throbber

`
`Exhibit 1015
`IPR2016-00636
`AVX Corporation
`
`
`000001
`
`

`

`APPLICATION NOTE
`
`TECHNOLOGY
`
`AND INNOVATION
`
`IN SINGLE LAYER
`
`CAPACITORS
`
`iIIg_{i<- layer e::p:1eitnr:s' have been nI:uin-
`i'iiL'tl1I‘t‘Li liar II1:III_y_\-'e:irs' Fur high i'reqIIen-
`L'_\'
`l1IiL'I"U\\‘il\-‘t' :Ippiieutim1.s'. The .\‘il‘HI‘JiL'
`puruih-I plate .*itruetnI'e has at(ivzIi'It:Iges over
`Itiiliti-I-.1_\*(-*1‘ ¢.‘:I1‘I;leilnr.~; up to gigz1i1{~.|'l?. i'r('qlIeII—
`vies‘ (hie In its irm-'
`iIItiI.1Ct11I1ce anti low eiieew
`tive .seI'ie5 I'L=5istau'|ce {ESE}. This :u‘ti(.-ie dis-
`L'1!S.‘it‘5 the tfiltiiiillilili method for Iri'.lnnfe1('t1Ir-
`
`in}_{ single iu,\1-'1' eapatciton and tiesmihes :1
`teeiiImin_=_{ie:ti
`innuvul'inn in the iieiti — the
`hurieti single layer ez1pz1L'it<‘>r"'*' (i(‘\-'iI..'(‘.
`
`TRADITIONAL
`SINGLE LAYER CAPACITORS
`
`Tht.‘ ITI-'\1t‘lI1i‘il(.'iIII‘ii'I_E‘_T_ 0i‘ tr:1(iitiI)n'.\i single ia_\-‘-
`er c:1pueil'm's iwgiiis with :.1
`ii]'(‘Li eeralniic 5111)-
`strule wilh Ll typiczli
`[i]i(_'i\'I1(-‘SS 0|‘ (}.(}05''. The
`L-m';uni(' siiiwstmtesa use \'il]'itJtlS tiieieetrie Ibr-
`
`Inn|'.1tiun.<. tiepentiing on the t_\'pe [)i‘C';1I)'clCil'[)]'
`that is heing L-<II1st:‘IIctet.i. Next. imth slifiaees
`(Ii. lhe [in-Ii h'I1i‘.|.'iiI]'&lf(-‘ are Itietaiiizt-ti h_\_-' either
`:1 tiiiek 01' thin Iiim process. Fiiiaiii)‘ the silh-
`st1'.ulI- is Iiinnmnri s:1\\‘e(i into sqllare 01‘ rectan-
`§_{11i21I'ei1ip_'-I. The I'e.snit
`is :1 simple puraiiei
`plate, single hL}'eI' capacitor stI'uetuI'e, as
`simxx-‘n in Figure I. \Vhiie this type of‘ emi-
`'- stnI(;ti(m has sen-‘ed the iIl(illHtr}‘{li1il't* weii inr
`Iuan_v (iL‘L.'2l(it'.‘a'.
`it has sex-‘I-rzal
`di.sad\'zuIt'.1gcs.
`is iiiniteti.
`The e.a1])2tCitz'1IIr:(.-
`To 1.InLierst'auIIi the limits uithe
`
`eqlmtinii for eup;1L'itanL'e
`
`('2 = a.,I{A/d
`
`where
`
`E“ = peI'Initti\'it_\' ()i‘\'a(.-1111111
`K = (ii['i(-‘CiI'iE.' ennstauit (iii the eeruniic
`
`A = (l\-'(’1'i'¢1l}l)il1g .~;III'i'a(-e area of ti Ie npposiiig
`(‘i(‘(.‘iIl'()(i(-.‘S
`(lieieclI'ie tiiiekiies:-; hetween the
`(‘ie(.'tr0(les
`
`(1
`
`|3ecz:1I.s'e therce single |;1,\-‘er L-;1p:u.-itm's nnlst
`Imiilitaliil at L-(*1'taiIi t'hit:kness [hr nieehaliiicai
`
`.*itrengl'l1 purposes, the thiekliess (1 ninst re-
`main ialrgr’, tiic-refine the capacitance is iiniit—
`ed.
`;\ii(‘ll‘II’.|i.'H tn Imlke the C‘.1p:1(‘itUI'S thinner
`than 5 miis pose S(‘\‘(’1"cli prnhieins. Fm‘ exam-
`ple. the 1mm1ii':1L-tliring and processing (at. the
`L-apaeiturs is more [iii.i'i(_'lIit with ii1iIII1t'I‘ sub-
`stmtes; asst-?I:iiJ]ii1g thin capuc-itIJ1's poses proh-
`ierns assnei;-ltetl with t-‘pm?’ wiei~<in§._{: and the
`thin mlpzlt.-it(JI'_~: :1I'c silsceptiifle to breaking 11n-
`(ier {.’0I‘I’1pl'(’SSi\-'{‘
`f(}!'C(? (hiring \\-"ire or rihhoii
`i)()l](iil1§{.
`Singie i1l'\"t-'1‘ capacitors require tun nu1n_\'
`types 0|" (lieit-L-tI‘iL-S. Ch-‘en that the Liiei<‘r.:trie
`tliiekiless It is ecmstmit in tI‘;uiiti¢:|'Iz:i eup2lt-i-
`
`L.-\.\1BERT DI<:\'()I«: .-\3\'i) ALAN Dl~I\'()[i
`
`,u"(.':um'm.'r.‘:‘i mi ]J:’."rf_'I" 1'45}
`
`traditional i(‘(ri1I1t}it,}§2_‘}’. One
`must
`recall
`the .~«'impiif'i<-(1
`
`Presidiu Componrmls Inc.
`San Diego, CA
`
`000002
`
`.\'II(}R()\\~’A\-'E _]()URN:\L I FI:‘.BRU:\B'l’ 2002
`
`Sin,r__{!'c layer.
`I
`Fig.
`par'rn'.!'r:i' pirtm t'(q;rIeiI'r)r:
`
`000002
`
`

`

`MICROWAVE
`AMPLIFIERS
`
`DA YS
`
`to (Iel1'ver'_1_/.’
`
`Visit our Catalog at www.am_|j,_eom
`
`to use your credit card for easy
`
`ordering 84 fast delivery.
`
`AIX-1Lde|iuers exellent specifications,
`
`low pricing 8: fast response.
`
`Time Flies.
`
`TI
`
`call today!
`or visit us online
`
`Communications
`
`‘I000 Auenirla Acaso ‘
`TEIZ 3U5.333_I3n'15
`
`Calnarillu, CA 93012
`Fax: 835.434.2191
`
`www am|j.com
`.
`u....,. an rm
`
`'45
`
`Click LEADnel at mwjournatcorn
`or Circle 8 on Reader Service Can!
`
`APPLICA TION NOTE
`
`hi1'.*~'. 1111-
`
`l1I:UII.li'.lil'iII|'l'1“< |I'.l\':' Inn! in
`
`in‘-
`(.'E}|I.‘stil1It K ill
`\;1Ij' H11‘ L1iL'|E'{‘l]'il'
`Livr In niii-|'
`liar’
`i‘:1ni_{(' Hi. L".Lp.'1L'il;l1IL'i-
`|ll‘l‘(|{'{]
`i:_\' liir mini
`[|.\l‘1"s.
`'|‘]ll‘ :1-silil
`1'.‘-' iimi l1'aiiIiiiim;i[ i';i[l.'1('il:n‘.-s 2Ii‘:' 1II.'ltii-
`l-J'III||
`em |l|1llt_\
`-.19-.
`I‘: iiii'ii't'lI'iL‘ i\'pi'.\'.
`{’ilL'iI
`\\'ii|I Illlilillt‘ t‘[l'I.'i]'i(‘EI]
`]H'11|ll't'-
`ljl’k',
`\\'l|:-II Eli:-\:1|m‘n|'K in in-
`L'I1".i.\'{-ii.
`lI1:.-r‘i- 15:1 ll'.'l(1l‘-l}”- in \\'i|iL'iI
`
`.i"r:.-r.\'l'IJi":' r'Ir'r'h'!'r'r.'l' xfmn‘ :J:‘1'm'I'n"H('('
`1:’
`I'?;_{.
`n'rrrr'u_1{ rrmim.*i'ii_r_{ ar'.‘rr-u n .'rmi'EfiurrrrF .w:'i-IL-jh»
`i'u_i',rr*r m;::r<‘i!n:' ix u.~.'r':f.
`
`-3’ n"3r.'J':':’rl'.\'!'iI=_{r't'Ir1ilrm'
`I"i_r_'.
`:'trprr:'i!m‘ r'm.|.-.-.--.wr'!im:.
`
`lt‘I|i11l‘1".ti|il‘['_ \'iJ“2l£_f(‘ iii‘ iiIi1:~ >1;lIiiiii}.
`:11‘ (‘J [}l('ti:I'
`'.l]'l‘ .\El('l‘if-iL'l'lI.
`Sh:ir'[.\
`'.{l'l’
`[J(J.‘1.*iiE]]{‘
`llIl|'ir|‘_[ Ll?\'.'\':‘]t|-
`H). :15 .H't1|gii-
`i;i_\:'i‘ i'ai1i'.lriir:r'~e Li1'(‘
`t}]>i—
`L".lH_\
`iiiminli-ii
`ii.~.iIi<_{
`l.‘EIllE]||l‘[i\(’
`c-1m\l\. ()i'li‘[| HIt‘1':'Hil]i
`is {lint HIE’
`t'11H.\‘\ rinxi-.\ up liiv .-riiir iiiliiv E]£'\ inn
`t'i'HItiliIi_L{iiir.-ifiii-1‘;i\im1‘lvii‘:-Iii! :11‘
`ii
`r't'(iILL-ml
`\'U|[li‘__[{' 1".i[i1i<_{. Tn {'I)1'|'('t'i
`l'|Ii.*;_ [hr IIiimIIiilt'tI11'i-1'_\'
`ii:1\:- I!”-l'f'('{i
`
`iiJr'l;ii-
`;1pI1Hi*ii—I1'.u'i\
`l'\\'n:~'n1IIh'i:1|:s:
`iixillitm 1:1‘
`:1 i|'£lI1('7lJi{1'.l1 .~iI'.i|)ri|
`iii-—
`\‘iL‘i'. T]Jl‘h'(‘ .~;ni'II[1':arI.\ uH'i*1‘ irvlti-t‘
`
`r'v:im-¢-
`l|n'_\
`IllilllII!-&l(‘l1it';li}iIil}. iml
`flu‘ .'lL‘li\'i.‘
`il1't’El
`.'\.
`iii:-I'i']I_\' I‘:-tliiviiig
`[lit 2:r.'i1ii»\'.'ii1[i-
`l'ill'F£l(‘il':l|1('l'
`Hm-
`Figure 2''.
`.\
`iiliill LiI';l\\'i1'.iL'k fin’ 1i":ll1HiIJ|I'.lJ
`
`in (".lv
`J'l'].'li{'.‘1'
`|&i'\'L'I'L‘ili)ll('H{J1'}i
`>efnu;|i’
`[1il('ili|IIL‘l‘ lE)]{‘I'El||('{’. BI.‘("il|l.\E' nil ~:m:1H
`\".1i‘i'.ll'it)l1_*-
`in tiiv liiK'i('(‘[i'ii‘ liiivixrii-.~..s
`ii. Ami
`iwL".i1IHi' Haw vxiivi
`tiii'[:*i'lr'ii'
`
`wail.-+t'.I1i[ ('ill|
`I[|;1]IIE|Iill‘tI|I'l'I'?i
`
`lliv [‘Jl'1'!L‘{'.\'.\.
`iii
`\';ir_\
`|I;I\v [J:‘{'I|
`|r>T'L'I’ti
`in
`
`'.ll|_il|.\i lIu'ui‘i';1.\ in i:I‘r]:'I' Ir; icutiiriui
`[iw {".l1L1(‘ii:Il|E_'('
`\".LiIIi‘_ Tiii-< is (‘um-
`|||tHIl\E]tI1iL'l1\l'ilFIl'1'\:lI\il|l£Li|H'.\Hi'
`Y llllll-|{‘l|..\-i(JI| L-]||1'iII'_[ iin- £1iL'i1t'__f lJ[il'1".l-
`Hull.'|'ii:-1'.-willruinlw.i[J1'm]I1:-E
`\\|'i::.-i-xi/.1-\:L1‘ii-~; iiwii liii
`l:u|::1_L';liI~—
`
`TABLE I
`SUMMARY or caiwvuc DlEI.EC|'RlCS
`
`I Class I
`N l"( }«’'(I{ N}
`High Q i I’u1'ci=.|.ii|i|
`Nl’()r’{.'(){Z Shin-:|;1I'([
`
`ill -20
`
`Sn-Si:
`
`. XP( }.r’(:( N; Fihlllilulli
`
`30- I on
`
`N50
`_\’l.'ill
`X220
`f\'.'}I3lJ
`N-ITU
`-.\5T."S(l
`NJSUU
`- NZQINI
`N1-.‘}(llI
`N-WIN]
`
`Class I!
`
`Q XTH
`Class III
`
`e 251.7
`
`; Y5\'
`
`T{J—9lI
`-‘a‘(I—|UlI
`S5--Iilfi
`.‘i(J—l ill
`1li(l—|2I}
`i2{J—|—}lJ
`]$J{l-—2llJ
`-ill(]—fi'l'J{l
`(ii l{J—«‘iUli
`oSlJlJ— II]-{ll}
`
`;”-I100--Jiiflilfl
`
`Iin:on—i-moon
`
`000003
`
`cs;-:.si<.-_~?'—‘§=T:3~".‘~"':-*7‘
`1-*3‘-‘»f—l:.;cc:.rn.'r~—
`
`--55”(_I Ir) +12:':"'(I
`
`U p])I'i'| :30 [:[:1I1.="{f 01'
`+90 ppln :.'}I1I1J[:IIL-""{.'
`
`{Ippm1-S3(JIi11I|1.-“(T
`
`0 ppm :30 ppnifll
`
`—SlI1‘J[)n| :.‘3(]pp|1i.4"‘[I
`--l:"':UpprI1:3(lm1|i|r""[£
`-21!!! ppm :30 ppinfll
`-5330 ppm :60 ppmr"(I
`—-ITUIEIIIII:|3{]I1I1Il1.-Mt:
`--75!! ppm zliil ppII|.r"'(I
`—13[)l’l1111|'n:3Ul]|J}1I1u"'(I
`—?.2(H|pp|I| :.'3Ul'lppI1|-*"‘(.'
`-3.‘)!!! ppm :50!) pp1i|r”'(I
`—$TU(l ppm 151)!) ppinffl
`—:J::‘(I tn + 125°C
`
`2 1 .")'Ii'r
`
`\.':l)‘i('.'l IS
`
`+2:2'.‘}{r-~3fi'2£
`E+ I 0°C [0 +«"}5°( I1
`+229? -32‘?
`[+3U°(_: In +-.‘$5°(."
`
`\ll(']{lJ\\'.\\'[C_[(}l'Ii\-\I.I l"I5.lII§1.\li'l ‘.3[J(l:1
`
`000003
`
`

`

`000004
`
`

`

`APPLICA TION NOTE
`
`has a dielectric. constant K equal to
`300. with a Q near 150 at 1 M Hz.
`Class 2 materials are those whose
`
`dielectric constants show a greater
`variation with temperature and volt-
`age. Their dielectric constants are
`greater than that folintl in Class 1 ina-
`terials, but their Q is lower. Capaci-
`tors made with these materials are
`suited for bypass, decoupling and DC
`blocking applications. To be included
`in Class 9.. the material must have a
`temperature coellicicnt (TC) that is
`less than 22 percent from -55“ to
`+1:25°C. XTH ceramic, for example.
`has a TC that is within 15 percent
`from —55° to +1.‘25°C, a Q near N10 at
`1 kHz and a dielectric constant of
`4000.
`Class 3 materials have Llielectric
`
`constants that are even greater than
`those found in Class 2. but with the
`disadvantage of even lower Q and less
`temperature. time and voltage stabili-
`ty. Capacitors made with these mate-
`rials are suitable for applications
`where dielectric loss. insulation resis-
`tance and capacitance Stahility are
`not of major importance. The EIA
`
`-ss
`
`25
`‘IEIIPEIATUBE cc}
`
`‘ Fig. 4 Change in capacitance vs.
`temperatrtrefor two classes ofdielecrric
`material.
`
`the low dielectric constant (10 pF, for
`example). but can be made with very
`tight tolerances clue to the overall ce-
`ramic stability (i0.1 pF, for example).
`This type of dielectric is designatecl
`by the familiar codes NPO, COC and
`negative temperature coefficient se-
`ries N80 to N4700. A typical porce-
`lain NPO dielectric has a dielectric
`
`constant K equal to 10, with a Q near
`10,000 at
`1 MHZ. A typical N4T00
`
`QUIET DROS - CLEAR COMMUNICATION
`
`The desire for low noise
`Dielectric Resonator
`Oscillators to enhance
`clear communication,
`spectral purity, contin-
`ues. Typical phase noise
`@ 100 KHZ offset of
`*126 dBc/Hr.
`for 10
`CH2, -115 for 18 C112,
`and -108 for 38 CI-I2
`
`are being ineasured on
`our production DROs.
`Harmonics measure he-
`tween -50 dBc and -80
`
`dBc. Spurious are less
`than -90 dBc with —120 dBc available by request. Designs under way
`promise to reduce phase noise even more significantly. Check the Lucix
`Website for outstanding features of our DROs, such as low power consump-
`tion, very small size, high output power, ultra stability. Tell us your special
`needs. At Lucix, we Listen.
`
`Luc'
`
`800 Avenida Acaso, Unit E
`
`Camarillo, CA 93012
`Phone:
`805-98?-6645
`
`Fax:
`805-987-6145
`c OFF a ration Website: www.Iucix.com
`
`Click LEADne‘l at Iiiwlollrnalazom or Circle 65 on Reader Service Card
`000005
`
`defines Class 3 materials as those
`
`with temperature variation greater
`than :22 percent from -55” to
`125°C. These materials can typically
`exhibit as much as 82 percent capaci-
`tance drop at 85°C and have a
`near
`40 at
`1 kHz; these materials are des-
`ignated by the familiar codes Z-5U
`and Y5\-".
`Class 4 ceramic dielectrics are
`those that utilize 1'educetl titanate cc-
`rainics combined with an insulating
`barrier layer. This ceramic is unlike
`other commonly nsed ceramic di-
`electrics in the multi-layer or single
`layer ceramic capacitor industry be-
`cause it is based on large. semicon-
`ducting grains combined with oxide
`layers on the surface. This type of
`material is capable ofgiving a high di-
`electric constant with a stable tem-
`perature coefticient. but the perfor-
`mance of the material can be limited
`by the resistivity of the semiconduct-
`ing grains of ceramic. tlistorically this
`has limited the usable frequency
`range of the finished capacitors (see
`US patent it 4761711).
`Given :1 specific size and value. the
`BS LC technology often allows capac-
`itors to be made with a dielectric
`class of material that the traditional
`technology would not permit. What
`follows is a summary of comparative
`testing of two 0.035 in.3, 1000 pt’ sin-
`gle layer capacitors. One is made with
`the traditional technology using a
`class 3, Y5\-’ dielectric, while the oth-
`er is made with BSLC technology us-
`ing the class 2, XTR material. High
`t'req1ienc}«‘ tests were run at room
`temperature and at 85°C. The reader
`should keep in mind that. at 85°C,
`the capacitance of the XTH material
`has dropped less than 15 percent
`while the Y5V has dropped as much
`as 85 percent. The difference is
`shown graphically in Figure 4.
`
`IMPACT ON MICROWAVE’
`mm—WAVE PERFORMANCE
`
`The temperature dependence of
`the Y5V material will affect the. Ini-
`crowave/inm-wave performance of a
`capacitor and. depending on the ap-
`plication, the impact u'na_\_=' be signifi-
`cant. For an approximately 1.0 nF ca-
`pacitor, toward the lower end of the
`frequency spectrum, the series reso-
`nance is at issue. At this freqtiency,
`the phase shift through the capacitor.
`that is, the phase of the scattering pa-
`
`3-IICB{)WA\’E JOURNAL I FEBRUARY 2002
`
`000005
`
`

`

`
`
`
`
`000006
`
`

`

`as l-i-20) are not as strong. Most impor-
`tantly, an increase in insertion loss of
`up to 0.5 dB occurs at each reso-
`nance. At 25°C. however, the capaci-
`tor shows oniy a single, much less oh-
`vious resonance near 2.2 CH2; as ex-
`pected due to the higher value for the
`dielectric constant, it occurs approxi-
`mately (5.3l“3 lower in frequency
`than the first resonance at 85°C. The
`XYR part exhibits no discernable
`change in the broadband response
`over temperature.
`The cavit}-' resonance behavior can
`he further examined by inspection of
`the 5“ response with the capacitors
`mounted in a shunt (bypass) configu-
`ration. The 85°C data for the Y5V ca-
`
`pacitor shows the resonant frequen-
`cies being nearly equal to those mea-
`sured in the series configuration, but
`the drop in the reflection coefficient
`(51,) is more pronounced than the
`corresponding structure for S2, in the
`series configuration (see Figure 7).
`The cause of the apparently amplified
`effect is due to reduced loading on
`the capacitor to ground or 0 Q for the
`shunt case versus 50 Q for the series
`
`case. The parallel resonance near 2
`CH2: in the 25°C data is likewise
`
`more evident in this configuration.
`The temperature-stable XTR material
`exhibits nearly constant and monoto-
`nic behavior across the band. with lo-
`cal variation in ISHI on the order of
`i0.l5 to 0.20 dB.
`
`As noted, the cavity effect mani-
`fests itself as a parallel resonance. For
`the Y5V capacitor at 25°C, and across
`the temperature range for the X78
`part, the resonance is a low Q re-
`sponse whose effect diminishes with
`increasing frequency; for the shunt
`coniiguration the resonance is only
`discernahle by broad peaks in 531,
`which were generally at the -30 dB
`level and below. At 85°C the Y5V ca-
`pacitor has noticeable power dissipa-
`tion that leads to the drops previously
`illustrated. which corresponded to
`more narrow peaks in S21 at the -10
`to -15 dB level (see Figure 8). Tlius,
`the stable capacitance and quality
`factor of the XTH material results in
`monotonically varying broadband
`performance. at the expense of some
`increase in loss. For the YSV capaci-
`tor. the cavity resonance effect in-
`creases with temperature, leading to
`
`[('.'mirinm.>(." on page 152}
`
`MICROWAVE JOUHNAL I FEBRUARY 2002
`
`- APPLICATION NOTE
`
`—- YSV, 15°C —Y5V, 85°C
`—- I'll, 25°C -—X‘.fR, 85°C
`
`-—-— YSV, 25°C -—Y5V, 85°C
`— KTR. 25°C -—X'fIl, 85°C
`
`“-_i=§,_
`
`up
`
`is ze_.;s as 35 do
`
`'.':"
`.
`.r-
`ri.-~_..
`
`—
`
`"1_,iI' 15 1'0 25 so as no
`
`A Fig. 7 Magilitude of S I 1. fort: shunt-
`nwunterl 0.9 nE }'5V capacitor and 0 1.0 :11’,
`X7R capacitor measured at 25° and 85°C.
`
`A Fig. 8 Magllitude o_fS9, for a shunt-
`mounted 0.9 RF, YSV capacitor and a 1.0 RF,
`X711 capacitor measured at 25° and 85°C.
`
`theoiy, the predicted resonant fre-
`quencies will occur at
`
`fl1'I’II1 :
`
`where a, b, c are the capacitor dimen-
`sions, measured here as 30 X 35 X 4
`n1ils3. For c < a < b, the dominant
`
`mode frequency is fun and by cquat—
`ing this to 4.74 CH2, :1 relative di-
`electric constant of approximately
`2990 is obtained. This dielectric con-
`
`stant corresponds to a capacitance of
`0.179 pF, very close to the measured
`low frequency value of 0.183 pF at
`85°C. Subsequent resonant frequen-
`cies at 9.1 and 13.3 CH9: appear to
`correspond to {.220 and {W}, indicating
`that intermediate cavity effects (such
`
`Designers and Manufacturers of High Power
`RF and Microwave Ampli fiers
`
`LC
`
`ommunication Products
`
`ClIdILEABne‘IatmvtjoumaI.coInnrClrde95onlIeadel'5e!vloeCa|1l
`Seel.lsaICI'IABootlI23I6
`
`000007
`
`000007
`
`

`

`— YSV, 25'C —‘l'5V, 35°C
`—~ XFR, 25"C —X7R, 85"‘C
`
`.._.___
`9 ll)
`
`a
`
`,_3 _.._._.. .
`o
`1
`z
`
`..-_ -
`;
`1'
`5
`3 4 5
`FIlEQUENCYfG.|‘|x)
`
`_
`
`,
`
`A Fig. 9 ;\I(l_L{III'."i'.l|‘!'(? o_f.‘s'”fr;rr.- .sJ1unr—:::rmu.*m'I‘J.$)nE }'5\-'
`r‘aprrc':'fur as H flrm'a‘iuu rJffrer;::rer:r‘y and I{fn'|_fJe‘!l'fIl'lH‘{’ (in M‘'(.' steps).
`
`15 20 35 39 35 4.9
`1.3
`FREQUENCF ‘GR’,
`
`prmmllm-L=Ll |‘I'(‘t|ll{‘I}L'_\' vuI‘i:1tit:1I {Fig-
`ure 9). The I-{Ti-L-ts are .\‘llllII11:1I'i'£.t‘(]
`in Figure 10. \\']1ich .~;|m\\'s the in.-+5
`fiu.-tur 1_l—|.‘s'Hl9 — [SQII31 I'm‘ the shunt
`L‘&11):lL'ih>I'
`III(’:lSlI[‘(-’l‘1l('I1fS and the
`Hll'{)1I§_'_ [wziks in po\\'m' di.ssip'.1timI fut‘
`the -.‘>'5”(.I_ \'5\' data.
`
`CONCLUSION
`
`www
`
`I
`
`I
`
`n |
`
`:0r
`
`I
`
`IF ONE OF OUR THOUSANDS OF
`CATALOG PARTS DO NOT MEET
`YOUR REQUIHEMEN-rSwEw|LL
`
`DESIGN YOUR TRIMMER CAPACH-OR
`
`Thv buried 5i1|g!L* |:1_\‘(-*1‘ c;1paucilm'
`t't?L‘}1I|t:|:1§{\'
`I111-*d}<5 the il1(llI5tI"\‘-\\'ili[‘.
`pmtlm-l n|'fi--1"iI1ghu1‘:IugL:nc*ih'. \\'|1(-r(-*
`1):‘:-x-'i::II_~;i_\' L>u11.~;trz1in(*t} h_\' tf;t(1iti:):1;1I
`
`11I:1I1I1f:1t-t111'm"s part sizes. E_‘11pdL'itill1('(‘
`
`\':d1|¢-5. L.-<n'1'(-spundillg di(’lt-’(_'tl'iL' Ina-
`tvriu] {)lT(‘f'iIlf__{S and high I‘rer]11e|1c‘v
`pt-WI}n‘n1zlI1(-v. (‘ml
`llS(’l'.\ mm" luau‘ ;1
`set (ll. im-;11IiII_LI_|'I|I L.-Imit-es.
`l‘nI‘z1mmInt
`in this new s'<-‘I:--1.-tim1 pr'U('(*!i_*;
`is cv-
`rumic divlt-(rtI'ic Imtft-rial]; Hul 1:.~;e|'.~&
`(“.111 mm-'
`t.'lIt‘HJSl.’
`llf;‘l\\'(‘(‘ll stalndard
`.x'i11gIe l;1_\‘t'1' c-.1p;tcit:J1's.' m‘ those in Incl-
`t{-'1' L'iztssL'.\‘ of l1Itlt{'l‘i£ll.‘a'
`IlHiIl_L[
`the-'
`BSI..(I t('L'i1I1IJl{)g}'. This Iktct {JH-E'I‘!«'
`m-~u' dI..’}_{|'(‘l'.‘i of fret-dnnl tn the indus-
`hj' um] \\'iil tlrive aultiilimzzll {1n||paI'u-
`ti\'{= stllniivs til‘ pt-1'['urII'I:tI1L'a-.
`
`ACKNOWLEDGMENTS
`The :milm1':-;
`\\'(ll_I|(]
`Iikt-r to Hmnk
`l\lndt*|ithi(-.~‘. Inc. for flu.-i:'\‘;1|u:1hlL= as-
`Si.‘§t£1Il(‘{‘ with mic |‘n\\-‘;1\‘t* L-||'.11‘au't<-.*1‘izu~
`
`rim: and clatau1I:1l_\-"sis. I
`
`Lambert Devoe ix rt _umn’ru'f rmuuJ,I_{rr EH”!
`.”rr'.s-in|'r'r- ("r-mpmu'ul'.\' Inn. r('hr'n= hr’ .‘:m.'
`ra':::'L‘r':f_fi1r'.w‘I':'H y:*rn‘~'. Hr‘ n"mM.- H B.'\' n’r':.{:‘r'¢’
`f}'r=IIu Nu" .'|Ir.I.\-.m:'h!m'!h .‘n.\'l'H'ui'r‘ :_:f'."r'i.'hIur:J'u;_'y.
`‘1"l'c' is r'rr—im'r'urm':gr.'J"u' hm'i:*r.|’ -.-i:r\*_{r':' J'r.45r.'r
`Fl':I';lIIIIJ'4.|gI!"‘.
`
`Alan Devon in rm m1;{iru'u'riw_{ rurumguw H M:
`.F'!'£'%I'{!'i':J (":JIul;JrIIir*nf.\' Fur‘ , H'l‘h":'r' hi‘ J'm.\
`.
`r1.':n'R‘:'r.I’_,‘m' I3 fl.fI.':‘l'J'.5'. Hr J'mMx b3 .-mu’ .'II.‘i
`:.":';[:'¢'t'\fl'rriia Nu’ .'1.F(:.-c.\'r.:r'.’:|'.r-gr-‘H.-.' hr.|.'H!ru'I'u]r
`'.[i-g-.|';:1.;}'n_v_{y. Hr ix(‘H-fnI'i'i:Ih1J"rfflfht‘.’H:i‘fr’«;u‘
`.w'u_-_'1’r*I'rrg_:r'a‘h'<'»‘r::r:i'u;;ymm’h::!r3.vxE"I':::'rJ:’
`;Jr1h'r:f_\-.'.x-mm’ m'r"1::'::rhHg3'i:J !.:l:".f!':’.M u_f
`(‘r-mrml-‘ n":'t'i:'£'x.
`
`_
`
`.
`
`.
`
`i
`1
`
`.
`
`-
`.
`The -n.‘-mm”. Capacitor Company
`
`.
`
`Q
`
`
`Road . Denvme, NJ 07834
`973.586.35.85 0 _ Fax: 973.586.3404
`9-mail: info@voltronicsco_[p.c_om
`
`Clidt LEADnet at mw]ouma|.I:o111 or Clrde 140 on Reader Service Card
`000008
`
`5|1CRU“':\\'E JUUHK-'U. I I’15531‘.-\}“' 3003
`
`000008
`
`

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket