`P0lY0lEFINS
`
`SEGIIIIII Ellilillll, BBWSGII flllll Ellllflllllflll
`
`Me Me
`
`O:A|
`
`edited by
`
`GOIINEIIII Imsllli
`
`ll
`
`Page 1 of 45
`
`BOREALIS EXHIBIT 1066
`
`Page 1 of 45
`
`BOREALIS EXHIBIT 1066
`
`
`
`Page 2 of 45
`
`Page 2 of 45
`
`
`
`A
`
`ununnunx
`or PIIIYIIIEFINS
`
`
`
`second Etlililln, Iieuiseu and Exllamletl
`
`edited lw
`
`GIIIINEIIA Ifllslli
`Romanian Academy
`"P. Poni” Institute of Macromolecular Chemistry
`Iasi, Romania
`
`MARCEL
`
`( MARCEL DEKKER, INC.
`
`rm
`
`DEKKER
`
`New YORK - BASEL
`
`
`Page 3 of 45
`
`Page 3 of 45
`
`
`
`ISBN: 0-8247-8603-3
`
`This book is printed on acid—free paper.
`
`Headquarters
`Marcel Dckker, Inc.
`270 Madison Avenue, New York, NY 10016
`tel: 212-696-9000; fax: 212-685-4540
`
`Eastern Hemisphere Distribution
`Marcel Dekker AG
`Hutgasse 4, Postfach 812, CI-I—400l Basel, Switzerland
`tel: 41-61-261-8482; fax: 41-6|-261-8896
`
`World Wide Web
`http1//www.dekker.com
`
`The publisher offers discounts on this book when ordered in bulk quantities, For more information, write to Special Sales/’
`Professional Marketing at the headquarters address above.
`
`Copyright © 2000 by Marcel Dekker, Inc. All Rights Reserved.
`
`Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical,
`including photocopying, mierofilming, and recording, or by any information storage and retrieval system, without permission in
`writing from the publisher.
`
`Current printing (last digit):
`10987654321
`
`/\ fl,,’} 2 .-7
`'4
`,,
`’
`L,»
`~.,
`
`,
`
`7 g \.»
`5/,0)
`,
`-
`
`PRINTED IN THE UNITED STATES OF AMERICA
`
`Page 4 of 45
`
`
`
`11
`
`Mechanical Properties and Parameters of Polyolefins
`
`Milrncla t\/lihaics and Anton Olaru
`g(' (wpmp/usl SA, Iasi, Rormm:‘rI
`
`I.
`
`INTRODUCTION
`
`is an t.‘.‘L|.L'|'lL'lCLl nntl npdnletl review 01‘ the
`This L-li::;wIt'|'
`tlnt-.1
`am the mcrqlruiticnl properties til“
`sy.~.lt-in;iIix.t-tl
`polyululirns t|‘()':_ The music 0|‘ Pl't.'F.t3l1lttllOll
`l't'rnm the
`lii:-.t L-alilmn mt"
`flrrrirffirmlt
`.11"
`I’rr.'_1'nl<jfr'rr.s
`L124
`lisetl hy
`Bogdnnov [1] has been adnptctl. This. kind of pre-
`sentation was considered \-"cry
`ttscltll
`for
`readers
`involved in P0 manufacture, processing, application,
`and research.
`
`The data presented refer to the most important POs
`with the general formulae:
`
`,,(__
`
`(‘:H¥),’-
`R
`
`('4) Wllh R = H, polyethylene (PE):
`
`(lcnsity polyethylene (HDPE) and ultrahigh
`H1211
`molecular weight polymer (UHMWIIDPE);
`LOW density polyethylene with branched carbon back-
`bmle (LDPE) or linear carbon backbone (LLDPE);
`Random copolymcr ethylene/ot—0lefins.
`
`(b) with R = CH3, polypropylene (PP):
`
`L‘tllllLIllL‘ pt1l}"|\!'n|‘r},-‘It-,’:1L‘ {ll'l’):
`‘,N_\l|.h\lm|"“l"‘ !l“]5'|“‘\'l‘,‘r’lt‘"\’ I-SPF);
`'|VH‘:LlllL'
`l‘ill)«'1':1'up_\,*lct':e (APP);
`-“i“"*’ Wunylelie hluck cnpolymcrs with isotactic
`1301)/Dtopylcnc segments (I—PEP).
`
`New commercial grades of polyethylenes synthe-
`sized with both Ziegler4Natta and metallocene cata-
`lysts were included.
`The selected mechanical properties refer to one-
`L’t.\l'l‘l|1tmL‘1ll pulynleliir systetiis.
`'l'l:'esu pmpcrtiu.~; us well as their depcntlcnccs mt
`v;n-inns llrutnrta (F,-J
`Prtlr‘,} —-are presented in ‘lnlile l
`where the liIemlL1I‘c tzirticles,
`inonngrnplis. encyclo-
`paerlias.
`l'tL1il(ll)lJl1l-Rh.
`etc.)
`corn-.1inin;_:
`in11i:'nmtiu|1
`zthonl
`them is c|:thsiliL:t|. Only a limited ntnnhur til‘
`data are prcsciited here in lnhLt|:tI'
`rmtl gruplticrll
`l'orrn. All
`|n‘npeI‘tics mid depent'lcnce:~: piescntetl
`in
`tnhttlztr nnd g|';tpi1icnl
`thrln are
`:rccomp;I|1i'cd
`by
`cm'rcspum.ling
`1'c|'eI'cI1-ecs which are tmdcrlincd in
`Table l.
`to the rlat-.1
`The text. AIl3l'11't.‘\-'liI.llt'In. and .~‘._t-inhnls
`lrnm the l3',n3.-lislt
`l'r:l'et'er1ccs
`in grnplric and tulmlni‘
`l‘t'irn1 are not
`clt.-tngerl
`t4.':|'Iginnl) or
`insigr1i|'ic;nnlly
`changed: tltmzt: llrum the |'et'-::‘e:1t:t:s in other l:rngLr.tgc.s
`are traiislnleri us-mg our own terms and nhhrcvianinnsz
`data in tuhnln r Form are not given fully beczrtrse of the
`limited number of pages.
`
`II. MECHANICAL PROPERTIES
`
`Only mechanical properties (belnwiur) (Mch. Pr.) of
`P0 are chosen mainly at nniaxial strain.
`Selected mechanical properties and parameters as
`well as their dcpcndcnces on definite factors are pre-
`sented in Tables 2~l4 and Figs. 196.
`(Text continues on p 271)
`
`Page 5 of 45
`
`
`
`268
`
`TABLE 1 Mechanical properties (Mcli. Pr.) of P0 and their relationship to different factors
`Static-mechanical properties
`
`Mihaies and Olaru
`
`s(t, 0')
`8
`[21
`P 315
`(1"ig- 22)
`
`a(.9,p)
`7
`[341
`(Fig. 19);
`[3 5]
`
`[36]
`p 125
`(Fig. 20)
`
`a(£, I/d)
`6
`
`[30]
`[31]
`(Fig. 14);
`[9]
`(Fig. 15)
`
`[31]
`[26]
`
`n(,.:, T)
`5
`[25]
`p 35
`
`[26];
`[9]
`(Fig. 11)
`
`[2]
`p 311
`(Fig. 12);
`[261
`
`[27]
`p 12
`
`[28]
`
`No.
`I
`I
`
`2
`
`3
`
`4
`
`5
`
`6
`
`State
`3
`Isotropic
`
`Oriented
`Isotropic
`
`Oriented
`Isotropic
`
`Oriented
`Isotropic
`
`Oriented
`
`Isotropic
`Oriented
`
`Isotropic
`
`PO
`2
`HDPE
`UHMWHDPE
`
`LDPE
`LLDPE
`included
`metallocene
`obtained
`
`Different types
`of PE
`
`IPP
`APP
`SPP and
`I—PEP
`included
`metallocene
`obtained
`
`Different types
`of PO
`
`Random
`copolymers
`E-H. E-O, E—B
`included
`metallocene
`obtained
`
`0(5)
`4
`[2]
`p 298;
`[3]
`p 4694
`[4, 5]
`[2]
`p 298;
`[6]
`p 274;
`[7]
`(Fig. 1);
`[8]
`(Fig- 2);
`[91
`(Fig. 3);
`[10]
`[1 1]
`
`[12]
`[13]
`(Fig. 4);
`[I4];
`[2]
`p 299
`
`[15]
`(Fig 5);
`[16, 17];
`118]
`p 59;
`[191
`(Fig. 6)
`[2]
`p 299
`
`[9]
`(Figs. 7, 8);
`[20]
`p 84;
`[21]
`(Fig. 9);
`[221
`(Fig. 10);
`[23]
`p 1410
`[241
`p 1115
`
`Page 6 of 45
`
`[32];
`[33]
`(Fig. 16)
`
`[37]
`(Fig. 21);
`[33]
`
`[2]
`p 325
`(Fig. 23)
`
`[38]
`
`[391
`[40]
`
`[29]
`p 1161;
`[24]
`(Fig. 13)
`
`[9]
`(Fig. 17);
`[29]
`(Fig. 18);
`[24]
`p 1116
`
`Page 6 of 45
`
`
`
`Mechanical Properties and Parameters of Polyolefins
`
`TABLE 1
`
`(Continued)
`
`No
`[
`
`]
`
`state
`3
`
`Isotropic
`
`Oriented
`
`2
`
`Isotropic
`
`Oriented
`
`3
`
`Isotropic
`
`Oriented
`
`4
`
`Isotropic
`
`Static—mechzinica1 properties
`
`Eel: U)‘: UB7 5)‘: EB: Uimp
`9
`
`Eel (8, T), al3 (.9, T): [30]; Eel, CB (Vel): [32]; Eel (of chain): [41] (Fig. 24);
`Eel (a, [7, 110 in [1/7 crystalline plane): [42, 43] (Tzible 2); Eel (we): [44]; Eel
`(Tc)i [45] (Table 3); Eel (T. Va): [46] (Fig- 25); Eel
`(P13 [35]; Eel (T): [47]
`(Fig- 26); Elsli (T): [2] P 312 (Fig- 27); Er; (I): [2] (Fig- 28) [48];
`Ecieep (T: I):
`p
`Ecieep (ls 0):
`Aleiir (Vtcnrs T)i
`a_,, (T, M): [25] p 35 (Fig. 30); a,. (T, Vll): [46] (Fig. 31); al, (T): [26];
`an (T, M): [25] p 35 (Fig. 32); 5,. (Vel): [50] (Fig. 33); 85 (T, M): [25]
`p 35 (Fig. 34); en (T, Vd): [46] (Fig. 35); eeleep (ad, T, I): [25] p 37;
`Ecieep (1:0); [51] P 1343; Uimp (T): [25] P 33 (Fig: 36); Uiiiip (Ln): [251 P 35
`(Fig. 37); Je (I, a): [51] p 1341; J (I, a): [51] p 1342; Mch. Pr.: [52] p 2910
`Eel (9): [53, 54]; Eel (p): [5]; Eel,
`:73 (.9): [55, 56] (Fig. 38);
`Eel, all (dimensions of the fibrils): [30, 57] (Fig. 39);
`Eei; U; (139): [46]; Eel (Em; T) [58] P 3431; “B (0): [59];
`Mch. Pr. (5, T0,): [60]; Mch. Pr.: [54];
`Mch. Pr. (20,): [61] p 1385 (Table 4)
`
`(oze, M): [8] (Fig. 40);
`Eel: [6] p 299; Eel (p): [62] (Table 5); Eel
`Eel (Le, M): [8] p 5307; Eel (Lll, M): [8] p 5307; aledl. (film thickness):
`[63]; as (T): [26]; 63 (M): [8] (Fig 41); 0.. (ole): [8] (Fig- 42);
`cl, (ole, M): [8] p 5303; el, (Lll, M): [8] p 5303; almp (film thickness):
`[63]; all, all (M, SCB): [7] (Fig. 43); all (M, SCB): [7] (Fig. 44)
`Eel (p): [64]; Eel (6): [65] p 185; Eel (Tll, 6): [66]; a3 (M): [67];
`U3 (E0I')i [67]
`
`Eel (T, ,0): [6] p 270; El, (T): [48]; a,, (T): [47]; al, (T): [68] p 64, [69];
`all (T, p): [6] p 271 (Fig. 45); a,, (T): [69]; on (T): [2] p 312 (Fig. 46);
`almp (Im,
`lo): [2] p 309 (Fig. 47); almp: [69]; Mch, Pr.: [70];
`Mch. Pr. (p,o1e): [2] p 308 [49]; Mc11 Pr. (T, M, branchiness): [69];
`Mch. Pr.: [71] (Table 6); Mch. Pr.: [48]; Mch. Pr.: [72] p 24 (Table 7)
`Eel (80,, M): [30] (Fig. 48); Eel (em, T): [73] p 451; Eel (5, T0,): [74];
`Eel 175]; Eel-U13 (M. Mw/Mn): [67] (T8516 3); Ui][[7 Uili(€):
`[74];
`Mch. Pr. (8,001): [76]; Mch. Pr.: [73] p 450
`
`Eel (of theflchains): [41] (Figure 49); Eel(T): [6] p 272; Eel (p, T): [37];
`Eel (Va; T): [46] (Fig 50); En (Tm): [77] P 653; [713] (Fig- 51); ETX (M): [79]
`(Fig. 52); Elx, rrlmp (tactic): [78] (Fig. 53); El; (MWD): [78] (Fig. 54);
`0;» (P): [30] (Fig- 55); Ul (T): [2115 323 (Fig- 56); ay 09- T): [37]; (fl (Va):
`[32] (Fig. 57), [46]; 0,. (T, ace): [68] p 64; a,,, ali, EB (Te): [27]; a3 (T): [2]
`p 323 (Fig. 58); al; (Va): [32]; al,, el, (M): [68] p 54; 5,. (Vd): [32] (Fig. 59);
`Ha (Vd, T): [46] (Fig. 60); al, (T): [6] p 273, [81]; al, (distance from the
`center of a spherulite): [13]; almp (T): [82] (Fig. 61), [2] p 323 (Fig. 62); [68]
`p
`gimp (Im):
`P
`Crimp (Inn
`I)
`film, (I,,,): [77] p 654, 655; alml, (ER): [78] p 3411; almp (M): [78] p 242;
`0 [3, NC): [84] (Fig. 65), a (e,,,,NC): [S4| p I458; a (1): [84] p 1459;
`Br (M): [79] p 1870; Mch. Pr.: (M, APP): [2] p 321; Mch. Pr.: [78] p 238;
`Mch. Pr.: [78] p 404; Mch. Pr.: [70], [68] p 44, 46; Mch. Pr.: [85, 86];
`Mch. Pr. [87] (Table 9); Mch. Pr.: [78] p 406 (Table 10)
`
`269
`
`Dynamic—mechanical
`properties
`
`E’: E”; tan 8
`10
`
`E’ (v): [49]; tan 8(T): [105]
`pp l26—127;
`tan 8(1)): [105] pp 128—13l;
`tan 6(1): [106];
`E’, tan 8(t): [107] (Fig. 74)
`
`E’ (T, 8), tan 8(T, 6): [64], [60];
`E’, E” (T, 9): [97];
`El.’el (T, em): [61] p 1389;
`[an a(lr', T): [61] (Fig. 75);
`tan 6(aT, v): [61] p 1391;
`E’, tan 6 (T): [108] (Fig. 76);
`E’, tan 5(6): [108] (Fig. 77);
`E’, tan 6(t, T): [108] p 1033;
`E’ (V), tan 5(1)): [2], [109];
`(Fig. 78); E”, tun 8(T): [110]
`(Fig. 79); E’, tan 6 (T, U)2
`Eshezlrs
`tan 6 (T, 50,): [111] (Fig. 81);
`tan 6(T. 5): [112];
`E, tan 8 (T): [111] (Fig. 82);
`E(£ol, T): [110] (Fig. 83);
`E(6, T): [111] (Fig. 84)
`E’, E”, tan 8 (mol.
`structure, dc): [113]
`(Table 14) E’, tan 8(T, ae);
`[113], [114] (fig. 85);
`tan z](T, etc): [115];
`E’, tan 8(7): [67];
`tan an‘, 1)), E’(’1'): [116]
`(Fig. 86); E’, E”(T): [12];
`tan 5 (T, 9): [I I7] (Fig. 87);
`E’, E”(T): [8]]; E’, tan 6(T):
`[105] p 134, [2] p 323
`(Figs 88, 89), [114] (Fig. 90);
`E’, E”, tan 5(v): [118]
`
`Page 7 of 45
`
`Page 7 of 45
`
`
`
` _
`
`270
`
`TABLE 1
`
`(Continued)
`
`Static-inechaniczil properties
`
`NO‘
`1
`
`State
`3
`Oriented
`
`5
`
`6
`
`Isotropic
`
`Oriented
`lsotropic
`
`Ecls 01” UB3 817 5137 Uinip
`9
`EC. iT,rrm): [gs]; EC,
`(.5, T0,): [88]. [89]; EE, (5); [88], [90], [18] (Fig. 66);
`EM (6, 11101. 012): [9l]; 0],]. 0]]. 5].]. 8,] (T): [82], (7., (Vd,m01 orll 1921
`(Fig. 67), [93]; (73 (am): [18] (Fig. 68); a (5. ac): [19] p 5844; oh (EC): [94]
`(Fig 69). 1561 D 192: "iinp (5)3 1941 (Fig 70); 611 (V11): 1231;
`E.,,.,m_,\ (T, 07¢): [18] p 59; 8], (50,): [18] (Fig. 71): 50,
`(EC): [56] p 156;
`E,
`('1‘.,,)'. [56] (Fig. 72); Mch. P1‘. (fiber): [78] p 250
`EC]; [95] p V1l1—l; EC]: [96~99] (Table 11); 0],: [95] p \/111-2, 3', 0 (E, 01¢):
`[19] (Fig. 73); Mch. Pr. (T): [100]; Mch. P11: [101] p 32 (Table 12);
`p 78, 133. 137; Mch. Pr: [77] p 653; Mc11.P1‘, (Fi1m):[78]p 251
`(Table 13)
`Ee] (5): [102] p 284; Ea. (0.3): [103]
`0,.
`(0lC)Z [104] p 762; (1,
`(Lu): [104] p 762;
`U]. (14,): [1041 p 763; 0,. (T): [221 p 1277
`
`Source: Data from Rcfs. 1. 121.
`
`Mihaics and Olaru
`
`Dynamic-meclizinicul
`properties
`
`E’, E".tz111 8
`
`10
`I.-J".
`I-."'1 ri: [H11]: 15.".
`11111 r11 1‘. #31‘ [:56]: 1'-M1--1-.L1L-111111]
`I_1-ii;
`'-ll)‘.
`I-.'
`[)'_i.I‘[.]'. 1151]
`1‘ 5’l‘”‘''-
`-’5”l7"1? 11111 1""'.u1 ‘J31.
`1:111 ('1 1'1‘). [19] [I-’i;_1.‘J.1i
`E’(T): [105] p 256',
`E’. E"(I): [1 19], [120];
`E’, tan 5(T): [109] (Fig. 94)
`
`E’(T)Z [22]
`
`p 1277 (Fig. 95)
`
`iI.I'I(i El 1 ill! in the
`C.I.i1Il]1:1I'i.\t!i1. 01' 1'.11l.\'11C Mutluli E“. 15],.
`Tr\Bl-1". 2
`11.’: 111.1711: UfL.'l')'.\}1.:1ll111L‘
`]'I01}-'t:ii'|_\-'1i2[‘|.L' all 3‘13I< l'|.'1U1l¥E|.I'CL1 by S:i1<1|:'ud:1
`1‘! ml. [41] by X—I':1y' 5cutte1'ii1;; Lint! v;ilur:~e C2llL‘.|.11L1lt'.!l.1 1'i‘11m 111t211.‘&l1l'€d
`elastic constants [43]
`
`Source
`Sakurzida ct (II.
`Czilculeilcd from
`elastic constants
`
`E11, GPL1
`3.2
`3.2 :: 0.5
`
`Eb. GPz1
`3.‘)
`3.9 :: 0.5
`
`E(l 10). GPa
`
`4.3
`4.6 :: 0.5
`
`T:I'I'cct of mo1‘p11n1ng_w' crystulliriity on clustic modulus at 00113111111 time duration but
`TABLE 3
`:11 different L-i'y:\te11lizution li:mpc1'1:tu1'es of HDPF.
`Crystallization
`( ‘1'_y:xl:111iz-.iii1':11
`Spherulite
`time.
`Lu117]':u1'1it111i:s.
`size.
`min
`“C
`um
`150
`100
`11.3
`150
`105
`11.9
`150
`110
`13.3
`150
`115
`16.6
`150
`120
`20.4
`150
`125
`150
`127
`150
`129
`S()H1'(L". D21121 from Rel 45
`
`Elastic
`modulus.
`GP21
`3.207
`3.417
`3.438
`3.482
`3.541
`3.655
`4.35%
`3.911
`
`L(1lT'|Cll'd1'
`thickness.
`51
`132.0
`129.0
`" 136.6
`145.0
`162.7
`185.7
`189.8
`200.6
`
`C1'yst:111inity
`by DSC.
`“/0
`65.0
`68.6
`68.9
`70.9
`72.1
`72.3
`73.4
`69.6
`
`Page 8 of 45
`
`Page 8 of 45
`
`
`
`Mechanical Properties and Parameters of Polyolefins
`TABLE 4 Results of tensile testing at 20°C a11d some other characteristics of HDPE, MW : 175,000,
`[m : 0_5 g/10min as a function of the d1'aw ratio
`
`Draw ratio
`
`271
`
`,3 : 0.952gcm73,
`
`Property
`Density, g cm ”"
`Elastic modulus, EB, x 10"‘ kJ C1117}
`Tensile S1.1‘€11gll‘1. X1073, l<J cm-—‘
`Relative elongation at fracture, 100%
`Degree of crystallinity, %
`Dggfce of orientation in the crystalline phase
`Degree of orientation in the amorphous phase
`Specific heat Capacity, J K”' g7'
`Sou1't"c: Data from Ref. 61
`
`0.9520
`1.07
`
`0.50
`
`5.5
`0.9575
`3.6
`0.20
`94
`0.54
`0.95
`0.9]
`175
`
`0.9605
`0.25
`0.55
`0.95
`0.92
`
`9.1
`0.9615
`5.7
`0.30
`41
`0.57
`0.95
`0.91
`178
`
`10.9
`0.9620
`6.2
`0.32
`30
`0.60
`0.96
`0.91
`181
`
`12.2
`0,9620
`7,1
`0.37
`13
`0,65
`096
`0,92
`183
`
`TABLE 5 Young’s modulus of PE at
`298 K [62]
`
`V
`Polymer
`l_D1’E
`MDPE
`
`E, GP21 at 1; MP2:
`345
`1.5
`3.8
`
`-01
`0.24
`1.2
`
`689
`2.7
`5.0
`
`S()Hl'{'L’I Data from Ref 102.
`
`A. Static Mechanical Properties
`
`Mechanical properties are summarized as follows:
`
`1.
`
`Stress strain dependences of PO at uniaxial strain
`in a static-mechanical field, i.e., 0(5) and its depen-
`dence on a number of factors, i.e., o(e, F,~) where F,
`is temperature (T), pressure (p), draw rate (Vd),
`molecular and supcrmolecular structural para-
`meters of PO systems, molecular weight (M), and
`
`HDPE
`21.4—38
`50-800
`l.02~8.l5
`
`60 32
`5.53 10.4
`mode of elasticity
`Good
`
`Translucent
`to opaque
`121H30
`
`Relative to LDPE
`Higher
`Higher
`Better
`Better
`
`Relative to HDPE
`Lower
`Higher
`Similar
`Similar
`
`15°C Higher
`Less
`
`More difficult
`Worse
`Worse
`Worse
`
`Lower
`Nai-i-owei-
`
`Lower
`Can be Sdlllfl
`
`Easier
`Better
`Better
`Better
`
`Lower
`Ntll‘1‘0WC1‘
`
`’
`
`4050
`1.1s—2.42
`mode of elasticity
`Excellent
`40
`83
`Near transparent
`to opaque
`-
`s5—s7
`
`TABLE 6 Properties of LLDPE. relative to LDPE and HDPE
`Property
`LDPE
`Tensile strength, MN 11172
`6.9~l5.9
`liloiigiilion, 0/0
`90-650
`lmpael strength, J/12.7 mm
`No break
`llnvironmental stress—cracking
`ieslstiince
`Heal (llSl0l‘ll0l1 temp, °C
`“"""1W~4-5 MN nrl
`W,
`.
`.
`Ih<.l)1E<l[;).fic processibility
`(Hag; 4"SH_
`0
`(,]mji'l~y »
`"1 /n
`.
`_
`I
`1|:ii:1|;|L_l\lli:|‘|'J'l33!‘ |'_'
`l'41!1:.:Lt.__ L‘
`1=..,,,,L.;|,;-m'l:_"'1l
`ii I'“'
`i-kI'1!I|ll—=:(nll
`11
`_‘.'~ (-
`W 1."
`l”) H20 vap
`(h) (101
`mu" H ---—______
`1. Data 110111 RC1‘ 71.
`
`420
`60
`
`55
`13
`
`Better
`Better
`
`Worse
`Worse
`
`_
`
`
`
`Page 9 of 45
`
`Page 9 of 45
`
`
`
` i
`
`272
`
`Mihaies and Olaru
`
`TABLE 7 Some properties of different grades of polyethylene
`
`Property
`
`LLDPE
`
`LDPE
`
`HD1-‘J.’
`
`UHMWPE
`
`Density, g cm”
`Melting temperature, °C
`Tensile strength, MP21
`Elongation at break_ %
`Flexural modulus, MP3
`Izod impact strength, J m“
`Hardness, shore D
`SI)lll‘L'(’I From Ref. 72
`
`0.910—0.925
`125
`14-21
`200-1200
`248-365
`
`41-53
`
`().915—0.935
`106-112
`6.9-17.2
`100-700
`415-795
`0.67-21
`45-60
`
`0.94l—0.967
`13(P133
`18-30
`100 1000
`689-1654
`27-160
`60-70
`
`0.93
`132
`2041
`300
`—
`No break
`
`TABLE 8 Effect of number average molecular weight (Mn) on the tensile strength and tensile
`modulus of oriented polyethylenes at -55°C*
`
`Sample
`Alathon 7050
`Rigidex 50b
`Rigidex 50a
`BXP 10
`Alathon 7030
`NBS SRM 1484
`BP 206
`Unifos 2912
`XGR 661
`H020 54P
`* Draw ratio 15.
`Sam'u>: Data from Ref. 67
`
`M” X 10-3
`22.0
`7.8
`12.3
`16.8
`28.0
`110.0
`16.6
`24.2
`27.8
`33.0
`
`MW x 10-3
`59
`104
`101
`94
`115
`120
`213
`224
`220
`312
`
`MW/Mn
`2.7
`13.3
`8.2
`5.6
`4.1
`1.1
`12.8
`9.3
`7.9
`9.5
`
`0'3, GPa
`0.92
`0.86
`0.86
`0.94
`1.12
`1.23
`1.21
`1.11
`1.17
`1.23
`
`Ed, GP-a
`38.5
`32.2
`31.8
`31.8
`30.1
`31.4
`33.6
`32.2
`31.4
`36.6
`
`TABLE 9 Properties of product from the catalloy process (1997)
`
`Type
`Adstif KC 732P
`Hifax 7135
`Hifax CA 53 A
`Hifax CA 138 A
`Hifax CA 162 A
`Adflex Q 300 F
`Adflex Q 100 F
`Adflex C 200 F
`Adflex X 101 H
`Adsyl
`* R scale
`Samwz From Ref. 87.
`
`I,"
`20
`15
`10
`3
`14
`0.8
`0.6
`6
`8
`6
`
`Flexural
`modulus, MPE1
`2000
`950
`650
`420
`80
`350
`80
`230
`80
`700
`
`Elongation at
`break, °/6
`
`>150
`>500
`>200
`>500
`430
`800
`
`Hardness,
`D scale
`88*
`
`52
`39
`32
`36
`30
`41
`
`L
`
`Page 10 of 45
`
`Page 10 of 45
`
`
`
`Mechanical Properties and Parameters of Polyolefins
`
`TABLE 10 Properties of SPPs
`
`273
`
`Property
`
`Melt flow rate, g/10 min
`Melting point, °C
`Density, g cm”
`Crystallinity, %
`CH3 placement: raeemie*, %
`CH3 placement meso*, %
`MW/M"
`Flexural 111odulus'1‘, MP2:
`Notched Izod, J m—'
`I-lazet, %
`
`*By “C NMR; total °/u in pentads.
`iCompar-ative values.
`Source: From Ref. 78.
`
`SPP 1
`
`5.3
`125
`0.87
`21
`91.4
`8.6
`2.6
`380
`775
`20
`
`Polypropylene sample
`
`SPP 2
`
`8.9
`126
`0.87
`22
`91.9
`8.1
`2.6
`415
`670
`27
`
`SPP 3
`
`2.9
`148
`0.89
`29
`96.5
`3.5
`1.7
`760
`750
`48
`
`Conv. IPP
`
`163
`0.91
`55
`1.4
`98.6
`8
`1170
`25
`—
`
`TABLE 11 Tensile modulus of ideal crystal of polyolefins
`
`Polymer
`
`Eel“, GPa
`
`Ee|J_, GPa
`
`Ref.
`
`Polybutene-1
`Poly-4—methylpentene—1
`[PP
`HDPE
`
`25
`6.7
`34
`235
`
`2.0
`2.9
`3.1
`5.2
`
`96, 97, 98
`96, 97, 98
`97, 98, 99
`97, 98, 99
`
`dencies on the enumerated factors are given in
`paragraphs 1 and 2 and Table 1: static modulus
`of elasticity (Eel), yield stress (0,), yield strain (5,),
`tensile strength or tensile at break (03), ete., of P0
`in isotropic and oriented state at an angle 6'
`between the tensile axis and the orientation direc-
`tion are given in Table 1, column 9.
`
`degree of crystallinity (cue), chemical nature of
`the environment, etc., are presented in Table 1,
`columns 4~7.
`
`!\)
`
`Deformation (E) of PO vs time (I) at uniaxial strain
`in a static-mechanical field with tension 0, i.e., the
`dependence e(t, 0) is given in Table 1, column 8.
`3. Mechanical parameters of PO determined by spe-
`cific points and regions of the load—el0ngation
`curve a(5, F,-) are given in paragraphs 1 and 2, or
`Special methods used to determine their depen-
`(.
`
`B. Dynamic Mechanical Properties
`
`The study of the dynamic-mechanical properties com-
`prises
`the determination of the following values:
`dynamic storage modulus (real part of the complex
`modulus) E’, loss modulus (imaginary part of the coin-
`plex modulus) E" and their ratio E"/E', called the
`factor of dynamic-mechanical loss, tan 8.
`Dynamic-mechanical parameters and their depen-
`dences on particular factors F,» (temperature T, fre-
`quency
`v,
`amplitude
`of
`tension of
`a varying
`
`TABLE 12 Mechanical properties of PO
`
`No.
`
`Properties
`
`LDPE
`
`HDPE
`
`IPP
`
`1
`2
`3
`4
`5
`6
`7
`
`Yield stress, MPa
`Tensile strength, MPa
`Tensile elongation at break, %
`Bending strength, MPa
`Tensile modulus, MPa
`Shore hardness
`Izod impact strength with
`notch, kl x in"
`
`Sourm: Data from Ref. 101
`
`7~13
`l(Pl7
`200—600
`17 —20
`
`42 50
`Without
`break
`
`24—33
`2035
`3004000
`2643
`900—1200
`62—69
`2-150
`
`28—35
`26-43
`250—700
`34-50
`l000—l500
`70-75
`5—8
`
`PB
`
`l5—25
`1540
`150-400
`15-25
`500-900
`60-68
`> 40
`
`Page 11 of 45
`
`Page 11 of 45
`
`
`
` -——
`
`274
`
`TABLE 13 Properties of different polyolcfin films
`
`Mihaies and Olaru
`
`Property
`Tensile strength
`
`Modulus
`
`Elongation
`Tear strength
`
`Haze
`MVTR
`
`03 trans. rate
`
`ASTM
`D-822
`
`D-822
`
`D-822
`D-1922
`
`D-1003
`E-96
`
`D-1434
`
`SUllI't'L". Data from Ref. 78
`
`Units
`MPa
`(kpsi)
`MPa
`(kpsi)
`"/0
`N/mm
`(g/mil)
`%
`g_ mil
`10:! ‘m2 d
`cc mil
`100 in2 d atm
`
`LDPE
`17-24
`(2.5—3.S)
`l40~2l0
`(20~30)
`300~600
`80- 160
`(200—400)
`5~8
`1.2
`
`450
`
`HDPE
`34—69
`(5-10)
`550-1250
`(80-180)
`—
`
`High
`0.3
`
`150
`
`Unoriented PP
`40—60
`(6-9)
`690-960
`(l00—l40)
`400-800
`16—l60
`(40-400)
`1-4
`0.7
`
`Biaxially oriented PP
`l40—240
`(20-35)
`l720—3l00
`(2504150)
`5(Ll30
`1.5-2
`(446)
`1-4
`0.3
`
`240
`
`160
`
`deformation mechanical field) are presented in Table 1,
`column 10.
`
`C. Fatigue Behavior
`
`Fatigue behavior is presented in Figs. 65, 74, 76, and
`77.
`
`The static— and dynamic—mechaniCal properties and
`parameters grouped in Table 1 refer to crystalline PO
`below the melting temperature, but some of them char-
`acterize the corresponding P0 in the molten (viscoelas-
`tic) state, too.
`Table 1 gives the following dependences of these
`properties and parameters as well as their rel‘-.:|‘r.:ncc-.-:.
`lVlCL‘l1‘.l|llL’Ell behavior of polyolefins is firmly depen-
`dent on their semicrystalline nature. Generally, poly-
`olefins exhibit three phases: a tridimensional ordered
`phase, an a111o1'pImt:.~; tli.~cortle1'ctl 1111:1513, and an inter-
`lhcial
`layer between the two pliuses. The relative
`content ol‘
`these |TlU|‘1‘fll0iHglI..’:_ll
`forms l£1il1Il3l1L‘L‘.‘~‘. all
`properties that depend on the response of each phase
`on the external tensions.
`The most important tensile properties depend on
`the molecular characteristics such as structural regular-
`ity of chains, molt.-t:ular weigh! dist1'ilmlin11 and allsu on
`the morphological cliarttutcristicsz c|‘yst:tl|inity degree,
`crystallite size, distribution of the crystallite size, etc.
`Other properties as stress-cracking, impact or tear
`resistance are controlled by the topology of the amor-
`phous phase. The interlamella layer constitution is
`responsible for the propensity of crack propagation,
`For polyethylenes the complex of properties such as
`stiffness and hardness at moderate temperatures and
`
`high stability at low leinperature are the most impor-
`tant and valuable among the mechanical propcrtie:-;.
`One of the most important characteristics that pre-
`dominantly determines the properties and the behavior
`of different grades of PE is their branching which
`influences the ability of the polymer to crystallize.
`The nature, size, and distribution of branches have a
`dominant influence on crystallinity, density and conse-
`quently on ntcelianical pmpeI'ties (Fig. 96).
`Other properties depeutling on crystallinity, such as
`stiffness, hardness, tear strength, yield point, Young‘s
`modulus
`and chemical
`resistance,
`increase with
`increasing degree of crystallinity whereas flexibility
`um! tnuglutess tlL‘CI‘(.‘LtHe under the :;;1|nc conditions.
`Long |srant'hc:; atllcct more prmiotmccdly the poly‘-
`tlispcrsity.
`It
`is gent-I'ally ctm.sitlcret'|
`tli-.11, when the
`other structural
`factors are constant,
`a narrower
`MWD leads to an increase in impact strength, tensile
`strength, toughness, softening point and resistance to
`envi:'o11i1ie|ital stress cracking.
`Anotlier factor
`that
`influences the properties Of
`the pnlyoli.-Iins is the weiglit
`:wcI‘nge.
`J‘.-I“, Ultimate‘
`termite strcngtli. tear .~':trengtI1. Inw l.t.'l'lI['!'L‘l":l.Illl'L‘.
`tt1t|!E'il'
`mess. mt‘tt:|1ii1g__- |€Ifi|1t.‘t‘itltII't.’:.
`impalct strcngtli and envir-
`onms:nt:|| stress cracking inc:rt-ase as the ll-I“.
`iiicit--.:.<e_s.
`In |‘E!t'.'t.'11|. ycu|'s new etliylene copolynicrs [l.l.I)t’l'.l
`L1t'I‘l\"t.?(_l on the m:|rkt'-1 with tlettsily in the tI.‘Jl-“"
`tl,*)35 gent
`I intcrvzll. LLDPIE are l.'(Jt)t')l5J'l)1t‘:l‘S o|'L-tl1y-
`lene and slnalll unintlnl of unnI.ht':r tr—nlclin. sttcll 1'5
`I-butane. l-hesenc, 4-imzlllyl penti.-m: or l—uctene. N*«“*"'
`generation ol‘ "sniper strt-:ngIlt“ gE".'lLlC lnwe hut-:n pru-
`parctl. most recently t|F.lI1_§_1 liiy__l1er uluiima cmnon0I1“""..u
`ft";-.-tl cuuttiut:-.~e on I‘ 1'’
`
`l
`
`L_
`Page 12 of 45
`
`Page 12 of 45
`
`
`
`Mechanical Properties and Parameters of Polyolefins
`
`275
`
`TABLE 14 Tlierinzll chz11‘acte1'iz';1tion of polyethylenes: dynamic-lnechanical analysis
`
`Sample chaI'z1etei'istics
`
`Thermal history
`Sample identification T T -
`Slow
`Annealed
`cooled
`25 h, “C
`4
`5
`+
`
`Type
`2
`LDPE
`
`Source
`
`3
`Linear
`LL—l00l Exxon
`
`Quenched
`6
`
`70
`
`M01. wt.
`.71/[W x 1073
`8
`
`142
`
`*
`
`5400
`
`248
`195
`
`246
`157
`
`160
`
`Density.
`g cm 3
`7
`0.920
`0.920
`0.916
`0.926
`0.928
`0.921
`0.930
`0.930
`0.930
`0.924
`0.950
`0.951
`0.941
`0.951
`0.963
`0.947
`0.962
`0.963
`0.964
`0.949
`
`Crystallinity
`index, %
`9
`49
`
`'
`
`36
`50
`
`43
`64
`
`55
`63
`69
`60
`67
`74
`66
`75
`
`66
`
`No.
`|
`.
`
`2
`
`3
`
`4
`5
`
`6
`
`7
`
`8
`
`No.
`
`2
`
`3
`
`4
`S
`-
`6
`7
`X
`
`Conventional
`HBS, 1476, NBS
`High inol weight
`Lot 90449
`Hercules
`
`HDPE
`
`6097 Union Carbide
`Lot 273908
`Paxon 4100; Allied
`Lot 293922; Paxon 4100; Allied
`Milk Bottle grade
`Allied
`Milk Bottle grade
`Allied
`
`+
`
`+
`
`-
`——
`
`——
`-
`
`——
`
`70
`
`70
`100
`
`70
`100
`
`DMA
`
`+
`
`+
`
`-
`
`-
`
`+
`
`-1-
`
`_
`
`log E’ values, Pa
`
`log E" transitions, “C
`
`log E" valuesf
`
`tan 8 values
`T I
`
`-120°C
`10
`9.41
`9.39
`9.40
`9.44
`
`9.42
`9 40
`9.43
`9.39
`9.43
`9.39
`9 49
`9 50
`346
`9 :1
`9»
`1
`9-47
`992
`
`945
`- —— —__‘_ _
`
`25"'C
`11
`8.60
`8.58
`8.43
`8.68
`
`8.66
`8.39
`8.93
`8.90
`
`8.84
`9.03
`9.03
`8.93
`9.05
`9.18
`9.07
`9.18
`9.18
`9.15
`9.04
`
`75"C
`12
`7.83
`7.84
`
`7.87
`
`7.56
`8.50
`8.47
`
`8.31
`8.45
`8.46
`8.26
`8.46
`8.70
`8.50
`8.71
`8.73
`8.70
`8.48
`
`y
`13
`-111
`-110
`-111
`-114
`
`-114
`-114
`-107
`-108
`-105
`-106
`-108
`-108
`-109
`-108
`-106
`-107
`-107
`-107
`-106
`-107
`
`fl
`14
`-22
`-22
`-18
`-10
`
`~ 14
`-7
`-10
`-8
`-8
`-19
`24
`
`-25
`-27
`
`-29
`~33
`-28
`-40
`
`oz
`15
`29
`28
`26
`18
`
`19
`
`56
`58
`
`45
`41
`41
`35
`41
`51
`43
`52
`53
`53
`42
`
`y,,m
`16
`0.35
`0.36
`0.36
`0.34
`
`0.33
`0.35
`0.55
`0.55
`0.56
`0.58
`0.41
`0.40
`0.45
`0.40
`0.36
`0 47
`0.37
`0.41
`0.37
`0.46
`
`/finm
`17
`0.20
`0.19
`0.27
`0.26
`
`0.35
`0.37
`0.10
`0.11
`0.12
`0.09
`0.15
`
`0.13
`0.07
`
`0.06
`0.05
`0.10
`0.06
`
`am“
`18
`0.14
`0.15
`0.12
`0.27
`
`0.29
`
`0.37
`0.37
`
`0.34
`0.51
`0.52
`0.52
`0.50
`0.54
`0.61
`0.54
`0.61
`0.57
`0.57
`
`—120°C
`19
`0.024
`0.023
`0.027
`0.027
`
`0.027
`0.024
`0.016
`0.016
`0.018
`0.015
`0.017
`0.016
`0,018
`0.016
`0.015
`0.016
`0.015
`0.013
`0.013
`0.017
`
`25°C
`20
`0.119
`0.125
`0.168
`0.138
`
`0.128
`0.202
`0.050
`0.048
`
`0.066
`0.084
`0.089
`0.112
`0.086
`0.059
`0.082
`0.059
`0.061
`0.061
`0.085
`
`75°C
`21
`0.299
`0.308
`
`0.297
`
`0.301
`0.096
`0.189
`0.194
`
`0.222
`0.217
`0.220
`0.245
`0.222
`0.210
`0.248
`0.218
`0.219
`0.220
`0.240
`
`:
`
`L
`' " 1‘|u1:c1|ing. nu attempt was l1‘I1l(16 to determine MW
`‘ Nll‘.:-.|_”‘.‘| _|\ W‘
`i 1"“"'1‘_‘
`1"~‘1.L'-111
`i11‘I0'-*1‘: the lowest point between the end peaks.
`. UH.
`._
`'
`-1|'Inm 1-11:1. 11.1.
`
`Page 13 of 45
`
`Page 13 of 45
`
`
`
` :-
`
`276
`
`Mihaies and Olaru
`
`L1-1000 ([157)
`
`
`
`L1—lWQ (0./vfil
`
`
`
`
`L2—IWQ (0.37)
`
`(4.) Z
`
`25
`
`.53
`E20
`E3
`1’
`
`«E15
`O
`.5
`510Z
`
`‘
`
`(C,
`
`Nominal Slrclin , °/o
`
`L_L._:.e|n_
`100
`200
`300
`
`0
`
`°1;'z‘%iéEs%éé"
`Extennon Ratio
`
`Typu-:11 S[l'CH§-Sllilill Cl||'Vl."1EiE .75 C for Ll_l3PF{. Im
`1
`l"l(.‘.
`ILH g/II! min. p : ll,UlU g cm '. S("B = 17.4/1000f".
`|'|'ac-
`Iinn nl” :11uluL'ula1‘ weigh: 0!‘ (-.1] HI >< III". (b) 5.4 ><
`|U'. (c)
`9.9 x 104 and (d) 21.3 X 104. (From Ref. 7.)
`
`Stress—slrain curves in yield region for linear poly-
`FIG. 3
`L2—IWQ — MW = 970,000,
`.Mw/Mn = 4.42, at =
`ethylene:
`0.37; L1—lWQ — MW : 173,000, M“,/M“ = 2.0. are = 0.46;
`L1-100Q —— MW : 173,000, MW/Mn = 2.0, me = 0.57. IWQ+
`quenched into ice—water mixture;
`l00Q+quenched into
`water at 100°C. (From Ref. 9.)
`
`EU
`
`['
`
`Stress,MPO Nominal
`
`1
`mgg
`Struin '’/a:
`
`5
`
`'
`
`1503
`
`gggg
`
`50
`_.Nw.|\ooOD
`
`
`
`
`
`NominalStress,MFCI
`
`I
`
`
`
`0
`
`.1
`S00
`
`l
`1.
`1500
`1000
`Strain °/o
`
`1
`2000
`
`2500
`
`0
`
`509
`
`FIG. 2 Nominal st1‘ess~slrain curves for linear polyethylene as :1 function of MW (21) and different erystallinity levels 03) (‘ ' ‘)
`01¢ — 0.64; (
`4
`~) oec — 0.55; (
`)(xL.
`0.44; (- - - —) ac = 0.46. (From Ref. 8.)
`
`Page 14 of 45
`
`Page 14 of 45
`
`
`
`Mechanical Properties and Parameters of Polyolefins
`
`277
`
`50
`
`
`
`‘20
`D
`
`T=23°C ___T
`\6: 5G'0mm.n"Hn
`[0
`0_I_:_ i.__u_i_ I.
`20 40 60 60 /00 120140
`an/.
`FIG. 4 Engineering stress—strain diagrams of polypropylene
`1120 LX as a function of the structure: curve 1,
`fully
`quenched structure; curve 2, partially coarse spherulitic
`structure;
`curve
`3, coarse spherulitic structure.
`(From
`Ref. 13.)
`
`5°
`
`10°
`
`25
`
`0G
`
`0
`0.
`
`3.20
`'53
`
`E 15
`LL
`
`U‘ 10
`3
`E
`E 5
`g
`
`20°
`
`459
`65:: 65° 90°
`f'\— F r
`0 0.2 04 0.60.19 to Tr ue Sir-a/n
`
`FIG. 5 Nominal stress—true strain curves for oriented PP
`pulled at various angles (marked on the curves) to the incle-
`cular direction. (From Ref. 15.)
`
`Stress,MPO
`1
`
`U1
`
`3 U
`
`20
`
`|I"I(;. ' .
`(21)
`.~«i1IIlpll;‘ ul‘sym1in12Ictic polypropylene as a function of drawing te|11]v:1';:Iure;
`H __“mi:*<'l'F~>>s--‘-lJ::|iI cum.-ii of qLl\,'l]I.'l'1L'Ll
`,” __ m"['_"- -""'»M'h = 2.1. Tm ; 1411 ('2 mi
`.11., -i I52.uun. MW/Mn : 2.0; Tm : 139”C; (c) MW : -'-100.000, M...;.»tin :24;
`R“. we)“
`-/\|| 3‘--'i|1‘:|'1leS tlluiwn at 5 ininmln". [.):‘-uw lK.‘111]1L'1'Ell.LlrCZ +, 20“C; A, 80“C; Q, 90”C.j V, 110°C and I, 130"C. (From
`
`Page 15 of 45
`
`Page 15 of 45
`
`
`
`
`
`278
`
`30
`
`H1
`
`30
`
`i
`
`Mihaies and Olaru
`
`
`
`_
`Mw=3o,5uu .
`
`M...=5a,ooo
`
`E.’
`5
`
`3E
`
`isEC
`
`2
`
`>050
`
`.
`
`Id,
`
`—
`
`—
`
`25
`
`20
`
`75
`U .Q.
`
`2 $
`
`20
`
`15
`
`5'.’
`L7,
`E
`-E
`2°10
`
`5
`
`Ia}
`lb}
`g..|g.|.__ig::__-I.
`100 200
`100 200
`U
`100 200
`0
`O
`Nominal Strain,
`°/o
`
`FIG. 7 Stressestrain curves in yield region for specific copo—
`lymersi (21) ethy1e11e—0c1ene copolymers; (b) ethy1cr1c—hcxcnc
`copolymers; (C) ethy1er1e—buLene copolymers; (d) Schcfnfltic
`representation. Core level of crystallinity indicated with
`each Curve. (prom Ref. 9_)
`
`-
`
`|
`so
`
`1-
`
`4
`130
`
`I
`
`I
`230
`
`I
`
`.
`.
`Nommul sham '
`
`1
`330
`
`.
`
`L
`
`'
`1.80
`
`/°
`
`St1'ess—s1rain curves for ethy1e11e~hexene copolymers
`FIG. 8
`0f ifldicilted m01€CU13U‘ Weightfi C0“? Cryslflmnity ‘W61 in
`range 0.30 to 0.35 for all samples. (From Ref. 9.)
`
`15
`
`5
`
`E
`~
`q,
`3 in
`U1
`z
`3
`.E
`2%
`
`0
`
`
`._n_ #\i_._.
`0
`1.0
`B0
`120
`160
`Time, 5
`
`E
`
`4
`
`3
`
`2
`
`1
`
`[I
`
`0 5
`%
`u?
`._
`3 4
`0;
`22
`O
`
`z
`
`Q
`
`0
`
`I I3!
`
`100
`
`.
`
`I
`_i
`300
`200
`Time, 5
`
`.
`
`_
`400
`
`12
`
`0,8
`
`0.1]!
`
`D
`
`8
`
`U 12 T 3
`
`I—
`0
`J;
`_‘
`U
`
`0
`2
`
`8
`
`"
`
`u
`
`0
`
`2
`
`5
`
`' 1
`
`I3
`290
`
`«J
`In
`: "
`V)
`_
`
`2
`
`E
`2
`
`0
`
`0
`
`.1 _._ : <.,_i_.i
`50
`100
`150
`Tim e, 5
`
`1.8
`
`12
`
`5
`
`‘D5
`
`_._|_. _i_._ U
`100
`200
`300
`400
`Time _ s
`
`R“.
`]I‘l(.‘. 9 Ncmiiiiul .~;1i'\:.ss(f__'HiII1Li 1I’llL‘. 3-i|.1'iliH (Q: VL.‘l'h'l|h iirzaw lil1‘|L'l|l lhu c:‘tI.~5~|iu;iLI xgwccii of 5mm mm ' I. M N"
`-Mn :1‘
`hizu-tic cu!‘-niymuJ'.~.. {RI} fr — El lJ-'l_‘iguii1
`{.
`.-H“ = ‘itljltltl,
`.'1-.'“.,’.+1i‘,, — 5.2.;-u—iii1ii. llI{)|.: L2"/i..{h1_n:(I.*lliii;c111
`.-13.,/r1'.’l, — 5.4.
`I..‘iI—H|1i1. mu1.. .'r‘.fi"/ii mu! Clliylcmwsciuiiu l.Zl'||T0|}z'F]ICI‘{-GI
`IL‘)
`.r» - [}.£J4| pc|n"'l.
`..-'1-in : .‘v5.U“”. »'‘r-'i.-/Mn :
`unit. mul.
`-0-*3‘?--: Edi gi
`. n.‘.m{'4gi::n ‘L: M,_ : _¥'i’_{MJ(!.
`.-'i'.".../M,, : 2.2, co-unit. mo].——3.9%. (From Ref. 21.)
`
`CO:
`
`‘
`
`Page 16 of 45
`
`.44
`
`Page 16 of 45
`
`
`
`
`
`Mechanical Properties and Parameters of Polyolefins
`
`279
`
`'60
`
`
`
`TrueStress,MPO
`
`«F 6
`
`K) O
`
`True Stroin,€
`
`(cl
`
`‘K
`
`20
`
`l0
`
`
`
`TrueStress,MP0
`
`0
`
`0
`
`.
`
`_.
`
`J.
`1
`True Strain, 8
`
`L
`2
`
`FIG. 10 True stress—strain curves of ethylene butene copolymers, MW : 157,000, M,, = 30,000, p = 0.945 gcm‘3, ac = 0.67, at
`20°C (curve a) and 80°C (curve c) and cthylene—butene copolymers. MW : 146,000, M,, : 27,000, p : 0.910gcmT3, ac = 0.35 at
`20°C (curve b). (From Ref. 22.)
`
`25
`
`lul
`
`
`
`NominalStress,MP0
`
`'5’ J
`
`200
`100
`0 mo 2oo'30o 0
`Nominal Strain,’/u
`
`linear polyethylene as
`Stress strain curves for
`|‘<‘lG..ll
`lilllcllon of
`temperature.
`(a): MW = 970,000. MW/Mn =
`4-42«01t~=0.5l,
`draw rate
`0.1
`in min";
`(b): MW:
`glimlloa MW/Mn =4.42,ozc =0.37, draw rate 1
`in min".
`(From Ref, 9,)
`
`1
`
`t'l0DC1t1es of copolymers are especially d6l.el‘I111l':CLl
`b
`--
`.
`.
`,
`1
`16 “"1lu1'e, amount and dislI'i|mtion of I..‘Ull'l()-
`Hy“
`"Iv and by the catalyst system used in their
`_
`*.\~‘n1l:esis.
`.
`_
`'|"|1'l-!
`nature of the metal-
`hlllglu-Sllfi
`Iwms Has.
`to the
`-.
`-
`.
`-L":-:'-~-
`L llli_\-'.NlEa
`.1 n-.w r.l(1.~..~. nl cnpulymers named
`l1L11m,gCm
`’‘‘“~‘9 C"|‘0|_v11ic.r:;“ lms been nhluinccl They
`'1.”
`*
`‘U
`..
`.
`.
`-
`"
`u
`I‘
`I.~.-L-mm diuiiill
`'“°i|~L-l1Ll1 wulglil.
`11'.-u'1'0\v molecttlar‘
`sI-
`'
`-
`.
`.
`.
`»
`uI‘cl1cmi -. “mun” _(MWDl. Lmtl narmw (.ll5l.l'll'3l.|ll{‘1TI
`“"'l L‘“i11|ms1t|m1_
`
`,,
`
`These materials have improved tensile strength and
`elongation characteristics, higher stiffness at a given
`density, and better heat and stress-crack resistance
`compared to conventional highly branched low density
`polyethylene.
`feature in all of the stress—strain
`The dominant
`curves of ethylene/oz-olefins, beyond the yield region
`is
`the development of significant strain hardening.
`While for homopolymers the strain hardening region
`only becomes dominant at very high molecular weight
`(>106), for the copolymers, beginning at relatively low
`molecular weights,
`the slope of the strain hardening
`region increases with chain length.
`Homogeneous copolymers have a strong strain
`hardening rate which helps to reduce the stress con-
`centration due to localized external effects and to
`improve resistance towards crack propagation. The
`crystal
`thickness is
`the main structural parameter
`that governs
`the occurrence of the homogeneous
`crystal
`slip in addition to the experimental para-
`meters such as draw temperature and strain rate.
`Consequently,
`the reduced most probable crystal
`thickness of the homogeneous copolymers compared
`with the heterogeneous ones, at equivalent crystal con-
`tent, is suggested to be one of the basic parameters of
`the improved-use properties of the former kind of
`materials.
`The metallocene catalysts use makes possible the
`preparation of both the syndiotactie and isotactic
`polypropylene with low polydispersity (approximately
`2~2.5 compared with 6-8 for conventional poly-
`propylene). This clmracteristie conl'cr:-;
`the superior
`I'l]CI..'l‘|1ll1lL':Il properties of a syndiotuctic polymer in
`respect to polymers prepared by classical procedures.
`(Text continues on p 282)
`
`Page 17 of 45
`
`Page 17 of 45
`
`
`
` __._
`
`280
`
`Mihaies and Olaru
`
`500}
`
`__300_ ____
`
`[
`
`
`400‘
`
`'
`
`I
`
`_ O.
`
`l___ L.
`
`«$00
`
`12.00 _
`
`I5