throbber
United States Patent
`
`[19]
`
`[11] Patent Number:
`
`6,134,666
`
`De Nicolo
`
`[45] Date of Patent:
`
`Oct. 17, 2000
`
`US006134666A
`
`54
`
`POWER SUPERVISOR FOR ELECTRONIC
`MODULAR SYSTEM
`
`75
`
`Inventor: Maurilio Tazio De Nicolo, Saratoga,
`
`73
`
`21
`
`22
`
`51
`52
`58
`
`56
`
`Assignee: Cisco Technology, Inc., San Jose, Calif.
`
`Appl. No; 09/041,838
`
`Filed:
`
`Mar. 12, 1998
`
`_________________________________ __ G061; 1/26
`Int CL7
`713/300; 713/340; 713/330
`U.S. Cl.
`and of Search .............................. 710/2, 15, 16-19,
`710/101-103, 131, 132, 125-129, 713/300-340
`
`References Cited
`
`9/1998 Boatwright et al.
`5,802,379
`9/1998 Najerny ....... ..
`5,809,256
`11/1998 Chesavage
`5,834,925
`5545342 12/1998 Hayasaka ~ ~~ ~ ~ ~
`5,884,233
`3/1999 Brown . .. . . .. . . . .
`
`.
`
`713/324
`. 710/103
`323/272
`- ~ ~ ~- 713/340
`. . . . . .. 702/61
`
`Pr1-m‘”'Y Examiner_AYaZ R~ Sheikh
`Assistant Examz'ner—Raymond Phan
`Attorney, Agent, or Firm—D’Alessandro & Ritchie
`
`[57]
`
`ABSTRACT
`
`Each modular processor card of a modular electronic system
`°“‘“.°“‘°°:“P"T‘E°'“‘ definmg “,5 m‘;1’?1‘,‘11“m “urgent Or P‘.’V1“°r
`;:q‘;g§g;eI;§,,,, fccfizfflfgfi; Wogjmfifkye
`36:33:13;
`’
`P
`I
`V’
`_
`over a single conductor through a backplane by a power
`supervisor. The supervisor will determine the current/power
`requirements of a processor card while the card is substan-
`tially powered off. The supervisor may then weigh existing
`power supply resources of the modu ar electronic system
`with existin current’ ower demand and make a decision to
`11
`‘
`g
`fmth
`d .f
`-
`.
`I
`h‘ d .
`e car
`:1 0w power—up 0 .
`i
`su .l(.316l’1 over ea
`is
`available, or, alternatively, make a decision to deny power.
`up of the card .1f
`insufficieiit additional current/‘power
`resources are available. An optional message indicating the
`outcome of the decision can be transmitted to a user. If the
`supervisor elects to power up the card, a signal sent on the
`conductor connecting the card to the supervisor may be used
`to authorize the card to power up and control Circuitrv to
`cficct the power up
`'
`
`19 Claims, 2 Drawing Sheets
`
`U.S. PATENT DOCUMENTS
`.
`5/1989 Hemg et a1’ ””” "
`4’835’737
`o/1992 Balakrishman .
`5,122,091
`7/1993 Brown at al.
`5,226,120
`5,268,592 12/1993 Bellamy et al
`59386567
`1/1995 hen et at
`5,491,804
`2/1996 Heath et a],
`5,613,130
`3/1997 Tcng ct al.
`~
`5,532.-021
`5/1997 J'~“11I1i118S 91 ?11«
`5.~710.~931
`1/1998 Nakamum 9‘ “L -
`59726506
`3/1998 Wmd
`5,737,616
`4/1998 Watanabe .
`5,758,102
`5/1998 Carey ct al.
`5,790,873
`8/1998 Popper et al.
`5,796,185
`8/1998 Takata et al.
`
`,
`
`.
`
`364/900
`.. 307/475
`N 395/200
`307/43
`__ 395/700
`,, 395/275
`.. 713/310
`~~ 395/309
`~~ 713/310
`“ 307/147
`.. 713/340
`.. 710/103
`713/320
`......................... .. 307/140
`
`BACKPLANE
`
`Vcc
`
`POWER
`CIRCUIT
`SOFT START
`
`POWER
`SUPPLY #2
`
`POWER
`SUPPLY #N
`
`AMX
`Exhibit 1020-00001
`
`

`
`U.S. Patent
`
`00027:1LcO
`
`Sheet 1 of 2
`
`6,134,666
`
`Em_>>On_
`
`::om_o
`
`
`
`._.m<._.mtow
`
`m_z<#§o<m_
`
`mm>>On_
`
`2*>._n_n_Dw
`
`mm>>on_
`
`mu>._&:m
`
`m_m>>on_
`
`2%>._n_n_Dw
`
`AMX
`Exhibit 1020-00002
`
`

`
`U.S. Patent
`
`Oct. 17, 2000
`
`Sheet 2 of2
`
`6,134,666
`
`ENABLE
`
`FIG. 2
`
`POWER
`SUPERVISOR
`
`BACKPLANE
`
`POWER
`SUPERVISOR
`
`PRESTART
`AREA
`
`MODULE
`
`AMX
`Exhibit 1020-00003
`
`

`
`6,134,666
`
`1
`POWER SUPERVISOR FOR ELECTRONIC
`MODULAR SYSTEM
`
`BACKGROUND OF THE INVENTION
`
`1. Field of the Invention
`
`The present invention is directed to a method and appa-
`ratus which permit a power supervisor in a multi-card
`modular electronic system to turn on or olf power to a given
`modular processor card based upon considerations of the
`power needed by the card and the power resources available
`to the modular electronic system.
`2. The Background Art
`Multi—card modular electronic systems are common in the
`computer industry. Typically such systems comprise a back
`plane having a plurality of connectors to which a number of
`line cards or processor cards are connected. Processor cards
`may perform any of a number of functions as well known to
`those of ordinary skill in the art. The back plane provides
`electrical interconnections to the processor cards, such as ~
`data, power, ground and signalling. Such systems usually
`include at least one supervisor module which may be on one
`of the processor cards or may be permanently connected to
`the back plane. Supervisor modules are commonly used to
`detect errors and report conditions to a user.
`It is desirable to build modular systems which provide for
`future expansion while providing a relatively low entry cost.
`In systems employing processor cards whicl1 consume sig-
`nificant quantities of power, such as those embodying one or
`more microprocessors, or equivalently power hungry
`devices, it may be desirable to provide for modular power
`supplies which may be added or changed as power require-
`ments increase with the addition of more processor cards or
`the substitution of higher power consumption processor
`cards for lower power consumption processor cards.
`I11 such systems,
`it
`is frequently a problem that an
`individual responsible for such systems may inadvertently
`place too high a power demand upon a particular power
`supply configuration of such a system through the addition
`of a particular processor card to a previously functioning
`system. The consequences can vary from a simple sh11t down
`or an inability to start up to equipment damage.Accordingly,
`it would be desirable to provide a method and apparatus
`which could simply protect such systems from the conse-
`quences of errors n1ade by inadvertently overlooking avail-
`able power supply resources in such modular electronic
`systems.
`As back plane conductor lines are a relatively scarce and
`expensive resource in such systems, it would also be desir-
`able to implement such method and apparatus in a manner
`which makes a minimum use of such scarce resources.
`
`SUMMARY OF THE INVENTION
`
`Each modular processor card of a modular electronic ..
`system carries a component defining its maximum current or
`power requirements. The component, which may be a
`resistor, capacitor, serial access n1en1ory, or the like,
`is
`accessible over a single conductor through a backplane by a
`power supervisor. The supervisor will determine the current/’
`power requirements of a processor card while the card is
`substantially powered olf. The supervisor may then weigh
`existing power supply resources of the modular electronic
`system with existing current/power demand and make a
`decision to allow power—up of the card if sufficient overhead
`is available, or, alternatively, make a decision to deny
`power-up of the card if insu lcient additional current/power
`
`2
`resources are available. An optional message indicating the
`outcome of the decision can be transmitted to a user. If the
`supervisor elects to power up the card, a signal sent on the
`co11ductor connecting the card to the supervisor may be used
`to authorize the card to power up and control circuitry to
`elfect the power up.
`BRIEF DESCRIPTION OF THE DRAWINGS
`
`FIG. 1 is an electrical schematic diagram of a presently
`preferred embodiment of the present invention.
`FIG. 2 is an electrical schematic diagram of a typical
`power soft start circuit for use in conjunction with a pres-
`ently preferred embodiment of the present invention.
`FIG. 3 is a system block diagram of an alternative
`preferred embodiment of the present invention.
`FIG. 4 is a system block diagram of another alternative
`preferred embodiment of the present invention.
`DESCRIPTION OF THE PREFERRED
`EMBODIMENTS
`
`Those of ordinary skill in the art will realize that the
`following description of the present invention is illustrative
`only and is not intended to be in any way limiting. Other
`embodiments of the invention will readily suggest them-
`selves to such skilled persons from an examination of the
`within disclosure.
`
`Turning to FIG. 1, a presently preferred embodiment of
`the present
`invention is shown. In accordance with the
`present invention, a modular electronic system 10, such as
`computer communications equipment, has a backplane cori-
`nector strip 12 which provides electrical interconnections
`among a plurality of electronic modules or cards which are
`electrically attached to it (e.g., plugged into it). The inven-
`tion will work with one or more electronic modules.
`
`In such modular electronic systems, one or more power
`supplies may be provided having certain power or current
`delivery capabilities. To render such systems more flexible,
`a plurality of positions can be provided into which such
`power supplies may be installed. The problem is that given
`a very flexible level of power supply resources and a very
`flexible level of power demand posed by the electronic
`modules which may be attached to the backplane,
`the
`modular electronic system now must monitor both its
`resources and its power demand to insure that there is no
`shortfall of power which might cause system unreliability or
`failure.
`
`In accordance with a presently preferred embodiment of
`the present invention, a power supervisor 14 is provided.
`The power supervisor 14 has a communications li11k 16 to
`one or more power supplies 18, 20, 22 which communicates
`information defining available power resources to a micro-
`processor 24 of power supervisor 14. This communication
`may be carried out in any of a number of ways.
`According to a presently preferred embodiment of the
`present invention, each power supply module 18, 20, 22 may
`have stored in it a relatively permanent memory having a
`three (or more) hit identification code that can be read by
`power supervisor 14 over communications link 16. Each
`power supply 18, 20, 22 will have its proper predefined
`identification code set at the time of its manufacture to a
`value unique for its model and/or indicative of its maximum
`ability to supply power or current. In typical use the power
`supervisor 14 will read the identification code at power up,
`and/or at any time that the power supply module 18, 20, 22
`is inserted into or attached to power supervisor 14. Power
`
`AMX
`Exhibit 1020-00004
`
`

`
`6,134,666
`
`3
`supervisor 14 then takes the identification code for the
`power supply module, and if necessary, looks up in a table
`associated with power supervisor 14 the identification code
`in order to determine a power output value for the power
`supply.
`In an alternative preferred embodiment, in order to pro-
`vide more information without relying on software tables
`embedded in power supervisor 14, to serial electronically
`erasable programmable read only memory (EEPROM) is
`used in each power supply module 18, 20, 22. The serial
`EEPROM is preferably programmed at the time of manu-
`facture of the power supply module with information apro-
`pos of the power supply module, e.g., output voltages, input
`voltages, current levels, operating characteristics, model,
`type, serial number, manufacturer, and the like. This infor-
`mation is then read at power up, or at insertion or attachment
`of the power supply module to power supervisor 14 so that
`power supervisor 14 is fully advised of the operating char-
`acteristics of the power supply modules attached to it and
`can act on that information. Abenefit of this latter approach ~
`is that new power supply modules can be created after power
`supervisor 14 is fixed and installed and power supervisor 14
`can still make full use of the information encoded in the
`serial EEPROM without any need for an upgrade or soft-
`ware update to the power supervisor. Other non-volatile
`memory devices could also be used instead of the serial
`EEPROM discussed above, as would be understood by those
`of ordinary skill in the art. Preferably such devices would
`use a single bit data path in order to minimize connections
`between power supervisor 14 and power supply modules 18,
`20, 22.
`Electronic module 26 attaches to backplane 12. Each
`electronic module will have a particular power requirement.
`Obviously the power demand of module 26 will fluctuate
`depending upon what it is doing at a particular moment, but
`it wfll have a known maximum power requirement or
`demand which can be thought of as the worst case power
`requirement. It is this known maximum power requirement
`that must be communicated to power supervisor 14.
`In accordance with a presently preferred embodiment of
`the present invention, the maximum power requirement is
`communicated by an analog voltage signal on a query
`conductor 28 passing from electronic module 26 through
`backplane 12 to power supervisor 14. Query conductor 28 is
`connected to a first source of a voltage, such as Vcc 30
`through resistor R1 which may be a 100 ohm resistor.
`Analog to digital converter 32 converts the voltage on query
`conductor 28 to a digital value for use by programmed
`microprocessor 24. A component, such as an impedance
`element, which may be a resistor, Rset 34, disposed between
`query conductor and a source of a second voltage 36, such
`as ground, encodes a voltage signal on query conductor 28,
`the voltage being a function of the resistance of resistor 34.
`For example, Rset 34 could be 25 ohms if power demand of g
`the module is 5 amperes, 50 ohms if 10 amperes, 75 ohms
`if 15 amperes, and 100 ohms if 20 amperes.
`The voltage drop between Vcc 30 and query line 28
`through R1 is selected to be su Icient to prevent current flow
`through zener diode D1, thus isolating the portion of the
`circuitry of module 26 connected to the anode 38 of zener
`diode from query line 28.
`If microprocessor 24 decides that suflicient power
`resources are available to permit module 26 to be turned on
`with its now known maximum power requirement,
`then
`microprocessor 24 sends a signal “PWRUP” on line 40 to a
`switch shown here as transistor Q1. The presence of the
`
`p
`
`4
`PWRUP signal on the control gate of transistor Q1 permits
`current to How through Q1 from Vcc to query line 28. This
`voltage, not dropping through resistor R1, will cause a
`higher voltage to obtain on query line 28. This voltage will
`be selected to be above the threshold of zener diode D1. In
`turn, current will flow through resistors R2 and R3 providing
`a signal on a control gate of transistor Q2 which assumes the
`role of a switch. When this current flows, Q2 will turn on and
`provide an ENABLE signal on line 42 to power circuit soft
`start 44.
`
`Power circuit soft start 44 operates in a conventional
`n1am1er, such as that shown in FIG. 2, to slowly turn on
`power available on line 46 and apply it
`to the power
`consuming circuitry of module 26 denoted “A” while the
`ENABLE signal is asserted on line 42. Note that “A” will be
`provided with a slightly lower voltage “V” than Vcc (V+e)
`available at backplane 12 due to the voltage drop (e) through
`transistor Q3 which is preferably a power MOSFET. Cl is
`preferably 0.1 uF and C2 and C3 are filter capacitors chosen
`based upon the application. The circuit shown in FIG. 2 is
`for reference only. An actual implementation would likely
`contain additional components needed to control the power
`slope as known to those of ordinary skill in the art.
`Those of ordinary skill in the art: will realize that other
`components may be used to encode the maximum power
`demand of module 26 on query conductor 28. For example,
`capacitors, power supplies, and other elements having
`unique electrical characteristics capable of being read
`remotely over a single conductor could be used. Turning to
`FIGS. 3 and 4, a more sophisticated implementation of the
`present invention is shown. In FIG. 3 the component is a
`communications register 48. Power supervisor 50 com111u-
`nicates with communications register 48 over query line 52
`which passes through backplane 54. Module 56 also com-
`municates with communications register 48 over line 58.
`Power supervisor 52 may send messages to module 56 via
`communications register 48 which is preferably a one-bit
`wide data communications path. Communications register
`48 is preferably a serial register or serial access memory
`device or the like. Communications from power supervisor
`50 to module 56 may include, for example, messages along
`the lines of “send your maximum power requirement”,
`“send your model type” (so that the power supervisor could
`determine from its pre—programmed memory what the maxi-
`mum power demand is), “go ahead and start up”, “do not
`start—maximum power exceeded”, and the like. Power may
`be provided to register 48 and module 56 during this
`pre—start period via line 60 connected to Vcc 62 through
`backplane 54 as these devices typically require some mini-
`mal amount of power in order to function. This minimal
`power, however, is negligible relative to the full maximum
`power requirement of the module 56.
`Asoft-start circuit along the lines of FIG. 2 (or equivalent)
`would preferably be incorporated into Module 56. If a “go
`ahead and start up” signal is received by module 56, the
`soft-start circuit would be activated to bring the module on
`line.
`FIG. 4 shows a refinement of the embodiment of FIG. 3.
`In FIG. 4, power supervisor 64 communicates with module
`66 over a query line 68 which passes through backplane 70.
`Module 66 is provided with a prestart area 72. Prestart area
`72 is provided with power over line 74 from a backplane
`connection to Vcc 76. Prestart area 72’s circuitry is powered
`by connection to line 74, but
`the bulk of the power-
`consuming circuitry of module 66 remains unpowered until
`the prestart area 72 receives instructions from power super-
`visor 64 to turn on module 66. The prestart area 72 may
`
`AMX
`Exhibit 1020-00005
`
`

`
`6,134,666
`
`5
`carry on extensive communications with power supervisor
`64 and power supervisor 64 may require information in
`addition to maximum power req11irement—for example, a
`password could be required, or a particular range of serial
`numbers could be required. The power supervisor 64 could
`be programmed to disallow the power up of unauthorized
`devices or devices known to be incompatible with the
`particular modular electronic system in question. Some of
`these functions could also be included in the FIG. 3 embodi-
`ment.
`
`In accordance with the various preferred embodiments of
`present invention the connections to a plurality of modules
`could be carried out with a plurality of query lines, each with
`a connection to the power supervisor, or with a single
`conductor connection to the power supervisor multiplexed to
`the plurality of modules in a conventional manner.
`It is intended that the system provided herein would be
`capable of “hot swapping” of module cards and/or power
`supply modules.
`In this manner,
`the system would be
`operating and an additional card would be plugged into a slot
`on the backplane. The power supervisor would detect the “
`insertion of the card in a conventional manner and would
`query the module to determine if turning it on would exceed
`power resources available to the system. The system could
`also work without a “hot swapping” capability.
`The term “power” has been used herein but is meant to
`include current level at a particular voltage, a combined
`power demand comprising a multiple voltage power demand
`at various currents, and the like, depending upon the system
`characteristics. For example, if all power used by the module
`is at 3.3 V, then the only variable is current. However, if the
`module uses 3.3 V power as well as 5 V power, those of
`ordinary skill in the art will readily see how the system
`described above could easily be expanded to cover a multi-
`voltage system. While a multiplexing scheme, for example,
`could be used to scan for a nu111ber of different voltage
`requirements, or different voltage/current combinations
`could be encoded with a single component, multiple query
`conductors could also be used, if more convenient.
`The power supervisor may itself be a module plugged into
`the backplane, or
`it may assume another physical
`embodiment, as long as it has the required connections to the
`backplane conductors.
`Alternative Embodiments
`Although illustrative presently preferred embodiments
`and applications of this invention are shown and described
`herein, many variatio11s and modifications are possible
`which remain within the concept, scope, and spirit of the
`invention, and these variations would become clear to those
`of skill
`in the art after perusal of this application. The
`invention, therefore, is not to be limited except in the spirit
`of the appended claims.
`What is claimed is:
`1. A power management system
`a backplane to which a modular component may be H
`connected, said modular component having an associ-
`ated known maximum power demand;
`a query line having a first end and a second end connected
`together through said backplane, said first end adapted
`to connected to said modular component;
`a power supervisor attached to said backplane and to said
`second end, said power supervisor adapted to query
`said query line and to receive therefrom an associated
`known maximum power demand of said modular
`component,
`wherein said power supervisor includes a first voltage
`source coupled to said query line through a first
`
`6
`resistance, wherein said power supervisor senses said
`associated known maximum power demand by sensing
`a voltage level on said query line, wherein said power
`supervisor causes a selected voltage level to be applied
`to said query line to cause said modular component to
`fully power up, wherein said power supervisor gener-
`ates a power up signal which is sent over a line to a
`switch having a first state and a second state, said
`switch allowing power to flow onto said query line
`when in said first state and not allowing power to flow
`onto said query line when in said second state, said
`switch being in said second state in the absence of said
`power up signal and said switch being in said first state
`in the presence of said power up signal.
`2. A power management system according to claim 1
`wherein said switch includes a transistor having a control
`gate connected to said line.
`3. A power management system according to claim 2
`wherein said power supervisor further includes a digitizing
`element coupled to said query line for providing a digital
`representation of said voltage level to said power supervisor.
`4. A power management system for a modular electronic
`system comprising:
`a backplane to which a modular component may be
`connected, said modular component having an associ-
`ated known maximum power demand;
`a query line having a first end and a second end connected
`together through said backplane, said first end adapted
`to connected to said modular component;
`a power supervisor attached to said backplane and to said
`second end, said power supervisor adapted to query
`said query line and to receive therefrom an associated
`known maximum power demand of said modular com-
`ponent;
`a source of first information indicative of available power
`resources of the modular electronic system, and
`a source of second information indicative of existing
`power resource utilization of the modular electronic
`system, wherein
`the power management system is adapted to compare said
`first
`information, said second information and said
`associated known power demand of said modular com-
`ponent to determine if su icient power resources exist
`to successfully fully power up said modular compo-
`nent.
`
`5. A power management system for a modular electronic
`system comprising:
`a backplane to which a modular component may be
`connected, said modular component having an associ-
`ated known maximum power demand;
`a query line having a first end and a second end connected
`together through said backplane, said first end adapted
`to connected to said modular component;
`a power supervisor attached to said backplane and to said
`second end, said power supervisor adapted to query
`said query line and to receive therefrom an associated
`known maximum power demand of said modular com-
`ponent; and
`a source of first information indicative of excess power
`resources of the modular electronic system, wherein
`the power management system adapted to compare said
`information and said associated known power demand
`of said modular component to determine if sufficient
`power resources exist to successfully fully power up
`said modular component.
`
`AMX
`Exhibit 1020-00006
`
`

`
`6,134,666
`
`7
`6. A power management system according to claim 5
`wherein said power supervisor includes a first voltage source
`coupled to said query line through a first resistance.
`7. A power management system according to claim 6
`wherein said power supervisor senses said associated known 5
`maximum power demand by sensing a voltage level on said
`query line.
`8. A power management system according to claim 7
`wherein said power supervisor causes a selected voltage
`level to be applied to said query line to cause said modular
`component to fully power up.
`9. A power management system according to claim 8
`wherein said power supervisor generates a power up signa
`which is sent over a line to a switch having a first state anc
`a second state, said switch allowing power to flow onto saic
`query line when in said first state and not allowing power to
`flow onto said query line when in said second state, saic
`switch being in said second state in the absence of saic
`power up signal and said switch being in said first state in the
`presence of said power up signal.
`10. A power management system according to claim 9 ~
`wherein said switch includes a transistor having a contro
`gate connected to said line.
`11. A power management system according to claim 8
`wherein said power supervisor further includes a digitizing
`element coupled to said query line for providing a digita
`representation of said voltage level to said power supervisor.
`12. An electronic modular component for connection to a
`modular electronic system including a backplane and a
`power supervisor, said power supervisor having information
`indicative of remaining uncommitted electronic power
`resources of said electronic system, said modular component
`comprising:
`a query line conductor having a first end and a second end,
`said first end connected to said backplane, said second
`end connected to a query node;
`a resistor having a first terminal oonnected to said query
`node and a second terminal connected to a source of a
`first voltage, said resistor’s resistance indicative of a
`known maximum power demand of the electronic
`modular component, said resistor being able to be
`queried by the power supervisor while the electronic
`modular component is attached to the backplane; and
`a zener diode having a breakdown voltage set to a second
`voltage, said zener diode having a cathode connected to
`said query node and an anode operatively connected to
`a switch, said switch having a first state and a second
`state, said switch transmitting an enable signal to a
`power soft start circuit of the electronic modular com-
`ponent when in said first state and not transmitting said
`enable signal when in said second state, said switch
`being in said second state in the absence of substantial
`current flow through said zener diode.
`13. A modular electronic system comprising:
`a backplane to which an electronic module having a H
`known maximum power requirement is attached;
`a power supervisor connected to said backplane;
`a query conductor coupling a query node of said elec-
`tronic module to said power supervisor through said
`backplane;
`encoder associated with said electronic module for pro-
`viding signals to said power supervisor which are
`indicative of said maximum power requirement,
`wherein said encoding means comprises an electrical
`impedance element, wherein an electrical impedance is
`preselected to correlate with said known maximum
`power requirement; and
`
`8
`decoder associated with said power supervisor for decod-
`ing said signals to determine said maximum power
`requirement.
`14. A modular electronic system according to claim 13
`wherein said electrical impedance element is a first resistor.
`15. A modular electronic system according to claim 14
`wherein said signals which are indicative of said maximum
`power requirement are voltage signals produced by passing
`an electric current through said first resistor.
`16. A modular electronic system according to claim 15
`wherein said decoder comprises a programmed micropro-
`cessor.
`
`17. A modular electronic system, comprising:
`a backplane to which an electronic module having a
`known maximum power requirement is attached;
`a power supervisor connected to said backplane;
`a query line conductor coupling a query node of said
`electronic module to said power supervisor through
`said backplane;
`encoding means associated with said electronic module
`for providing signals to said power supervisor which
`are indicative of said maximum power requirement,
`said encoding means comprising a first resistor having
`a resistance preselected to correlate with said known
`maximum power requirement; and
`a programmed microprocessor associated with said power
`supervisor for decoding said signals to determine said
`maximum power requirement, said signals being volt-
`age signals produced by passing an electric current
`through said first
`resistor; said first resistor being
`connected between said query node and a source of a
`first voltage, said signals carried over a query conduc-
`tor passing from said query node through said back-
`plane and coupled through a second resistor to a source
`of a second voltage.
`18. A modular electronic system according to claim [7
`wherein a zener diode having a breakdown voltage set to a
`third voltage intermediate said first voltage and said second
`voltage has a cathode connected to said query node and an
`anode operatively connected to a switch, said switch having
`a first state and a second state, said switch transmitting an
`enable signal to a power soft start circuit of the electronic
`module when in said first state and not transmitting said
`enable signal when in said second state, said switch being in
`said second state in the absence of substantial current flow
`through said zener diode.
`19. A method for authorizing the power up of a module
`connected to a backplane of a modular electronic system,
`said modular electronic system including a power
`supervisor, said method comprising the steps of:
`encoding information indicative of a maximum power
`requirement of the module;
`sending said encoded information over a conductor
`through the backplane to the power supervisor;
`decoding said information;
`applying said information to the power supervisor;
`determining if said maximum power requirement of the
`module, in addition to other power requirements of the
`modular electronic system, exceeds available power
`resources of the modular electronic system; and
`sending an authorization signal to the module if said
`determining step indicates that adequate power is avail-
`able to power up the module.
`
`AMX
`Exhibit 1020-00007
`
`

`
`UNITED STATES PATENT AND TRADEMARK OFFICE
`
`CERTIFICATE OF CORRECTION
`
`PATENT NO.
`DATED
`
`INVENTOR(S)
`
`: 6,134,666
`: October 17, 2000
`: Maurilio Tazio De Nicolo
`
`It is certified that error appears in the above-identified patent and that said Letters Patent is
`hereby corrected as shown below:
`
`Title page.
`Item [57], ABSTRACT,
`Replace "Circuitry" with —— circuitry
`
`Column 1
`
`Lines 19, 24 and 48, replace "back plane" with —— backplane
`
`Column 4
`
`Line 24, after "art" dclctc ".".
`
`Column 5
`
`Line 12, before "present" insert —— the ——; and after "invention" insert —— ,
`Line 54, after "system" insert —— for a modular electronic system, comprising:
`Line 60, replace "connected" with —— connect
`
`Column 6
`
`Lines 23 and 47, after "system" insert —— ,
`Lines 29 and 53, replace "connected" with —— connect
`
`Column 7
`
`Line 24, replace "8" with —— 10
`
`Column 8
`
`Line 1, before "decoder" insert —— a
`
`Signed and Sealed this
`
`Eleventh Day of June, 2002
`
`Arresting Oflicer
`
`JAMES E. ROGAN
`Director ofthe United States Patent and Trademark Office
`
`AMX
`Exhibit 1020-00008

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket