unlock, trunk release, and panic functions
`available, but also new functions such as remote engine
`start.
`
`[0003] For certain functions, such as remote engine start,
`it is desirable to allow these functions to be performed while
`the operator is a greater distance from the vehicle than for
`some of the conventional functions. For example, one may
`wish to allow for the remote engine start, door lock, and
`panic alarm functions to be operable when the key fob is as
`far away from the vehicle as two hundred meters. To obtain
`this long rage functionality, the remote keyless entry system
`can be designed to operate at this greater distance.
`
`[0004] Having the greater range of operation for the
`remote keyless entry system, however, may be undesirable
`for certain other remote keyless entry functions. One may
`wish to avoid inadvertently releasing the trunk if the trunk
`release button on the key fob is pressed when one is at this
`long range distance since he will not see or hear the trunk
`release. Moreover, one may not wish to inadvertently unlock
`the vehicle doors when at this longer range since one may be
`out of sight of the vehicle and thus not realize that the doors
`are unlocked. Accordingly, it may be undesirable for door
`unlock or trunk release functions to be operable from the
`same two hundred meter distance. Of course, the shorter
`range functions are still desirable for the remote keyless
`entry system, so operators may wish for these short-range
`functions to be operable only when the operator actuates the
`key fob at a more conventional range of, for example, about
`fifty meters or less.
`
`Some have attempted to overcome this drawback
`[0005]
`by designing their remote keyless entry systems to try and
`detect the distance that the key fob is from the vehicle when
`the button is pressed, and then determine what function, if
`any, to perform based on this detected distance. This may be
`attempted by using received signal strength indicator (RSSI)
`circuitry. But due to environmental conditions, such as
`ambient radio frequency noise, this type of method can be
`very unrepeatableā€”that is, the range is not always consis-
`tently and accurately determined. Such inaccuracy may be
`undesirable for vehicle operators with these types of remote
`keyless entry systems. Thus, it is desirable to have a remote
`keyless entry system that allows for operation of both
`long-range and short-range functions, while overcoming the
`drawbacks of the prior art.
`
`SUMMARY OF INVENTION
`
`[0006] An embodiment of the present invention contem-
`plates a method of operating a controller of a remote keyless
`entry system in a vehicle comprising the steps of: receiving
`a desired type of radio frequency signal; actuating a high
`gain mode of a receiver of the controller; detecting a
`message from an acceptable remote keyless entry transmit-
`
`ter; decoding a function code portion of the message;
`changing the receiver from the high gain mode to a lower
`gain mode if the function code is not a long distance
`function; decoding a remaining portion of the message;
`determining if the remaining portion of the message was
`decoded properly; and performing the requested function if
`the remaining portion of the message was decoded properly.
`
`[0007] An embodiment of the present invention also con-
`templates a method of determining whether to perform a
`remotely requested vehicle function transmitted via an RF
`signal from a remote transmitter to a vehicle, the method
`comprising the steps of: actuating a button on the remote
`transmitter within a predetermined distance from the vehicle
`to cause the transmission of the RF signal, with the RF signal
`having a preamble portion and a message portion; receiving
`the RF signal with a RKE system in the vehicle; actuating a
`high gain mode of the RKE system; determining whether the
`remotely requested vehicle function in the message portion
`is a short distance function; changing the receiver to a lower
`gain mode if the remotely requested vehicle function is the
`short distance function; decoding a remaining portion of the
`message portion; and performing the remotely requested
`vehicle function if the remaining portion of the message
`portion is decoded properly.
`
`[0008] An embodiment of the present invention further
`contemplates a dual range vehicle remote that includes a key
`fob and a remote keyless entry (RKE) system. The key fob
`includes a plurality of buttons, each adapted for indicating a
`desired remote function, and a transmitter capable of trans-
`mitting a signal having a message portion indicative of the
`desired function when one of the plurality of buttons is
`actuated. The RKE system may include a receiver capable of
`receiving the signal, and a controller for setting the RKE
`system in high gain mode, determining if the desired func-
`tion in the message portion is a short distance function,
`changing the RKE system to a lower gain mode if the
`desired function is a short distance function, decoding a
`remaining portion of the message portion, and performing
`the desired function if the remaining portion of the message
`portion is decoded properly.
`
`[0009] An advantage of an embodiment of the present
`invention is that, for certain remote keyless entry functions
`where it is desirable to operate from a long distance, these
`functions may operate at these longer distances, while other
`short distance functions are disabled at such long distances.
`Thus, inadvertent actuation of short distance functions from
`a long distance can be avoided.
`
`[0010] A further advantage of an embodiment of the
`present invention is that the ability to disable the short
`distance functions when the key fob is at a long distance may
`be performed in a consistent and repeatable manner.
`
`[0011] An additional advantage of an embodiment of the
`present invention is that no received signal strength indicator
`(RSSI) or other distance calculating technology is required
`in the operation of this invention.
`
`BRIEF DESCRIPTION OF DRAWINGS
`
`[0012] FIG. 1 is a schematic representation of the vehicle
`and remote keyless entry system, and the ranges at which the
`system operates, in accordance with an embodiment of the
`present invention.
`
`5
`
`

`
`US 2006/0145811 A1
`
`Jul. 6, 2006
`
`[0013] FIG. 2 is a block diagram representing an example
`of a radio frequency transmission from a key fob, in accor-
`dance with an embodiment of the present invention.
`
`a short distance function if it is currently activated (i.e., one
`is pressing the alarm button 46 requesting deactivation of the
`alarm).
`
`[0014] FIG. 3 is a flow chart showing remote keyless
`entry controller operation in accordance with an embodi-
`ment of the present invention.
`
`DETAILED DESCRIPTION
`
`[0015] FIG. 1 schematically shows a vehicle 30 having a
`remote keyless entry system, indicated generally at 32. The
`remote keyless entry (RKE) system 32 includes a controller
`34 in communication with a receiver 36. The controller 34
`
`may be in communication with systems that carry out the
`desired RKE functions, such as a door lock/unlock actuator
`(not shown), a vehicle horn and headlights (not shown), an
`engine ignition system (not shown), and/or a trunk release
`mechanism (not
`shown). These systems will not be
`described in any detail since they are known to those skilled
`in the art. Moreover, the controller 34 and receiver 36 may
`be integral or separate components, and may be comprised
`of various combinations of hardware and software, as is
`known to those skilled in the art.
`
`[0016] Akey fob 38 includes a set ofbuttons, such as, for
`example, lock 40, unlock 42, engine start 44, alarm 46, and
`trunk release 48. Of course, additional or different remote
`functions may be performed by the key fob 38, if so desired.
`For example, power door open and close functions may be
`included on the key fob. The key fob 38 also has a power
`source and other electronic circuitry, including a transmitter
`50, which is capable of transmitting a radio frequency (RF)
`signal 52 in response to the actuation of one of the buttons
`on the key fob 38. The details of the transmitter 50 and other
`electronic circuitry (not shown) and power source (not
`shown) of the key fob 38 will not be discussed in detail
`herein since they are known to those skilled in the art.
`
`[0017] FIG. 1 also provides an illustration of different
`ranges/distances at which the desired RKE functions may be
`operable. That is, when the key fob 38 is within a first
`range/distance D1, it is desirable that the RKE system 32
`receives the RF signal 52 from the transmitter 50 and that all
`of the RKE functions are operable. Between the first range/
`distance D1 and a second range/distance D2, it is desirable
`that the RKE system 32 only perform long distance func-
`tions, while not enabling short distance functions. The actual
`ranges/distances D1, D2 employed by the system can be set
`as desired for a particular vehicle, but may be, for example,
`fifty meters for the shorter range/distance D1 and two
`hundred meters for the longer range/distance D2.
`
`[0018] Long distance functions are those that are desired
`to operate up to the limits of about range/distance D2, while
`short distance functions are those that are desired to only
`operate up to the limits of about range/distance D1. For
`example, door lock, engine start, and alarm may be long
`distance functions while door unlock and trunk release may
`be short distance functions. As an alternative, a function may
`be applied as a long or short distance function depending
`upon whether it
`is being activated or deactivated. For
`example, if so desired, the alarm function may be treated by
`the RKE system 32 (in FIG. 1) as a long distance function
`if it is currently deactivated (i.e., one is pressing the alarm
`button 46 requesting to activate the alarm), but be treated as
`
`[0019] FIG. 2 illustrates a block diagram representing an
`example of the RF signal 52 from the key fob 38 (of FIG.
`1). This RF signal 52 may employ a common format for
`transmitting an RF signal from the key fob 38. The RF signal
`52 may include a preamble portion 54, followed by a first
`frame 56, a second frame 58 and a third frame 60. The
`preamble portion 54 may be just a detectable type of RF
`transmission at a desired frequency and coding, which may
`not be specific to a particular key fob, but that the RKE
`system 32 (in FIG. 1) will recognize as requiring it to wake
`up from its power saving polling mode to a full run mode.
`The first frame 56 preferably contains a first complete
`message 62, with the second and third frames 58, 60 just
`comprising redundant messages (not illustrated) the same as
`the first complete message 62.
`
`[0020] The first complete message 62 preferably contains
`a synchronizing (sync) portion 64, followed by a message
`identifier (ID) portion 66, a function code portion 68, and a
`rolling code bits portion 70. The sync portion 64 merely
`assures that the RKE system 32 has the correct timing for
`reading the RF signal 52 properly. The message ID portion
`66 and function code portion 68 contain information relating
`to the particular function being requested, (i.e., the function
`to be performed based on the button that was pressed on the
`key fob 38). The rolling code bits portion 70 relates to the
`encryption being employed. The messages in the second and
`third frames 58, 60 will just repeat this same information
`contained in the first frame 56. While the RF signal 52 is
`shown with three frames 56, 58, 60 each containing the same
`redundant messages 62, the system can be configured so that
`a greater or lesser number of redundant frames 56, 58, 60
`can be transmitted with each press of a button on the key fob
`38, if so desired.
`
`[0021] FIG. 3 illustrates a method of operating the con-
`troller 34 (of FIG. 1) in the vehicle 30 as it receives a RF
`signal 52 (such as that illustrated in FIG. 2). The controller
`34 typically starts in a polling mode, which reduces power
`consumption during long periods of inactivity. In the polling
`mode,
`it samples RF data, block 100,
`to determine if a
`preamble is detected, block 102. If the sampling of the RF
`data does not detect a preamble, then the sampling of RF
`data in a polling mode continues. If a preamble is detected,
`then the controller 34 switches from a polling mode to full
`run mode with high gain, block 104. The message is then
`received and begins to be decoded, block 106. If no sync
`portion of the message is detected, then the controller returns
`to a polling state and again samples RF data.
`[0022]
`If, on the other hand, a sync portion of the message
`is detected, the message ID and function code are decoded,
`block 110. If the function code is for a long distance
`function, the remaining portion of the message is decoded,
`block 116. If the function code is not for a long distance
`function, the receiver sensitivity is decreased, block 114, and
`then the remaining portion of the message is decoded, block
`116. Thus, for short distance functions,
`the message is
`decoded in a low gain mode. Examples of RKE functions
`that may be long distance or short distance were discussed
`above relative to FIG. 1.
`
`[0023] The switching from high to low gain mode
`accounts for the distance from the vehicle 30 that the key fob
`
`6
`
`

`
`US 2006/0145811 A1
`
`Jul. 6, 2006
`
`38 is when the RKE request is transmitted. Presumably, if
`the rest of the message becomes corrupted after the receiver
`36 is switched to the low gain mode, the user with the key
`fob 38 must be standing farther away from the vehicle 30
`than the range/distance D1, so the short distance function
`should not be carried out. If, in the low gain mode, the rest
`of the message is successfully decoded, then the user with
`the key fob 38 is likely within the range/distance D1 and the
`function should be carried out. Of course, if the function is
`a long range function,
`then the rest of the message is
`decoded in high gain mode, in which case, it is likely to be
`decoded properly if the user with the key fob 38 is within the
`range/distance D2. The levels for high and low gain, and the
`difference between the two, will depend upon various fac-
`tors, including the actual distances one wishes for ranges/
`distances D1 and D2. The setting of levels for high and low
`gain to achieve the desired results are know to those skilled
`in the art and so will not be discussed further herein.
`
`Moreover, while only two levels of gain are employed to
`distinguish only short and long distance functions, there may
`be three levels of gain employed to distinguish short,
`medium and long distance functions, if so desired.
`
`to
`[0024] Consequently, a determination is made as
`whether the remaining portion of the message was decoded
`properly, block 118. If it was not decoded properly, a check
`is made to determine if an additional message was received,
`block 122. If an additional message was received,
`this
`additional message is decoded, block 124, and a determi-
`nation is made as to whether this message was decoded
`properly, block 118. The additional messages may be those
`contained in the redundant frames 58, 60 (illustrated in FIG.
`2). This continues until a message is decoded properly or
`until no additional messages are received. If a message is
`decoded properly, then the requested function is performed,
`block 120, and the routine ends, block 126. If there are no
`additional messages and no messages were decoded prop-
`erly, then the routine ends, block 126, without performing
`any function.
`
`[0025] While certain embodiments of the present inven-
`tion have been described in detail, those familiar with the art
`to which this invention relates will recognize various alter-
`native designs and embodiments for practicing the invention
`as defined by the following claims.
`
`What is claimed is:
`
`1. A method of operating a controller of a remote keyless
`entry system in a vehicle comprising the steps of:
`
`(a) receiving a desired type of radio frequency signal;
`
`(b) actuating a high gain mode of a receiver of the
`controller;
`
`(c) detecting a message from an acceptable remote key-
`less entry transmitter;
`
`(d) decoding a function code portion of the message;
`
`(e) changing the receiver from the high gain mode to a
`lower gain mode if the function code is not a long
`distance function;
`
`(f) decoding a remaining portion of the message;
`
`(g) determining if the remaining portion of the message
`was decoded properly; and
`
`(h) performing the requested function if the remaining
`portion of the message was decoded properly.
`2. The method of claim 1 further including the steps of:
`
`(i) determining if an additional message was received;
`
`(j) decoding the additional message, if the additional
`message was received;
`
`(k) determining if the additional message was decoded
`properly, if the additional message was received; and
`
`(l) performing the requested function if the additional
`message was decoded properly.
`3. The method of claim 2 further including the steps of:
`
`(m) determining if a second additional message was
`received;
`
`(n) decoding the second additional message, if the second
`additional message was received;
`
`(o) determining if the second additional message was
`decoded properly, if the second additional message was
`received; and
`
`(p) performing the requested function if the second addi-
`tional message was decoded properly.
`4. The method of claim 1 wherein step (a) is further
`defined by operating the controller in a polling state.
`5. The method of claim 1 wherein step (a) is further
`defined by receiving a preamble signal.
`6. The method of claim 1 wherein step (e) is further
`defined by the long distance function being a remote engine
`start function.
`
`7. The method of claim 1 wherein step (e) is further
`defined by the long distance function being a door lock
`function.
`
`8. The method of claim 1 wherein step (e) is further
`defined by the long distance function being a vehicle alarm
`activation function.
`
`9. A method of determining whether to perform a
`remotely requested vehicle function transmitted via an RF
`signal from a remote transmitter to a vehicle, the method
`comprising the steps of:
`
`(a) actuating a button on the remote transmitter within a
`predetermined distance from the vehicle to cause the
`transmission of the RF signal, with the RF signal
`having a preamble portion and a message portion;
`
`(b) receiving the RF signal with a RKE system in the
`vehicle;
`
`(c) actuating a high gain mode of the RKE system;
`
`(d) determining whether the remotely requested vehicle
`function in the message portion is a short distance
`function;
`
`(e) changing the receiver to a lower gain mode if the
`remotely requested vehicle function is the short dis-
`tance function;
`
`(f) decoding a remaining portion of the message portion;
`and
`
`(g) performing the remotely requested vehicle function if
`the remaining portion of the message portion is
`decoded properly.
`
`7
`
`

`
`US 2006/0145811A1
`
`Jul. 6, 2006
`
`10. The method of claim 9 further including the steps of:
`
`(h) determining if the RF signal includes an additional
`message portion;
`
`(i) decoding a remaining portion of the additional mes-
`sage portion, if the RF signal includes the additional
`message portion; and
`
`(j) performing the remotely requested vehicle function if
`the remaining portion of the additional message portion
`is decoded properly.
`11. The method of claim 10 further including the steps of:
`
`(k) determining if the RF signal includes a second addi-
`tional message portion;
`
`(1) decoding a remaining portion of the second additional
`message portion, if the RF signal includes the second
`additional message portion; and
`
`(m) performing the remotely requested vehicle function if
`the remaining portion of the second additional message
`portion is decoded properly.
`12. The method of claim 9 wherein step (d) is further
`defined by the short distance function being a door unlock
`function.
`
`13. The method of claim 9 wherein step (d) is further
`defined by the short distance function being a trunk release
`function.
`
`14. A dual range vehicle remote comprising:
`
`a key fob including a plurality of buttons, each adapted for
`indicating a desired remote function, and a transmitter
`capable of transmitting a signal having a message
`portion indicative of the desired function when one of
`the plurality of buttons is actuated; and
`
`a RKE system including a receiver capable of receiving
`the signal, and a controller for setting the RKE system
`
`in high gain mode, determining if the desired function
`in the message portion is a short distance function,
`changing the RKE system to a lower gain mode if the
`desired function is a short distance function, decoding
`a remaining portion of the message portion, and per-
`forming the desired function if the remaining portion of
`the message portion is decoded properly.
`15. The dual range vehicle remote of claim 14 wherein
`one of the plurality of buttons is a remote engine start button,
`and the RKE system is adapted to stay in the high gain mode
`if the desired function is a remote engine start function.
`16. The dual range vehicle remote of claim 14 wherein
`one of the plurality of buttons is a door unlock button, and
`the RKE system is adapted to change to the lower gain mode
`if the desired function is a door unlock function.
`
`17. The dual range vehicle remote of claim 14 wherein
`one of the plurality of buttons is a door lock button, and the
`RKE system is adapted to stay in the high gain mode if the
`desired function is a door lock function.
`
`18. The dual range vehicle remote of claim 14 wherein
`one of the plurality of buttons is a remote engine start button,
`the RKE system is adapted to stay in the high gain mode if
`the desired function is an alarm function and the alarm
`
`function is not currently activated.
`19. The dual range vehicle remote of claim 18 wherein the
`RKE system is adapted to change to the lower gain mode if
`the desired function is an alarm function and the alarm
`
`function is currently activated.
`20. The dual range vehicle remote of claim 14 wherein
`one of the plurality of buttons is a trunk release button, and
`the RKE system is adapted to change to the lower gain mode
`if the desired function is a trunk release function.
`
`8

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket