`
`Exhibit 1015
`IPR2016-00636
`AVX Corporation
`
`
`000001
`
`
`
`APPLICATION NOTE
`
`TECHNOLOGY
`
`AND INNOVATION
`
`IN SINGLE LAYER
`
`CAPACITORS
`
`iIIg_{i<- layer e::p:1eitnr:s' have been nI:uin-
`i'iiL'tl1I‘t‘Li liar II1:III_y_\-'e:irs' Fur high i'reqIIen-
`L'_\'
`l1IiL'I"U\\‘il\-‘t' :Ippiieutim1.s'. The .\‘il‘HI‘JiL'
`puruih-I plate .*itruetnI'e has at(ivzIi'It:Iges over
`Itiiliti-I-.1_\*(-*1‘ ¢.‘:I1‘I;leilnr.~; up to gigz1i1{~.|'l?. i'r('qlIeII—
`vies‘ (hie In its irm-'
`iIItiI.1Ct11I1ce anti low eiieew
`tive .seI'ie5 I'L=5istau'|ce {ESE}. This :u‘ti(.-ie dis-
`L'1!S.‘it‘5 the tfiltiiiillilili method for Iri'.lnnfe1('t1Ir-
`
`in}_{ single iu,\1-'1' eapatciton and tiesmihes :1
`teeiiImin_=_{ie:ti
`innuvul'inn in the iieiti — the
`hurieti single layer ez1pz1L'it<‘>r"'*' (i(‘\-'iI..'(‘.
`
`TRADITIONAL
`SINGLE LAYER CAPACITORS
`
`Tht.‘ ITI-'\1t‘lI1i‘il(.'iIII‘ii'I_E‘_T_ 0i‘ tr:1(iitiI)n'.\i single ia_\-‘-
`er c:1pueil'm's iwgiiis with :.1
`ii]'(‘Li eeralniic 5111)-
`strule wilh Ll typiczli
`[i]i(_'i\'I1(-‘SS 0|‘ (}.(}05''. The
`L-m';uni(' siiiwstmtesa use \'il]'itJtlS tiieieetrie Ibr-
`
`Inn|'.1tiun.<. tiepentiing on the t_\'pe [)i‘C';1I)'clCil'[)]'
`that is heing L-<II1st:‘IIctet.i. Next. imth slifiaees
`(Ii. lhe [in-Ii h'I1i‘.|.'iiI]'&lf(-‘ are Itietaiiizt-ti h_\_-' either
`:1 tiiiek 01' thin Iiim process. Fiiiaiii)‘ the silh-
`st1'.ulI- is Iiinnmnri s:1\\‘e(i into sqllare 01‘ rectan-
`§_{11i21I'ei1ip_'-I. The I'e.snit
`is :1 simple puraiiei
`plate, single hL}'eI' capacitor stI'uetuI'e, as
`simxx-‘n in Figure I. \Vhiie this type of‘ emi-
`'- stnI(;ti(m has sen-‘ed the iIl(illHtr}‘{li1il't* weii inr
`Iuan_v (iL‘L.'2l(it'.‘a'.
`it has sex-‘I-rzal
`di.sad\'zuIt'.1gcs.
`is iiiniteti.
`The e.a1])2tCitz'1IIr:(.-
`To 1.InLierst'auIIi the limits uithe
`
`eqlmtinii for eup;1L'itanL'e
`
`('2 = a.,I{A/d
`
`where
`
`E“ = peI'Initti\'it_\' ()i‘\'a(.-1111111
`K = (ii['i(-‘CiI'iE.' ennstauit (iii the eeruniic
`
`A = (l\-'(’1'i'¢1l}l)il1g .~;III'i'a(-e area of ti Ie npposiiig
`(‘i(‘(.‘iIl'()(i(-.‘S
`(lieieclI'ie tiiiekiies:-; hetween the
`(‘ie(.'tr0(les
`
`(1
`
`|3ecz:1I.s'e therce single |;1,\-‘er L-;1p:u.-itm's nnlst
`Imiilitaliil at L-(*1'taiIi t'hit:kness [hr nieehaliiicai
`
`.*itrengl'l1 purposes, the thiekliess (1 ninst re-
`main ialrgr’, tiic-refine the capacitance is iiniit—
`ed.
`;\ii(‘ll‘II’.|i.'H tn Imlke the C‘.1p:1(‘itUI'S thinner
`than 5 miis pose S(‘\‘(’1"cli prnhieins. Fm‘ exam-
`ple. the 1mm1ii':1L-tliring and processing (at. the
`L-apaeiturs is more [iii.i'i(_'lIit with ii1iIII1t'I‘ sub-
`stmtes; asst-?I:iiJ]ii1g thin capuc-itIJ1's poses proh-
`ierns assnei;-ltetl with t-‘pm?’ wiei~<in§._{: and the
`thin mlpzlt.-it(JI'_~: :1I'c silsceptiifle to breaking 11n-
`(ier {.’0I‘I’1pl'(’SSi\-'{‘
`f(}!'C(? (hiring \\-"ire or rihhoii
`i)()l](iil1§{.
`Singie i1l'\"t-'1‘ capacitors require tun nu1n_\'
`types 0|" (lieit-L-tI‘iL-S. Ch-‘en that the Liiei<‘r.:trie
`tliiekiless It is ecmstmit in tI‘;uiiti¢:|'Iz:i eup2lt-i-
`
`L.-\.\1BERT DI<:\'()I«: .-\3\'i) ALAN Dl~I\'()[i
`
`,u"(.':um'm.'r.‘:‘i mi ]J:’."rf_'I" 1'45}
`
`traditional i(‘(ri1I1t}it,}§2_‘}’. One
`must
`recall
`the .~«'impiif'i<-(1
`
`Presidiu Componrmls Inc.
`San Diego, CA
`
`000002
`
`.\'II(}R()\\~’A\-'E _]()URN:\L I FI:‘.BRU:\B'l’ 2002
`
`Sin,r__{!'c layer.
`I
`Fig.
`par'rn'.!'r:i' pirtm t'(q;rIeiI'r)r:
`
`000002
`
`
`
`MICROWAVE
`AMPLIFIERS
`
`DA YS
`
`to (Iel1'ver'_1_/.’
`
`Visit our Catalog at www.am_|j,_eom
`
`to use your credit card for easy
`
`ordering 84 fast delivery.
`
`AIX-1Lde|iuers exellent specifications,
`
`low pricing 8: fast response.
`
`Time Flies.
`
`TI
`
`call today!
`or visit us online
`
`Communications
`
`‘I000 Auenirla Acaso ‘
`TEIZ 3U5.333_I3n'15
`
`Calnarillu, CA 93012
`Fax: 835.434.2191
`
`www am|j.com
`.
`u....,. an rm
`
`'45
`
`Click LEADnel at mwjournatcorn
`or Circle 8 on Reader Service Can!
`
`APPLICA TION NOTE
`
`hi1'.*~'. 1111-
`
`l1I:UII.li'.lil'iII|'l'1“< |I'.l\':' Inn! in
`
`in‘-
`(.'E}|I.‘stil1It K ill
`\;1Ij' H11‘ L1iL'|E'{‘l]'il'
`Livr In niii-|'
`liar’
`i‘:1ni_{(' Hi. L".Lp.'1L'il;l1IL'i-
`|ll‘l‘(|{'{]
`i:_\' liir mini
`[|.\l‘1"s.
`'|‘]ll‘ :1-silil
`1'.‘-' iimi l1'aiiIiiiim;i[ i';i[l.'1('il:n‘.-s 2Ii‘:' 1II.'ltii-
`l-J'III||
`em |l|1llt_\
`-.19-.
`I‘: iiii'ii't'lI'iL‘ i\'pi'.\'.
`{’ilL'iI
`\\'ii|I Illlilillt‘ t‘[l'I.'i]'i(‘EI]
`]H'11|ll't'-
`ljl’k',
`\\'l|:-II Eli:-\:1|m‘n|'K in in-
`L'I1".i.\'{-ii.
`lI1:.-r‘i- 15:1 ll'.'l(1l‘-l}”- in \\'i|iL'iI
`
`.i"r:.-r.\'l'IJi":' r'Ir'r'h'!'r'r.'l' xfmn‘ :J:‘1'm'I'n"H('('
`1:’
`I'?;_{.
`n'rrrr'u_1{ rrmim.*i'ii_r_{ ar'.‘rr-u n .'rmi'EfiurrrrF .w:'i-IL-jh»
`i'u_i',rr*r m;::r<‘i!n:' ix u.~.'r':f.
`
`-3’ n"3r.'J':':’rl'.\'!'iI=_{r't'Ir1ilrm'
`I"i_r_'.
`:'trprr:'i!m‘ r'm.|.-.-.--.wr'!im:.
`
`lt‘I|i11l‘1".ti|il‘['_ \'iJ“2l£_f(‘ iii‘ iiIi1:~ >1;lIiiiii}.
`:11‘ (‘J [}l('ti:I'
`'.l]'l‘ .\El('l‘if-iL'l'lI.
`Sh:ir'[.\
`'.{l'l’
`[J(J.‘1.*iiE]]{‘
`llIl|'ir|‘_[ Ll?\'.'\':‘]t|-
`H). :15 .H't1|gii-
`i;i_\:'i‘ i'ai1i'.lriir:r'~e Li1'(‘
`t}]>i—
`L".lH_\
`iiiminli-ii
`ii.~.iIi<_{
`l.‘EIllE]||l‘[i\(’
`c-1m\l\. ()i'li‘[| HIt‘1':'Hil]i
`is {lint HIE’
`t'11H.\‘\ rinxi-.\ up liiv .-riiir iiiliiv E]£'\ inn
`t'i'HItiliIi_L{iiir.-ifiii-1‘;i\im1‘lvii‘:-Iii! :11‘
`ii
`r't'(iILL-ml
`\'U|[li‘__[{' 1".i[i1i<_{. Tn {'I)1'|'('t'i
`l'|Ii.*;_ [hr IIiimIIiilt'tI11'i-1'_\'
`ii:1\:- I!”-l'f'('{i
`
`iiJr'l;ii-
`;1pI1Hi*ii—I1'.u'i\
`l'\\'n:~'n1IIh'i:1|:s:
`iixillitm 1:1‘
`:1 i|'£lI1('7lJi{1'.l1 .~iI'.i|)ri|
`iii-—
`\‘iL‘i'. T]Jl‘h'(‘ .~;ni'II[1':arI.\ uH'i*1‘ irvlti-t‘
`
`r'v:im-¢-
`l|n'_\
`IllilllII!-&l(‘l1it';li}iIil}. iml
`flu‘ .'lL‘li\'i.‘
`il1't’El
`.'\.
`iii:-I'i']I_\' I‘:-tliiviiig
`[lit 2:r.'i1ii»\'.'ii1[i-
`l'ill'F£l(‘il':l|1('l'
`Hm-
`Figure 2''.
`.\
`iiliill LiI';l\\'i1'.iL'k fin’ 1i":ll1HiIJ|I'.lJ
`
`in (".lv
`J'l'].'li{'.‘1'
`|&i'\'L'I'L‘ili)ll('H{J1'}i
`>efnu;|i’
`[1il('ili|IIL‘l‘ lE)]{‘I'El||('{’. BI.‘("il|l.\E' nil ~:m:1H
`\".1i‘i'.ll'it)l1_*-
`in tiiv liiK'i('(‘[i'ii‘ liiivixrii-.~..s
`ii. Ami
`iwL".i1IHi' Haw vxiivi
`tiii'[:*i'lr'ii'
`
`wail.-+t'.I1i[ ('ill|
`I[|;1]IIE|Iill‘tI|I'l'I'?i
`
`lliv [‘Jl'1'!L‘{'.\'.\.
`iii
`\';ir_\
`|I;I\v [J:‘{'I|
`|r>T'L'I’ti
`in
`
`'.ll|_il|.\i lIu'ui‘i';1.\ in i:I‘r]:'I' Ir; icutiiriui
`[iw {".l1L1(‘ii:Il|E_'('
`\".LiIIi‘_ Tiii-< is (‘um-
`|||tHIl\E]tI1iL'l1\l'ilFIl'1'\:lI\il|l£Li|H'.\Hi'
`Y llllll-|{‘l|..\-i(JI| L-]||1'iII'_[ iin- £1iL'i1t'__f lJ[il'1".l-
`Hull.'|'ii:-1'.-willruinlw.i[J1'm]I1:-E
`\\|'i::.-i-xi/.1-\:L1‘ii-~; iiwii liii
`l:u|::1_L';liI~—
`
`TABLE I
`SUMMARY or caiwvuc DlEI.EC|'RlCS
`
`I Class I
`N l"( }«’'(I{ N}
`High Q i I’u1'ci=.|.ii|i|
`Nl’()r’{.'(){Z Shin-:|;1I'([
`
`ill -20
`
`Sn-Si:
`
`. XP( }.r’(:( N; Fihlllilulli
`
`30- I on
`
`N50
`_\’l.'ill
`X220
`f\'.'}I3lJ
`N-ITU
`-.\5T."S(l
`NJSUU
`- NZQINI
`N1-.‘}(llI
`N-WIN]
`
`Class I!
`
`Q XTH
`Class III
`
`e 251.7
`
`; Y5\'
`
`T{J—9lI
`-‘a‘(I—|UlI
`S5--Iilfi
`.‘i(J—l ill
`1li(l—|2I}
`i2{J—|—}lJ
`]$J{l-—2llJ
`-ill(]—fi'l'J{l
`(ii l{J—«‘iUli
`oSlJlJ— II]-{ll}
`
`;”-I100--Jiiflilfl
`
`Iin:on—i-moon
`
`000003
`
`cs;-:.si<.-_~?'—‘§=T:3~".‘~"':-*7‘
`1-*3‘-‘»f—l:.;cc:.rn.'r~—
`
`--55”(_I Ir) +12:':"'(I
`
`U p])I'i'| :30 [:[:1I1.="{f 01'
`+90 ppln :.'}I1I1J[:IIL-""{.'
`
`{Ippm1-S3(JIi11I|1.-“(T
`
`0 ppm :30 ppnifll
`
`—SlI1‘J[)n| :.‘3(]pp|1i.4"‘[I
`--l:"':UpprI1:3(lm1|i|r""[£
`-21!!! ppm :30 ppinfll
`-5330 ppm :60 ppmr"(I
`—-ITUIEIIIII:|3{]I1I1Il1.-Mt:
`--75!! ppm zliil ppII|.r"'(I
`—13[)l’l1111|'n:3Ul]|J}1I1u"'(I
`—?.2(H|pp|I| :.'3Ul'lppI1|-*"‘(.'
`-3.‘)!!! ppm :50!) pp1i|r”'(I
`—$TU(l ppm 151)!) ppinffl
`—:J::‘(I tn + 125°C
`
`2 1 .")'Ii'r
`
`\.':l)‘i('.'l IS
`
`+2:2'.‘}{r-~3fi'2£
`E+ I 0°C [0 +«"}5°( I1
`+229? -32‘?
`[+3U°(_: In +-.‘$5°(."
`
`\ll(']{lJ\\'.\\'[C_[(}l'Ii\-\I.I l"I5.lII§1.\li'l ‘.3[J(l:1
`
`000003
`
`
`
`000004
`
`
`
`APPLICA TION NOTE
`
`has a dielectric. constant K equal to
`300. with a Q near 150 at 1 M Hz.
`Class 2 materials are those whose
`
`dielectric constants show a greater
`variation with temperature and volt-
`age. Their dielectric constants are
`greater than that folintl in Class 1 ina-
`terials, but their Q is lower. Capaci-
`tors made with these materials are
`suited for bypass, decoupling and DC
`blocking applications. To be included
`in Class 9.. the material must have a
`temperature coellicicnt (TC) that is
`less than 22 percent from -55“ to
`+1:25°C. XTH ceramic, for example.
`has a TC that is within 15 percent
`from —55° to +1.‘25°C, a Q near N10 at
`1 kHz and a dielectric constant of
`4000.
`Class 3 materials have Llielectric
`
`constants that are even greater than
`those found in Class 2. but with the
`disadvantage of even lower Q and less
`temperature. time and voltage stabili-
`ty. Capacitors made with these mate-
`rials are suitable for applications
`where dielectric loss. insulation resis-
`tance and capacitance Stahility are
`not of major importance. The EIA
`
`-ss
`
`25
`‘IEIIPEIATUBE cc}
`
`‘ Fig. 4 Change in capacitance vs.
`temperatrtrefor two classes ofdielecrric
`material.
`
`the low dielectric constant (10 pF, for
`example). but can be made with very
`tight tolerances clue to the overall ce-
`ramic stability (i0.1 pF, for example).
`This type of dielectric is designatecl
`by the familiar codes NPO, COC and
`negative temperature coefficient se-
`ries N80 to N4700. A typical porce-
`lain NPO dielectric has a dielectric
`
`constant K equal to 10, with a Q near
`10,000 at
`1 MHZ. A typical N4T00
`
`QUIET DROS - CLEAR COMMUNICATION
`
`The desire for low noise
`Dielectric Resonator
`Oscillators to enhance
`clear communication,
`spectral purity, contin-
`ues. Typical phase noise
`@ 100 KHZ offset of
`*126 dBc/Hr.
`for 10
`CH2, -115 for 18 C112,
`and -108 for 38 CI-I2
`
`are being ineasured on
`our production DROs.
`Harmonics measure he-
`tween -50 dBc and -80
`
`dBc. Spurious are less
`than -90 dBc with —120 dBc available by request. Designs under way
`promise to reduce phase noise even more significantly. Check the Lucix
`Website for outstanding features of our DROs, such as low power consump-
`tion, very small size, high output power, ultra stability. Tell us your special
`needs. At Lucix, we Listen.
`
`Luc'
`
`800 Avenida Acaso, Unit E
`
`Camarillo, CA 93012
`Phone:
`805-98?-6645
`
`Fax:
`805-987-6145
`c OFF a ration Website: www.Iucix.com
`
`Click LEADne‘l at Iiiwlollrnalazom or Circle 65 on Reader Service Card
`000005
`
`defines Class 3 materials as those
`
`with temperature variation greater
`than :22 percent from -55” to
`125°C. These materials can typically
`exhibit as much as 82 percent capaci-
`tance drop at 85°C and have a
`near
`40 at
`1 kHz; these materials are des-
`ignated by the familiar codes Z-5U
`and Y5\-".
`Class 4 ceramic dielectrics are
`those that utilize 1'educetl titanate cc-
`rainics combined with an insulating
`barrier layer. This ceramic is unlike
`other commonly nsed ceramic di-
`electrics in the multi-layer or single
`layer ceramic capacitor industry be-
`cause it is based on large. semicon-
`ducting grains combined with oxide
`layers on the surface. This type of
`material is capable ofgiving a high di-
`electric constant with a stable tem-
`perature coefticient. but the perfor-
`mance of the material can be limited
`by the resistivity of the semiconduct-
`ing grains of ceramic. tlistorically this
`has limited the usable frequency
`range of the finished capacitors (see
`US patent it 4761711).
`Given :1 specific size and value. the
`BS LC technology often allows capac-
`itors to be made with a dielectric
`class of material that the traditional
`technology would not permit. What
`follows is a summary of comparative
`testing of two 0.035 in.3, 1000 pt’ sin-
`gle layer capacitors. One is made with
`the traditional technology using a
`class 3, Y5\-’ dielectric, while the oth-
`er is made with BSLC technology us-
`ing the class 2, XTR material. High
`t'req1ienc}«‘ tests were run at room
`temperature and at 85°C. The reader
`should keep in mind that. at 85°C,
`the capacitance of the XTH material
`has dropped less than 15 percent
`while the Y5V has dropped as much
`as 85 percent. The difference is
`shown graphically in Figure 4.
`
`IMPACT ON MICROWAVE’
`mm—WAVE PERFORMANCE
`
`The temperature dependence of
`the Y5V material will affect the. Ini-
`crowave/inm-wave performance of a
`capacitor and. depending on the ap-
`plication, the impact u'na_\_=' be signifi-
`cant. For an approximately 1.0 nF ca-
`pacitor, toward the lower end of the
`frequency spectrum, the series reso-
`nance is at issue. At this freqtiency,
`the phase shift through the capacitor.
`that is, the phase of the scattering pa-
`
`3-IICB{)WA\’E JOURNAL I FEBRUARY 2002
`
`000005
`
`
`
`
`
`
`
`000006
`
`
`
`as l-i-20) are not as strong. Most impor-
`tantly, an increase in insertion loss of
`up to 0.5 dB occurs at each reso-
`nance. At 25°C. however, the capaci-
`tor shows oniy a single, much less oh-
`vious resonance near 2.2 CH2; as ex-
`pected due to the higher value for the
`dielectric constant, it occurs approxi-
`mately (5.3l“3 lower in frequency
`than the first resonance at 85°C. The
`XYR part exhibits no discernable
`change in the broadband response
`over temperature.
`The cavit}-' resonance behavior can
`he further examined by inspection of
`the 5“ response with the capacitors
`mounted in a shunt (bypass) configu-
`ration. The 85°C data for the Y5V ca-
`
`pacitor shows the resonant frequen-
`cies being nearly equal to those mea-
`sured in the series configuration, but
`the drop in the reflection coefficient
`(51,) is more pronounced than the
`corresponding structure for S2, in the
`series configuration (see Figure 7).
`The cause of the apparently amplified
`effect is due to reduced loading on
`the capacitor to ground or 0 Q for the
`shunt case versus 50 Q for the series
`
`case. The parallel resonance near 2
`CH2: in the 25°C data is likewise
`
`more evident in this configuration.
`The temperature-stable XTR material
`exhibits nearly constant and monoto-
`nic behavior across the band. with lo-
`cal variation in ISHI on the order of
`i0.l5 to 0.20 dB.
`
`As noted, the cavity effect mani-
`fests itself as a parallel resonance. For
`the Y5V capacitor at 25°C, and across
`the temperature range for the X78
`part, the resonance is a low Q re-
`sponse whose effect diminishes with
`increasing frequency; for the shunt
`coniiguration the resonance is only
`discernahle by broad peaks in 531,
`which were generally at the -30 dB
`level and below. At 85°C the Y5V ca-
`pacitor has noticeable power dissipa-
`tion that leads to the drops previously
`illustrated. which corresponded to
`more narrow peaks in S21 at the -10
`to -15 dB level (see Figure 8). Tlius,
`the stable capacitance and quality
`factor of the XTH material results in
`monotonically varying broadband
`performance. at the expense of some
`increase in loss. For the YSV capaci-
`tor. the cavity resonance effect in-
`creases with temperature, leading to
`
`[('.'mirinm.>(." on page 152}
`
`MICROWAVE JOUHNAL I FEBRUARY 2002
`
`- APPLICATION NOTE
`
`—- YSV, 15°C —Y5V, 85°C
`—- I'll, 25°C -—X‘.fR, 85°C
`
`-—-— YSV, 25°C -—Y5V, 85°C
`— KTR. 25°C -—X'fIl, 85°C
`
`“-_i=§,_
`
`up
`
`is ze_.;s as 35 do
`
`'.':"
`.
`.r-
`ri.-~_..
`
`—
`
`"1_,iI' 15 1'0 25 so as no
`
`A Fig. 7 Magilitude of S I 1. fort: shunt-
`nwunterl 0.9 nE }'5V capacitor and 0 1.0 :11’,
`X7R capacitor measured at 25° and 85°C.
`
`A Fig. 8 Magllitude o_fS9, for a shunt-
`mounted 0.9 RF, YSV capacitor and a 1.0 RF,
`X711 capacitor measured at 25° and 85°C.
`
`theoiy, the predicted resonant fre-
`quencies will occur at
`
`fl1'I’II1 :
`
`where a, b, c are the capacitor dimen-
`sions, measured here as 30 X 35 X 4
`n1ils3. For c < a < b, the dominant
`
`mode frequency is fun and by cquat—
`ing this to 4.74 CH2, :1 relative di-
`electric constant of approximately
`2990 is obtained. This dielectric con-
`
`stant corresponds to a capacitance of
`0.179 pF, very close to the measured
`low frequency value of 0.183 pF at
`85°C. Subsequent resonant frequen-
`cies at 9.1 and 13.3 CH9: appear to
`correspond to {.220 and {W}, indicating
`that intermediate cavity effects (such
`
`Designers and Manufacturers of High Power
`RF and Microwave Ampli fiers
`
`LC
`
`ommunication Products
`
`ClIdILEABne‘IatmvtjoumaI.coInnrClrde95onlIeadel'5e!vloeCa|1l
`Seel.lsaICI'IABootlI23I6
`
`000007
`
`000007
`
`
`
`— YSV, 25'C —‘l'5V, 35°C
`—~ XFR, 25"C —X7R, 85"‘C
`
`.._.___
`9 ll)
`
`a
`
`,_3 _.._._.. .
`o
`1
`z
`
`..-_ -
`;
`1'
`5
`3 4 5
`FIlEQUENCYfG.|‘|x)
`
`_
`
`,
`
`A Fig. 9 ;\I(l_L{III'."i'.l|‘!'(? o_f.‘s'”fr;rr.- .sJ1unr—:::rmu.*m'I‘J.$)nE }'5\-'
`r‘aprrc':'fur as H flrm'a‘iuu rJffrer;::rer:r‘y and I{fn'|_fJe‘!l'fIl'lH‘{’ (in M‘'(.' steps).
`
`15 20 35 39 35 4.9
`1.3
`FREQUENCF ‘GR’,
`
`prmmllm-L=Ll |‘I'(‘t|ll{‘I}L'_\' vuI‘i:1tit:1I {Fig-
`ure 9). The I-{Ti-L-ts are .\‘llllII11:1I'i'£.t‘(]
`in Figure 10. \\']1ich .~;|m\\'s the in.-+5
`fiu.-tur 1_l—|.‘s'Hl9 — [SQII31 I'm‘ the shunt
`L‘&11):lL'ih>I'
`III(’:lSlI[‘(-’l‘1l('I1fS and the
`Hll'{)1I§_'_ [wziks in po\\'m' di.ssip'.1timI fut‘
`the -.‘>'5”(.I_ \'5\' data.
`
`CONCLUSION
`
`www
`
`I
`
`I
`
`n |
`
`:0r
`
`I
`
`IF ONE OF OUR THOUSANDS OF
`CATALOG PARTS DO NOT MEET
`YOUR REQUIHEMEN-rSwEw|LL
`
`DESIGN YOUR TRIMMER CAPACH-OR
`
`Thv buried 5i1|g!L* |:1_\‘(-*1‘ c;1paucilm'
`t't?L‘}1I|t:|:1§{\'
`I111-*d}<5 the il1(llI5tI"\‘-\\'ili[‘.
`pmtlm-l n|'fi--1"iI1ghu1‘:IugL:nc*ih'. \\'|1(-r(-*
`1):‘:-x-'i::II_~;i_\' L>u11.~;trz1in(*t} h_\' tf;t(1iti:):1;1I
`
`11I:1I1I1f:1t-t111'm"s part sizes. E_‘11pdL'itill1('(‘
`
`\':d1|¢-5. L.-<n'1'(-spundillg di(’lt-’(_'tl'iL' Ina-
`tvriu] {)lT(‘f'iIlf__{S and high I‘rer]11e|1c‘v
`pt-WI}n‘n1zlI1(-v. (‘ml
`llS(’l'.\ mm" luau‘ ;1
`set (ll. im-;11IiII_LI_|'I|I L.-Imit-es.
`l‘nI‘z1mmInt
`in this new s'<-‘I:--1.-tim1 pr'U('(*!i_*;
`is cv-
`rumic divlt-(rtI'ic Imtft-rial]; Hul 1:.~;e|'.~&
`(“.111 mm-'
`t.'lIt‘HJSl.’
`llf;‘l\\'(‘(‘ll stalndard
`.x'i11gIe l;1_\‘t'1' c-.1p;tcit:J1's.' m‘ those in Incl-
`t{-'1' L'iztssL'.\‘ of l1Itlt{'l‘i£ll.‘a'
`IlHiIl_L[
`the-'
`BSI..(I t('L'i1I1IJl{)g}'. This Iktct {JH-E'I‘!«'
`m-~u' dI..’}_{|'(‘l'.‘i of fret-dnnl tn the indus-
`hj' um] \\'iil tlrive aultiilimzzll {1n||paI'u-
`ti\'{= stllniivs til‘ pt-1'['urII'I:tI1L'a-.
`
`ACKNOWLEDGMENTS
`The :milm1':-;
`\\'(ll_I|(]
`Iikt-r to Hmnk
`l\lndt*|ithi(-.~‘. Inc. for flu.-i:'\‘;1|u:1hlL= as-
`Si.‘§t£1Il(‘{‘ with mic |‘n\\-‘;1\‘t* L-||'.11‘au't<-.*1‘izu~
`
`rim: and clatau1I:1l_\-"sis. I
`
`Lambert Devoe ix rt _umn’ru'f rmuuJ,I_{rr EH”!
`.”rr'.s-in|'r'r- ("r-mpmu'ul'.\' Inn. r('hr'n= hr’ .‘:m.'
`ra':::'L‘r':f_fi1r'.w‘I':'H y:*rn‘~'. Hr‘ n"mM.- H B.'\' n’r':.{:‘r'¢’
`f}'r=IIu Nu" .'|Ir.I.\-.m:'h!m'!h .‘n.\'l'H'ui'r‘ :_:f'."r'i.'hIur:J'u;_'y.
`‘1"l'c' is r'rr—im'r'urm':gr.'J"u' hm'i:*r.|’ -.-i:r\*_{r':' J'r.45r.'r
`Fl':I';lIIIIJ'4.|gI!"‘.
`
`Alan Devon in rm m1;{iru'u'riw_{ rurumguw H M:
`.F'!'£'%I'{!'i':J (":JIul;JrIIir*nf.\' Fur‘ , H'l‘h":'r' hi‘ J'm.\
`.
`r1.':n'R‘:'r.I’_,‘m' I3 fl.fI.':‘l'J'.5'. Hr J'mMx b3 .-mu’ .'II.‘i
`:.":';[:'¢'t'\fl'rriia Nu’ .'1.F(:.-c.\'r.:r'.’:|'.r-gr-‘H.-.' hr.|.'H!ru'I'u]r
`'.[i-g-.|';:1.;}'n_v_{y. Hr ix(‘H-fnI'i'i:Ih1J"rfflfht‘.’H:i‘fr’«;u‘
`.w'u_-_'1’r*I'rrg_:r'a‘h'<'»‘r::r:i'u;;ymm’h::!r3.vxE"I':::'rJ:’
`;Jr1h'r:f_\-.'.x-mm’ m'r"1::'::rhHg3'i:J !.:l:".f!':’.M u_f
`(‘r-mrml-‘ n":'t'i:'£'x.
`
`_
`
`.
`
`.
`
`i
`1
`
`.
`
`-
`.
`The -n.‘-mm”. Capacitor Company
`
`.
`
`Q
`
`
`Road . Denvme, NJ 07834
`973.586.35.85 0 _ Fax: 973.586.3404
`9-mail: info@voltronicsco_[p.c_om
`
`Clidt LEADnet at mw]ouma|.I:o111 or Clrde 140 on Reader Service Card
`000008
`
`5|1CRU“':\\'E JUUHK-'U. I I’15531‘.-\}“' 3003
`
`000008
`
`