throbber
HANDBOOK OF
`P0lY0lEFINS
`
`SEGIIIIII Ellilillll, BBWSGII flllll Ellllflllllflll
`
`Me Me
`
`O:A|
`
`edited by
`
`GOIINEIIII Imsllli
`
`ll
`
`Page 1 of 45
`
`BOREALIS EXHIBIT 1066
`
`Page 1 of 45
`
`BOREALIS EXHIBIT 1066
`
`

`
`Page 2 of 45
`
`Page 2 of 45
`
`

`
`A
`
`ununnunx
`or PIIIYIIIEFINS
`
`
`
`second Etlililln, Iieuiseu and Exllamletl
`
`edited lw
`
`GIIIINEIIA Ifllslli
`Romanian Academy
`"P. Poni” Institute of Macromolecular Chemistry
`Iasi, Romania
`
`MARCEL
`
`( MARCEL DEKKER, INC.
`
`rm
`
`DEKKER
`
`New YORK - BASEL
`
`
`Page 3 of 45
`
`Page 3 of 45
`
`

`
`ISBN: 0-8247-8603-3
`
`This book is printed on acid—free paper.
`
`Headquarters
`Marcel Dckker, Inc.
`270 Madison Avenue, New York, NY 10016
`tel: 212-696-9000; fax: 212-685-4540
`
`Eastern Hemisphere Distribution
`Marcel Dekker AG
`Hutgasse 4, Postfach 812, CI-I—400l Basel, Switzerland
`tel: 41-61-261-8482; fax: 41-6|-261-8896
`
`World Wide Web
`http1//www.dekker.com
`
`The publisher offers discounts on this book when ordered in bulk quantities, For more information, write to Special Sales/’
`Professional Marketing at the headquarters address above.
`
`Copyright © 2000 by Marcel Dekker, Inc. All Rights Reserved.
`
`Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical,
`including photocopying, mierofilming, and recording, or by any information storage and retrieval system, without permission in
`writing from the publisher.
`
`Current printing (last digit):
`10987654321
`
`/\ fl,,’} 2 .-7
`'4
`,,
`’
`L,»
`~.,
`
`,
`
`7 g \.»
`5/,0)
`,
`-
`
`PRINTED IN THE UNITED STATES OF AMERICA
`
`Page 4 of 45
`
`

`
`11
`
`Mechanical Properties and Parameters of Polyolefins
`
`Milrncla t\/lihaics and Anton Olaru
`g(' (wpmp/usl SA, Iasi, Rormm:‘rI
`
`I.
`
`INTRODUCTION
`
`is an t.‘.‘L|.L'|'lL'lCLl nntl npdnletl review 01‘ the
`This L-li::;wIt'|'
`tlnt-.1
`am the mcrqlruiticnl properties til“
`sy.~.lt-in;iIix.t-tl
`polyululirns t|‘()':_ The music 0|‘ Pl't.'F.t3l1lttllOll
`l't'rnm the
`lii:-.t L-alilmn mt"
`flrrrirffirmlt
`.11"
`I’rr.'_1'nl<jfr'rr.s
`L124
`lisetl hy
`Bogdnnov [1] has been adnptctl. This. kind of pre-
`sentation was considered \-"cry
`ttscltll
`for
`readers
`involved in P0 manufacture, processing, application,
`and research.
`
`The data presented refer to the most important POs
`with the general formulae:
`
`,,(__
`
`(‘:H¥),’-
`R
`
`('4) Wllh R = H, polyethylene (PE):
`
`(lcnsity polyethylene (HDPE) and ultrahigh
`H1211
`molecular weight polymer (UHMWIIDPE);
`LOW density polyethylene with branched carbon back-
`bmle (LDPE) or linear carbon backbone (LLDPE);
`Random copolymcr ethylene/ot—0lefins.
`
`(b) with R = CH3, polypropylene (PP):
`
`L‘tllllLIllL‘ pt1l}"|\!'n|‘r},-‘It-,’:1L‘ {ll'l’):
`‘,N_\l|.h\lm|"“l"‘ !l“]5'|“‘\'l‘,‘r’lt‘"\’ I-SPF);
`'|VH‘:LlllL'
`l‘ill)«'1':1'up_\,*lct':e (APP);
`-“i“"*’ Wunylelie hluck cnpolymcrs with isotactic
`1301)/Dtopylcnc segments (I—PEP).
`
`New commercial grades of polyethylenes synthe-
`sized with both Ziegler4Natta and metallocene cata-
`lysts were included.
`The selected mechanical properties refer to one-
`L’t.\l'l‘l|1tmL‘1ll pulynleliir systetiis.
`'l'l:'esu pmpcrtiu.~; us well as their depcntlcnccs mt
`v;n-inns llrutnrta (F,-J
`Prtlr‘,} —-are presented in ‘lnlile l
`where the liIemlL1I‘c tzirticles,
`inonngrnplis. encyclo-
`paerlias.
`l'tL1il(ll)lJl1l-Rh.
`etc.)
`corn-.1inin;_:
`in11i:'nmtiu|1
`zthonl
`them is c|:thsiliL:t|. Only a limited ntnnhur til‘
`data are prcsciited here in lnhLt|:tI'
`rmtl gruplticrll
`l'orrn. All
`|n‘npeI‘tics mid depent'lcnce:~: piescntetl
`in
`tnhttlztr nnd g|';tpi1icnl
`thrln are
`:rccomp;I|1i'cd
`by
`cm'rcspum.ling
`1'c|'eI'cI1-ecs which are tmdcrlincd in
`Table l.
`to the rlat-.1
`The text. AIl3l'11't.‘\-'liI.llt'In. and .~‘._t-inhnls
`lrnm the l3',n3.-lislt
`l'r:l'et'er1ccs
`in grnplric and tulmlni‘
`l‘t'irn1 are not
`clt.-tngerl
`t4.':|'Iginnl) or
`insigr1i|'ic;nnlly
`changed: tltmzt: llrum the |'et'-::‘e:1t:t:s in other l:rngLr.tgc.s
`are traiislnleri us-mg our own terms and nhhrcvianinnsz
`data in tuhnln r Form are not given fully beczrtrse of the
`limited number of pages.
`
`II. MECHANICAL PROPERTIES
`
`Only mechanical properties (belnwiur) (Mch. Pr.) of
`P0 are chosen mainly at nniaxial strain.
`Selected mechanical properties and parameters as
`well as their dcpcndcnces on definite factors are pre-
`sented in Tables 2~l4 and Figs. 196.
`(Text continues on p 271)
`
`Page 5 of 45
`
`

`
`268
`
`TABLE 1 Mechanical properties (Mcli. Pr.) of P0 and their relationship to different factors
`Static-mechanical properties
`
`Mihaies and Olaru
`
`s(t, 0')
`8
`[21
`P 315
`(1"ig- 22)
`
`a(.9,p)
`7
`[341
`(Fig. 19);
`[3 5]
`
`[36]
`p 125
`(Fig. 20)
`
`a(£, I/d)
`6
`
`[30]
`[31]
`(Fig. 14);
`[9]
`(Fig. 15)
`
`[31]
`[26]
`
`n(,.:, T)
`5
`[25]
`p 35
`
`[26];
`[9]
`(Fig. 11)
`
`[2]
`p 311
`(Fig. 12);
`[261
`
`[27]
`p 12
`
`[28]
`
`No.
`I
`I
`
`2
`
`3
`
`4
`
`5
`
`6
`
`State
`3
`Isotropic
`
`Oriented
`Isotropic
`
`Oriented
`Isotropic
`
`Oriented
`Isotropic
`
`Oriented
`
`Isotropic
`Oriented
`
`Isotropic
`
`PO
`2
`HDPE
`UHMWHDPE
`
`LDPE
`LLDPE
`included
`metallocene
`obtained
`
`Different types
`of PE
`
`IPP
`APP
`SPP and
`I—PEP
`included
`metallocene
`obtained
`
`Different types
`of PO
`
`Random
`copolymers
`E-H. E-O, E—B
`included
`metallocene
`obtained
`
`0(5)
`4
`[2]
`p 298;
`[3]
`p 4694
`[4, 5]
`[2]
`p 298;
`[6]
`p 274;
`[7]
`(Fig. 1);
`[8]
`(Fig- 2);
`[91
`(Fig. 3);
`[10]
`[1 1]
`
`[12]
`[13]
`(Fig. 4);
`[I4];
`[2]
`p 299
`
`[15]
`(Fig 5);
`[16, 17];
`118]
`p 59;
`[191
`(Fig. 6)
`[2]
`p 299
`
`[9]
`(Figs. 7, 8);
`[20]
`p 84;
`[21]
`(Fig. 9);
`[221
`(Fig. 10);
`[23]
`p 1410
`[241
`p 1115
`
`Page 6 of 45
`
`[32];
`[33]
`(Fig. 16)
`
`[37]
`(Fig. 21);
`[33]
`
`[2]
`p 325
`(Fig. 23)
`
`[38]
`
`[391
`[40]
`
`[29]
`p 1161;
`[24]
`(Fig. 13)
`
`[9]
`(Fig. 17);
`[29]
`(Fig. 18);
`[24]
`p 1116
`
`Page 6 of 45
`
`

`
`Mechanical Properties and Parameters of Polyolefins
`
`TABLE 1
`
`(Continued)
`
`No
`[
`
`]
`
`state
`3
`
`Isotropic
`
`Oriented
`
`2
`
`Isotropic
`
`Oriented
`
`3
`
`Isotropic
`
`Oriented
`
`4
`
`Isotropic
`
`Static—mechzinica1 properties
`
`Eel: U)‘: UB7 5)‘: EB: Uimp
`9
`
`Eel (8, T), al3 (.9, T): [30]; Eel, CB (Vel): [32]; Eel (of chain): [41] (Fig. 24);
`Eel (a, [7, 110 in [1/7 crystalline plane): [42, 43] (Tzible 2); Eel (we): [44]; Eel
`(Tc)i [45] (Table 3); Eel (T. Va): [46] (Fig- 25); Eel
`(P13 [35]; Eel (T): [47]
`(Fig- 26); Elsli (T): [2] P 312 (Fig- 27); Er; (I): [2] (Fig- 28) [48];
`Ecieep (T: I):
`p
`Ecieep (ls 0):
`Aleiir (Vtcnrs T)i
`a_,, (T, M): [25] p 35 (Fig. 30); a,. (T, Vll): [46] (Fig. 31); al, (T): [26];
`an (T, M): [25] p 35 (Fig. 32); 5,. (Vel): [50] (Fig. 33); 85 (T, M): [25]
`p 35 (Fig. 34); en (T, Vd): [46] (Fig. 35); eeleep (ad, T, I): [25] p 37;
`Ecieep (1:0); [51] P 1343; Uimp (T): [25] P 33 (Fig: 36); Uiiiip (Ln): [251 P 35
`(Fig. 37); Je (I, a): [51] p 1341; J (I, a): [51] p 1342; Mch. Pr.: [52] p 2910
`Eel (9): [53, 54]; Eel (p): [5]; Eel,
`:73 (.9): [55, 56] (Fig. 38);
`Eel, all (dimensions of the fibrils): [30, 57] (Fig. 39);
`Eei; U; (139): [46]; Eel (Em; T) [58] P 3431; “B (0): [59];
`Mch. Pr. (5, T0,): [60]; Mch. Pr.: [54];
`Mch. Pr. (20,): [61] p 1385 (Table 4)
`
`(oze, M): [8] (Fig. 40);
`Eel: [6] p 299; Eel (p): [62] (Table 5); Eel
`Eel (Le, M): [8] p 5307; Eel (Lll, M): [8] p 5307; aledl. (film thickness):
`[63]; as (T): [26]; 63 (M): [8] (Fig 41); 0.. (ole): [8] (Fig- 42);
`cl, (ole, M): [8] p 5303; el, (Lll, M): [8] p 5303; almp (film thickness):
`[63]; all, all (M, SCB): [7] (Fig. 43); all (M, SCB): [7] (Fig. 44)
`Eel (p): [64]; Eel (6): [65] p 185; Eel (Tll, 6): [66]; a3 (M): [67];
`U3 (E0I')i [67]
`
`Eel (T, ,0): [6] p 270; El, (T): [48]; a,, (T): [47]; al, (T): [68] p 64, [69];
`all (T, p): [6] p 271 (Fig. 45); a,, (T): [69]; on (T): [2] p 312 (Fig. 46);
`almp (Im,
`lo): [2] p 309 (Fig. 47); almp: [69]; Mch, Pr.: [70];
`Mch. Pr. (p,o1e): [2] p 308 [49]; Mc11 Pr. (T, M, branchiness): [69];
`Mch. Pr.: [71] (Table 6); Mch. Pr.: [48]; Mch. Pr.: [72] p 24 (Table 7)
`Eel (80,, M): [30] (Fig. 48); Eel (em, T): [73] p 451; Eel (5, T0,): [74];
`Eel 175]; Eel-U13 (M. Mw/Mn): [67] (T8516 3); Ui][[7 Uili(€):
`[74];
`Mch. Pr. (8,001): [76]; Mch. Pr.: [73] p 450
`
`Eel (of theflchains): [41] (Figure 49); Eel(T): [6] p 272; Eel (p, T): [37];
`Eel (Va; T): [46] (Fig 50); En (Tm): [77] P 653; [713] (Fig- 51); ETX (M): [79]
`(Fig. 52); Elx, rrlmp (tactic): [78] (Fig. 53); El; (MWD): [78] (Fig. 54);
`0;» (P): [30] (Fig- 55); Ul (T): [2115 323 (Fig- 56); ay 09- T): [37]; (fl (Va):
`[32] (Fig. 57), [46]; 0,. (T, ace): [68] p 64; a,,, ali, EB (Te): [27]; a3 (T): [2]
`p 323 (Fig. 58); al; (Va): [32]; al,, el, (M): [68] p 54; 5,. (Vd): [32] (Fig. 59);
`Ha (Vd, T): [46] (Fig. 60); al, (T): [6] p 273, [81]; al, (distance from the
`center of a spherulite): [13]; almp (T): [82] (Fig. 61), [2] p 323 (Fig. 62); [68]
`p
`gimp (Im):
`P
`Crimp (Inn
`I)
`film, (I,,,): [77] p 654, 655; alml, (ER): [78] p 3411; almp (M): [78] p 242;
`0 [3, NC): [84] (Fig. 65), a (e,,,,NC): [S4| p I458; a (1): [84] p 1459;
`Br (M): [79] p 1870; Mch. Pr.: (M, APP): [2] p 321; Mch. Pr.: [78] p 238;
`Mch. Pr.: [78] p 404; Mch. Pr.: [70], [68] p 44, 46; Mch. Pr.: [85, 86];
`Mch. Pr. [87] (Table 9); Mch. Pr.: [78] p 406 (Table 10)
`
`269
`
`Dynamic—mechanical
`properties
`
`E’: E”; tan 8
`10
`
`E’ (v): [49]; tan 8(T): [105]
`pp l26—127;
`tan 8(1)): [105] pp 128—13l;
`tan 6(1): [106];
`E’, tan 8(t): [107] (Fig. 74)
`
`E’ (T, 8), tan 8(T, 6): [64], [60];
`E’, E” (T, 9): [97];
`El.’el (T, em): [61] p 1389;
`[an a(lr', T): [61] (Fig. 75);
`tan 6(aT, v): [61] p 1391;
`E’, tan 6 (T): [108] (Fig. 76);
`E’, tan 5(6): [108] (Fig. 77);
`E’, tan 6(t, T): [108] p 1033;
`E’ (V), tan 5(1)): [2], [109];
`(Fig. 78); E”, tun 8(T): [110]
`(Fig. 79); E’, tan 6 (T, U)2
`Eshezlrs
`tan 6 (T, 50,): [111] (Fig. 81);
`tan 6(T. 5): [112];
`E, tan 8 (T): [111] (Fig. 82);
`E(£ol, T): [110] (Fig. 83);
`E(6, T): [111] (Fig. 84)
`E’, E”, tan 8 (mol.
`structure, dc): [113]
`(Table 14) E’, tan 8(T, ae);
`[113], [114] (fig. 85);
`tan z](T, etc): [115];
`E’, tan 8(7): [67];
`tan an‘, 1)), E’(’1'): [116]
`(Fig. 86); E’, E”(T): [12];
`tan 5 (T, 9): [I I7] (Fig. 87);
`E’, E”(T): [8]]; E’, tan 6(T):
`[105] p 134, [2] p 323
`(Figs 88, 89), [114] (Fig. 90);
`E’, E”, tan 5(v): [118]
`
`Page 7 of 45
`
`Page 7 of 45
`
`

`
` _
`
`270
`
`TABLE 1
`
`(Continued)
`
`Static-inechaniczil properties
`
`NO‘
`1
`
`State
`3
`Oriented
`
`5
`
`6
`
`Isotropic
`
`Oriented
`lsotropic
`
`Ecls 01” UB3 817 5137 Uinip
`9
`EC. iT,rrm): [gs]; EC,
`(.5, T0,): [88]. [89]; EE, (5); [88], [90], [18] (Fig. 66);
`EM (6, 11101. 012): [9l]; 0],]. 0]]. 5].]. 8,] (T): [82], (7., (Vd,m01 orll 1921
`(Fig. 67), [93]; (73 (am): [18] (Fig. 68); a (5. ac): [19] p 5844; oh (EC): [94]
`(Fig 69). 1561 D 192: "iinp (5)3 1941 (Fig 70); 611 (V11): 1231;
`E.,,.,m_,\ (T, 07¢): [18] p 59; 8], (50,): [18] (Fig. 71): 50,
`(EC): [56] p 156;
`E,
`('1‘.,,)'. [56] (Fig. 72); Mch. P1‘. (fiber): [78] p 250
`EC]; [95] p V1l1—l; EC]: [96~99] (Table 11); 0],: [95] p \/111-2, 3', 0 (E, 01¢):
`[19] (Fig. 73); Mch. Pr. (T): [100]; Mch. P11: [101] p 32 (Table 12);
`p 78, 133. 137; Mch. Pr: [77] p 653; Mc11.P1‘, (Fi1m):[78]p 251
`(Table 13)
`Ee] (5): [102] p 284; Ea. (0.3): [103]
`0,.
`(0lC)Z [104] p 762; (1,
`(Lu): [104] p 762;
`U]. (14,): [1041 p 763; 0,. (T): [221 p 1277
`
`Source: Data from Rcfs. 1. 121.
`
`Mihaics and Olaru
`
`Dynamic-meclizinicul
`properties
`
`E’, E".tz111 8
`
`10
`I.-J".
`I-."'1 ri: [H11]: 15.".
`11111 r11 1‘. #31‘ [:56]: 1'-M1--1-.L1L-111111]
`I_1-ii;
`'-ll)‘.
`I-.'
`[)'_i.I‘[.]'. 1151]
`1‘ 5’l‘”‘''-
`-’5”l7"1? 11111 1""'.u1 ‘J31.
`1:111 ('1 1'1‘). [19] [I-’i;_1.‘J.1i
`E’(T): [105] p 256',
`E’. E"(I): [1 19], [120];
`E’, tan 5(T): [109] (Fig. 94)
`
`E’(T)Z [22]
`
`p 1277 (Fig. 95)
`
`iI.I'I(i El 1 ill! in the
`C.I.i1Il]1:1I'i.\t!i1. 01' 1'.11l.\'11C Mutluli E“. 15],.
`Tr\Bl-1". 2
`11.’: 111.1711: UfL.'l')'.\}1.:1ll111L‘
`]'I01}-'t:ii'|_\-'1i2[‘|.L' all 3‘13I< l'|.'1U1l¥E|.I'CL1 by S:i1<1|:'ud:1
`1‘! ml. [41] by X—I':1y' 5cutte1'ii1;; Lint! v;ilur:~e C2llL‘.|.11L1lt'.!l.1 1'i‘11m 111t211.‘&l1l'€d
`elastic constants [43]
`
`Source
`Sakurzida ct (II.
`Czilculeilcd from
`elastic constants
`
`E11, GPL1
`3.2
`3.2 :: 0.5
`
`Eb. GPz1
`3.‘)
`3.9 :: 0.5
`
`E(l 10). GPa
`
`4.3
`4.6 :: 0.5
`
`T:I'I'cct of mo1‘p11n1ng_w' crystulliriity on clustic modulus at 00113111111 time duration but
`TABLE 3
`:11 different L-i'y:\te11lizution li:mpc1'1:tu1'es of HDPF.
`Crystallization
`( ‘1'_y:xl:111iz-.iii1':11
`Spherulite
`time.
`Lu117]':u1'1it111i:s.
`size.
`min
`“C
`um
`150
`100
`11.3
`150
`105
`11.9
`150
`110
`13.3
`150
`115
`16.6
`150
`120
`20.4
`150
`125
`150
`127
`150
`129
`S()H1'(L". D21121 from Rel 45
`
`Elastic
`modulus.
`GP21
`3.207
`3.417
`3.438
`3.482
`3.541
`3.655
`4.35%
`3.911
`
`L(1lT'|Cll'd1'
`thickness.
`51
`132.0
`129.0
`" 136.6
`145.0
`162.7
`185.7
`189.8
`200.6
`
`C1'yst:111inity
`by DSC.
`“/0
`65.0
`68.6
`68.9
`70.9
`72.1
`72.3
`73.4
`69.6
`
`Page 8 of 45
`
`Page 8 of 45
`
`

`
`Mechanical Properties and Parameters of Polyolefins
`TABLE 4 Results of tensile testing at 20°C a11d some other characteristics of HDPE, MW : 175,000,
`[m : 0_5 g/10min as a function of the d1'aw ratio
`
`Draw ratio
`
`271
`
`,3 : 0.952gcm73,
`
`Property
`Density, g cm ”"
`Elastic modulus, EB, x 10"‘ kJ C1117}
`Tensile S1.1‘€11gll‘1. X1073, l<J cm-—‘
`Relative elongation at fracture, 100%
`Degree of crystallinity, %
`Dggfce of orientation in the crystalline phase
`Degree of orientation in the amorphous phase
`Specific heat Capacity, J K”' g7'
`Sou1't"c: Data from Ref. 61
`
`0.9520
`1.07
`
`0.50
`
`5.5
`0.9575
`3.6
`0.20
`94
`0.54
`0.95
`0.9]
`175
`
`0.9605
`0.25
`0.55
`0.95
`0.92
`
`9.1
`0.9615
`5.7
`0.30
`41
`0.57
`0.95
`0.91
`178
`
`10.9
`0.9620
`6.2
`0.32
`30
`0.60
`0.96
`0.91
`181
`
`12.2
`0,9620
`7,1
`0.37
`13
`0,65
`096
`0,92
`183
`
`TABLE 5 Young’s modulus of PE at
`298 K [62]
`
`V
`Polymer
`l_D1’E
`MDPE
`
`E, GP21 at 1; MP2:
`345
`1.5
`3.8
`
`-01
`0.24
`1.2
`
`689
`2.7
`5.0
`
`S()Hl'{'L’I Data from Ref 102.
`
`A. Static Mechanical Properties
`
`Mechanical properties are summarized as follows:
`
`1.
`
`Stress strain dependences of PO at uniaxial strain
`in a static-mechanical field, i.e., 0(5) and its depen-
`dence on a number of factors, i.e., o(e, F,~) where F,
`is temperature (T), pressure (p), draw rate (Vd),
`molecular and supcrmolecular structural para-
`meters of PO systems, molecular weight (M), and
`
`HDPE
`21.4—38
`50-800
`l.02~8.l5
`
`60 32
`5.53 10.4
`mode of elasticity
`Good
`
`Translucent
`to opaque
`121H30
`
`Relative to LDPE
`Higher
`Higher
`Better
`Better
`
`Relative to HDPE
`Lower
`Higher
`Similar
`Similar
`
`15°C Higher
`Less
`
`More difficult
`Worse
`Worse
`Worse
`
`Lower
`Nai-i-owei-
`
`Lower
`Can be Sdlllfl
`
`Easier
`Better
`Better
`Better
`
`Lower
`Ntll‘1‘0WC1‘
`
`’
`
`4050
`1.1s—2.42
`mode of elasticity
`Excellent
`40
`83
`Near transparent
`to opaque
`-
`s5—s7
`
`TABLE 6 Properties of LLDPE. relative to LDPE and HDPE
`Property
`LDPE
`Tensile strength, MN 11172
`6.9~l5.9
`liloiigiilion, 0/0
`90-650
`lmpael strength, J/12.7 mm
`No break
`llnvironmental stress—cracking
`ieslstiince
`Heal (llSl0l‘ll0l1 temp, °C
`“"""1W~4-5 MN nrl
`W,
`.
`.
`Ih<.l)1E<l[;).fic processibility
`(Hag; 4"SH_
`0
`(,]mji'l~y »
`"1 /n
`.
`_
`I
`1|:ii:1|;|L_l\lli:|‘|'J'l33!‘ |'_'
`l'41!1:.:Lt.__ L‘
`1=..,,,,L.;|,;-m'l:_"'1l
`ii I'“'
`i-kI'1!I|ll—=:(nll
`11
`_‘.'~ (-
`W 1."
`l”) H20 vap
`(h) (101
`mu" H ---—______
`1. Data 110111 RC1‘ 71.
`
`420
`60
`
`55
`13
`
`Better
`Better
`
`Worse
`Worse
`
`_
`
`
`
`Page 9 of 45
`
`Page 9 of 45
`
`

`
` i
`
`272
`
`Mihaies and Olaru
`
`TABLE 7 Some properties of different grades of polyethylene
`
`Property
`
`LLDPE
`
`LDPE
`
`HD1-‘J.’
`
`UHMWPE
`
`Density, g cm”
`Melting temperature, °C
`Tensile strength, MP21
`Elongation at break_ %
`Flexural modulus, MP3
`Izod impact strength, J m“
`Hardness, shore D
`SI)lll‘L'(’I From Ref. 72
`
`0.910—0.925
`125
`14-21
`200-1200
`248-365
`
`41-53
`
`().915—0.935
`106-112
`6.9-17.2
`100-700
`415-795
`0.67-21
`45-60
`
`0.94l—0.967
`13(P133
`18-30
`100 1000
`689-1654
`27-160
`60-70
`
`0.93
`132
`2041
`300
`—
`No break
`
`TABLE 8 Effect of number average molecular weight (Mn) on the tensile strength and tensile
`modulus of oriented polyethylenes at -55°C*
`
`Sample
`Alathon 7050
`Rigidex 50b
`Rigidex 50a
`BXP 10
`Alathon 7030
`NBS SRM 1484
`BP 206
`Unifos 2912
`XGR 661
`H020 54P
`* Draw ratio 15.
`Sam'u>: Data from Ref. 67
`
`M” X 10-3
`22.0
`7.8
`12.3
`16.8
`28.0
`110.0
`16.6
`24.2
`27.8
`33.0
`
`MW x 10-3
`59
`104
`101
`94
`115
`120
`213
`224
`220
`312
`
`MW/Mn
`2.7
`13.3
`8.2
`5.6
`4.1
`1.1
`12.8
`9.3
`7.9
`9.5
`
`0'3, GPa
`0.92
`0.86
`0.86
`0.94
`1.12
`1.23
`1.21
`1.11
`1.17
`1.23
`
`Ed, GP-a
`38.5
`32.2
`31.8
`31.8
`30.1
`31.4
`33.6
`32.2
`31.4
`36.6
`
`TABLE 9 Properties of product from the catalloy process (1997)
`
`Type
`Adstif KC 732P
`Hifax 7135
`Hifax CA 53 A
`Hifax CA 138 A
`Hifax CA 162 A
`Adflex Q 300 F
`Adflex Q 100 F
`Adflex C 200 F
`Adflex X 101 H
`Adsyl
`* R scale
`Samwz From Ref. 87.
`
`I,"
`20
`15
`10
`3
`14
`0.8
`0.6
`6
`8
`6
`
`Flexural
`modulus, MPE1
`2000
`950
`650
`420
`80
`350
`80
`230
`80
`700
`
`Elongation at
`break, °/6
`
`>150
`>500
`>200
`>500
`430
`800
`
`Hardness,
`D scale
`88*
`
`52
`39
`32
`36
`30
`41
`
`L
`
`Page 10 of 45
`
`Page 10 of 45
`
`

`
`Mechanical Properties and Parameters of Polyolefins
`
`TABLE 10 Properties of SPPs
`
`273
`
`Property
`
`Melt flow rate, g/10 min
`Melting point, °C
`Density, g cm”
`Crystallinity, %
`CH3 placement: raeemie*, %
`CH3 placement meso*, %
`MW/M"
`Flexural 111odulus'1‘, MP2:
`Notched Izod, J m—'
`I-lazet, %
`
`*By “C NMR; total °/u in pentads.
`iCompar-ative values.
`Source: From Ref. 78.
`
`SPP 1
`
`5.3
`125
`0.87
`21
`91.4
`8.6
`2.6
`380
`775
`20
`
`Polypropylene sample
`
`SPP 2
`
`8.9
`126
`0.87
`22
`91.9
`8.1
`2.6
`415
`670
`27
`
`SPP 3
`
`2.9
`148
`0.89
`29
`96.5
`3.5
`1.7
`760
`750
`48
`
`Conv. IPP
`
`163
`0.91
`55
`1.4
`98.6
`8
`1170
`25
`—
`
`TABLE 11 Tensile modulus of ideal crystal of polyolefins
`
`Polymer
`
`Eel“, GPa
`
`Ee|J_, GPa
`
`Ref.
`
`Polybutene-1
`Poly-4—methylpentene—1
`[PP
`HDPE
`
`25
`6.7
`34
`235
`
`2.0
`2.9
`3.1
`5.2
`
`96, 97, 98
`96, 97, 98
`97, 98, 99
`97, 98, 99
`
`dencies on the enumerated factors are given in
`paragraphs 1 and 2 and Table 1: static modulus
`of elasticity (Eel), yield stress (0,), yield strain (5,),
`tensile strength or tensile at break (03), ete., of P0
`in isotropic and oriented state at an angle 6'
`between the tensile axis and the orientation direc-
`tion are given in Table 1, column 9.
`
`degree of crystallinity (cue), chemical nature of
`the environment, etc., are presented in Table 1,
`columns 4~7.
`
`!\)
`
`Deformation (E) of PO vs time (I) at uniaxial strain
`in a static-mechanical field with tension 0, i.e., the
`dependence e(t, 0) is given in Table 1, column 8.
`3. Mechanical parameters of PO determined by spe-
`cific points and regions of the load—el0ngation
`curve a(5, F,-) are given in paragraphs 1 and 2, or
`Special methods used to determine their depen-
`(.
`
`B. Dynamic Mechanical Properties
`
`The study of the dynamic-mechanical properties com-
`prises
`the determination of the following values:
`dynamic storage modulus (real part of the complex
`modulus) E’, loss modulus (imaginary part of the coin-
`plex modulus) E" and their ratio E"/E', called the
`factor of dynamic-mechanical loss, tan 8.
`Dynamic-mechanical parameters and their depen-
`dences on particular factors F,» (temperature T, fre-
`quency
`v,
`amplitude
`of
`tension of
`a varying
`
`TABLE 12 Mechanical properties of PO
`
`No.
`
`Properties
`
`LDPE
`
`HDPE
`
`IPP
`
`1
`2
`3
`4
`5
`6
`7
`
`Yield stress, MPa
`Tensile strength, MPa
`Tensile elongation at break, %
`Bending strength, MPa
`Tensile modulus, MPa
`Shore hardness
`Izod impact strength with
`notch, kl x in"
`
`Sourm: Data from Ref. 101
`
`7~13
`l(Pl7
`200—600
`17 —20
`
`42 50
`Without
`break
`
`24—33
`2035
`3004000
`2643
`900—1200
`62—69
`2-150
`
`28—35
`26-43
`250—700
`34-50
`l000—l500
`70-75
`5—8
`
`PB
`
`l5—25
`1540
`150-400
`15-25
`500-900
`60-68
`> 40
`
`Page 11 of 45
`
`Page 11 of 45
`
`

`
` -——
`
`274
`
`TABLE 13 Properties of different polyolcfin films
`
`Mihaies and Olaru
`
`Property
`Tensile strength
`
`Modulus
`
`Elongation
`Tear strength
`
`Haze
`MVTR
`
`03 trans. rate
`
`ASTM
`D-822
`
`D-822
`
`D-822
`D-1922
`
`D-1003
`E-96
`
`D-1434
`
`SUllI't'L". Data from Ref. 78
`
`Units
`MPa
`(kpsi)
`MPa
`(kpsi)
`"/0
`N/mm
`(g/mil)
`%
`g_ mil
`10:! ‘m2 d
`cc mil
`100 in2 d atm
`
`LDPE
`17-24
`(2.5—3.S)
`l40~2l0
`(20~30)
`300~600
`80- 160
`(200—400)
`5~8
`1.2
`
`450
`
`HDPE
`34—69
`(5-10)
`550-1250
`(80-180)
`—
`
`High
`0.3
`
`150
`
`Unoriented PP
`40—60
`(6-9)
`690-960
`(l00—l40)
`400-800
`16—l60
`(40-400)
`1-4
`0.7
`
`Biaxially oriented PP
`l40—240
`(20-35)
`l720—3l00
`(2504150)
`5(Ll30
`1.5-2
`(446)
`1-4
`0.3
`
`240
`
`160
`
`deformation mechanical field) are presented in Table 1,
`column 10.
`
`C. Fatigue Behavior
`
`Fatigue behavior is presented in Figs. 65, 74, 76, and
`77.
`
`The static— and dynamic—mechaniCal properties and
`parameters grouped in Table 1 refer to crystalline PO
`below the melting temperature, but some of them char-
`acterize the corresponding P0 in the molten (viscoelas-
`tic) state, too.
`Table 1 gives the following dependences of these
`properties and parameters as well as their rel‘-.:|‘r.:ncc-.-:.
`lVlCL‘l1‘.l|llL’Ell behavior of polyolefins is firmly depen-
`dent on their semicrystalline nature. Generally, poly-
`olefins exhibit three phases: a tridimensional ordered
`phase, an a111o1'pImt:.~; tli.~cortle1'ctl 1111:1513, and an inter-
`lhcial
`layer between the two pliuses. The relative
`content ol‘
`these |TlU|‘1‘fll0iHglI..’:_ll
`forms l£1il1Il3l1L‘L‘.‘~‘. all
`properties that depend on the response of each phase
`on the external tensions.
`The most important tensile properties depend on
`the molecular characteristics such as structural regular-
`ity of chains, molt.-t:ular weigh! dist1'ilmlin11 and allsu on
`the morphological cliarttutcristicsz c|‘yst:tl|inity degree,
`crystallite size, distribution of the crystallite size, etc.
`Other properties as stress-cracking, impact or tear
`resistance are controlled by the topology of the amor-
`phous phase. The interlamella layer constitution is
`responsible for the propensity of crack propagation,
`For polyethylenes the complex of properties such as
`stiffness and hardness at moderate temperatures and
`
`high stability at low leinperature are the most impor-
`tant and valuable among the mechanical propcrtie:-;.
`One of the most important characteristics that pre-
`dominantly determines the properties and the behavior
`of different grades of PE is their branching which
`influences the ability of the polymer to crystallize.
`The nature, size, and distribution of branches have a
`dominant influence on crystallinity, density and conse-
`quently on ntcelianical pmpeI'ties (Fig. 96).
`Other properties depeutling on crystallinity, such as
`stiffness, hardness, tear strength, yield point, Young‘s
`modulus
`and chemical
`resistance,
`increase with
`increasing degree of crystallinity whereas flexibility
`um! tnuglutess tlL‘CI‘(.‘LtHe under the :;;1|nc conditions.
`Long |srant'hc:; atllcct more prmiotmccdly the poly‘-
`tlispcrsity.
`It
`is gent-I'ally ctm.sitlcret'|
`tli-.11, when the
`other structural
`factors are constant,
`a narrower
`MWD leads to an increase in impact strength, tensile
`strength, toughness, softening point and resistance to
`envi:'o11i1ie|ital stress cracking.
`Anotlier factor
`that
`influences the properties Of
`the pnlyoli.-Iins is the weiglit
`:wcI‘nge.
`J‘.-I“, Ultimate‘
`termite strcngtli. tear .~':trengtI1. Inw l.t.'l'lI['!'L‘l":l.Illl'L‘.
`tt1t|!E'il'
`mess. mt‘tt:|1ii1g__- |€Ifi|1t.‘t‘itltII't.’:.
`impalct strcngtli and envir-
`onms:nt:|| stress cracking inc:rt-ase as the ll-I“.
`iiicit--.:.<e_s.
`In |‘E!t'.'t.'11|. ycu|'s new etliylene copolynicrs [l.l.I)t’l'.l
`L1t'I‘l\"t.?(_l on the m:|rkt'-1 with tlettsily in the tI.‘Jl-“"
`tl,*)35 gent
`I intcrvzll. LLDPIE are l.'(Jt)t')l5J'l)1t‘:l‘S o|'L-tl1y-
`lene and slnalll unintlnl of unnI.ht':r tr—nlclin. sttcll 1'5
`I-butane. l-hesenc, 4-imzlllyl penti.-m: or l—uctene. N*«“*"'
`generation ol‘ "sniper strt-:ngIlt“ gE".'lLlC lnwe hut-:n pru-
`parctl. most recently t|F.lI1_§_1 liiy__l1er uluiima cmnon0I1“""..u
`ft";-.-tl cuuttiut:-.~e on I‘ 1'’
`
`l
`
`L_
`Page 12 of 45
`
`Page 12 of 45
`
`

`
`Mechanical Properties and Parameters of Polyolefins
`
`275
`
`TABLE 14 Tlierinzll chz11‘acte1'iz';1tion of polyethylenes: dynamic-lnechanical analysis
`
`Sample chaI'z1etei'istics
`
`Thermal history
`Sample identification T T -
`Slow
`Annealed
`cooled
`25 h, “C
`4
`5
`+
`
`Type
`2
`LDPE
`
`Source
`
`3
`Linear
`LL—l00l Exxon
`
`Quenched
`6
`
`70
`
`M01. wt.
`.71/[W x 1073
`8
`
`142
`
`*
`
`5400
`
`248
`195
`
`246
`157
`
`160
`
`Density.
`g cm 3
`7
`0.920
`0.920
`0.916
`0.926
`0.928
`0.921
`0.930
`0.930
`0.930
`0.924
`0.950
`0.951
`0.941
`0.951
`0.963
`0.947
`0.962
`0.963
`0.964
`0.949
`
`Crystallinity
`index, %
`9
`49
`
`'
`
`36
`50
`
`43
`64
`
`55
`63
`69
`60
`67
`74
`66
`75
`
`66
`
`No.
`|
`.
`
`2
`
`3
`
`4
`5
`
`6
`
`7
`
`8
`
`No.
`
`2
`
`3
`
`4
`S
`-
`6
`7
`X
`
`Conventional
`HBS, 1476, NBS
`High inol weight
`Lot 90449
`Hercules
`
`HDPE
`
`6097 Union Carbide
`Lot 273908
`Paxon 4100; Allied
`Lot 293922; Paxon 4100; Allied
`Milk Bottle grade
`Allied
`Milk Bottle grade
`Allied
`
`+
`
`+
`
`-
`——
`
`——
`-
`
`——
`
`70
`
`70
`100
`
`70
`100
`
`DMA
`
`+
`
`+
`
`-
`
`-
`
`+
`
`-1-
`
`_
`
`log E’ values, Pa
`
`log E" transitions, “C
`
`log E" valuesf
`
`tan 8 values
`T I
`
`-120°C
`10
`9.41
`9.39
`9.40
`9.44
`
`9.42
`9 40
`9.43
`9.39
`9.43
`9.39
`9 49
`9 50
`346
`9 :1
`9»
`1
`9-47
`992
`
`945
`- —— —__‘_ _
`
`25"'C
`11
`8.60
`8.58
`8.43
`8.68
`
`8.66
`8.39
`8.93
`8.90
`
`8.84
`9.03
`9.03
`8.93
`9.05
`9.18
`9.07
`9.18
`9.18
`9.15
`9.04
`
`75"C
`12
`7.83
`7.84
`
`7.87
`
`7.56
`8.50
`8.47
`
`8.31
`8.45
`8.46
`8.26
`8.46
`8.70
`8.50
`8.71
`8.73
`8.70
`8.48
`
`y
`13
`-111
`-110
`-111
`-114
`
`-114
`-114
`-107
`-108
`-105
`-106
`-108
`-108
`-109
`-108
`-106
`-107
`-107
`-107
`-106
`-107
`
`fl
`14
`-22
`-22
`-18
`-10
`
`~ 14
`-7
`-10
`-8
`-8
`-19
`24
`
`-25
`-27
`
`-29
`~33
`-28
`-40
`
`oz
`15
`29
`28
`26
`18
`
`19
`
`56
`58
`
`45
`41
`41
`35
`41
`51
`43
`52
`53
`53
`42
`
`y,,m
`16
`0.35
`0.36
`0.36
`0.34
`
`0.33
`0.35
`0.55
`0.55
`0.56
`0.58
`0.41
`0.40
`0.45
`0.40
`0.36
`0 47
`0.37
`0.41
`0.37
`0.46
`
`/finm
`17
`0.20
`0.19
`0.27
`0.26
`
`0.35
`0.37
`0.10
`0.11
`0.12
`0.09
`0.15
`
`0.13
`0.07
`
`0.06
`0.05
`0.10
`0.06
`
`am“
`18
`0.14
`0.15
`0.12
`0.27
`
`0.29
`
`0.37
`0.37
`
`0.34
`0.51
`0.52
`0.52
`0.50
`0.54
`0.61
`0.54
`0.61
`0.57
`0.57
`
`—120°C
`19
`0.024
`0.023
`0.027
`0.027
`
`0.027
`0.024
`0.016
`0.016
`0.018
`0.015
`0.017
`0.016
`0,018
`0.016
`0.015
`0.016
`0.015
`0.013
`0.013
`0.017
`
`25°C
`20
`0.119
`0.125
`0.168
`0.138
`
`0.128
`0.202
`0.050
`0.048
`
`0.066
`0.084
`0.089
`0.112
`0.086
`0.059
`0.082
`0.059
`0.061
`0.061
`0.085
`
`75°C
`21
`0.299
`0.308
`
`0.297
`
`0.301
`0.096
`0.189
`0.194
`
`0.222
`0.217
`0.220
`0.245
`0.222
`0.210
`0.248
`0.218
`0.219
`0.220
`0.240
`
`:
`
`L
`' " 1‘|u1:c1|ing. nu attempt was l1‘I1l(16 to determine MW
`‘ Nll‘.:-.|_”‘.‘| _|\ W‘
`i 1"“"'1‘_‘
`1"~‘1.L'-111
`i11‘I0'-*1‘: the lowest point between the end peaks.
`. UH.
`._
`'
`-1|'Inm 1-11:1. 11.1.
`
`Page 13 of 45
`
`Page 13 of 45
`
`

`
` :-
`
`276
`
`Mihaies and Olaru
`
`L1-1000 ([157)
`
`
`
`L1—lWQ (0./vfil
`
`
`
`
`L2—IWQ (0.37)
`
`(4.) Z
`
`25
`
`.53
`E20
`E3
`1’
`
`«E15
`O
`.5
`510Z
`
`‘
`
`(C,
`
`Nominal Slrclin , °/o
`
`L_L._:.e|n_
`100
`200
`300
`
`0
`
`°1;'z‘%iéEs%éé"
`Extennon Ratio
`
`Typu-:11 S[l'CH§-Sllilill Cl||'Vl."1EiE .75 C for Ll_l3PF{. Im
`1
`l"l(.‘.
`ILH g/II! min. p : ll,UlU g cm '. S("B = 17.4/1000f".
`|'|'ac-
`Iinn nl” :11uluL'ula1‘ weigh: 0!‘ (-.1] HI >< III". (b) 5.4 ><
`|U'. (c)
`9.9 x 104 and (d) 21.3 X 104. (From Ref. 7.)
`
`Stress—slrain curves in yield region for linear poly-
`FIG. 3
`L2—IWQ — MW = 970,000,
`.Mw/Mn = 4.42, at =
`ethylene:
`0.37; L1—lWQ — MW : 173,000, M“,/M“ = 2.0. are = 0.46;
`L1-100Q —— MW : 173,000, MW/Mn = 2.0, me = 0.57. IWQ+
`quenched into ice—water mixture;
`l00Q+quenched into
`water at 100°C. (From Ref. 9.)
`
`EU
`
`['
`
`Stress,MPO Nominal
`
`1
`mgg
`Struin '’/a:
`
`5
`
`'
`
`1503
`
`gggg
`
`50
`_.Nw.|\ooOD
`
`
`
`
`
`NominalStress,MFCI
`
`I
`
`
`
`0
`
`.1
`S00
`
`l
`1.
`1500
`1000
`Strain °/o
`
`1
`2000
`
`2500
`
`0
`
`509
`
`FIG. 2 Nominal st1‘ess~slrain curves for linear polyethylene as :1 function of MW (21) and different erystallinity levels 03) (‘ ' ‘)
`01¢ — 0.64; (
`4
`~) oec — 0.55; (
`)(xL.
`0.44; (- - - —) ac = 0.46. (From Ref. 8.)
`
`Page 14 of 45
`
`Page 14 of 45
`
`

`
`Mechanical Properties and Parameters of Polyolefins
`
`277
`
`50
`
`
`
`‘20
`D
`
`T=23°C ___T
`\6: 5G'0mm.n"Hn
`[0
`0_I_:_ i.__u_i_ I.
`20 40 60 60 /00 120140
`an/.
`FIG. 4 Engineering stress—strain diagrams of polypropylene
`1120 LX as a function of the structure: curve 1,
`fully
`quenched structure; curve 2, partially coarse spherulitic
`structure;
`curve
`3, coarse spherulitic structure.
`(From
`Ref. 13.)
`
`5°
`
`10°
`
`25
`
`0G
`
`0
`0.
`
`3.20
`'53
`
`E 15
`LL
`
`U‘ 10
`3
`E
`E 5
`g
`
`20°
`
`459
`65:: 65° 90°
`f'\— F r
`0 0.2 04 0.60.19 to Tr ue Sir-a/n
`
`FIG. 5 Nominal stress—true strain curves for oriented PP
`pulled at various angles (marked on the curves) to the incle-
`cular direction. (From Ref. 15.)
`
`Stress,MPO
`1
`
`U1
`
`3 U
`
`20
`
`|I"I(;. ' .
`(21)
`.~«i1IIlpll;‘ ul‘sym1in12Ictic polypropylene as a function of drawing te|11]v:1';:Iure;
`H __“mi:*<'l'F~>>s--‘-lJ::|iI cum.-ii of qLl\,'l]I.'l'1L'Ll
`,” __ m"['_"- -""'»M'h = 2.1. Tm ; 1411 ('2 mi
`.11., -i I52.uun. MW/Mn : 2.0; Tm : 139”C; (c) MW : -'-100.000, M...;.»tin :24;
`R“. we)“
`-/\|| 3‘--'i|1‘:|'1leS tlluiwn at 5 ininmln". [.):‘-uw lK.‘111]1L'1'Ell.LlrCZ +, 20“C; A, 80“C; Q, 90”C.j V, 110°C and I, 130"C. (From
`
`Page 15 of 45
`
`Page 15 of 45
`
`

`
`
`
`278
`
`30
`
`H1
`
`30
`
`i
`
`Mihaies and Olaru
`
`
`
`_
`Mw=3o,5uu .
`
`M...=5a,ooo
`
`E.’
`5
`
`3E
`
`isEC
`
`2
`
`>050
`
`.
`
`Id,
`
`—
`
`—
`
`25
`
`20
`
`75
`U .Q.
`
`2 $
`
`20
`
`15
`
`5'.’
`L7,
`E
`-E
`2°10
`
`5
`
`Ia}
`lb}
`g..|g.|.__ig::__-I.
`100 200
`100 200
`U
`100 200
`0
`O
`Nominal Strain,
`°/o
`
`FIG. 7 Stressestrain curves in yield region for specific copo—
`lymersi (21) ethy1e11e—0c1ene copolymers; (b) ethy1cr1c—hcxcnc
`copolymers; (C) ethy1er1e—buLene copolymers; (d) Schcfnfltic
`representation. Core level of crystallinity indicated with
`each Curve. (prom Ref. 9_)
`
`-
`
`|
`so
`
`1-
`
`4
`130
`
`I
`
`I
`230
`
`I
`
`.
`.
`Nommul sham '
`
`1
`330
`
`.
`
`L
`
`'
`1.80
`
`/°
`
`St1'ess—s1rain curves for ethy1e11e~hexene copolymers
`FIG. 8
`0f ifldicilted m01€CU13U‘ Weightfi C0“? Cryslflmnity ‘W61 in
`range 0.30 to 0.35 for all samples. (From Ref. 9.)
`
`15
`
`5
`
`E
`~
`q,
`3 in
`U1
`z
`3
`.E
`2%
`
`0
`
`
`._n_ #\i_._.
`0
`1.0
`B0
`120
`160
`Time, 5
`
`E
`
`4
`
`3
`
`2
`
`1
`
`[I
`
`0 5
`%
`u?
`._
`3 4
`0;
`22
`O
`
`z
`
`Q
`
`0
`
`I I3!
`
`100
`
`.
`
`I
`_i
`300
`200
`Time, 5
`
`.
`
`_
`400
`
`12
`
`0,8
`
`0.1]!
`
`D
`
`8
`
`U 12 T 3
`
`I—
`0
`J;
`_‘
`U
`
`0
`2
`
`8
`
`"
`
`u
`
`0
`
`2
`
`5
`
`' 1
`
`I3
`290
`
`«J
`In
`: "
`V)
`_
`
`2
`
`E
`2
`
`0
`
`0
`
`.1 _._ : <.,_i_.i
`50
`100
`150
`Tim e, 5
`
`1.8
`
`12
`
`5
`
`‘D5
`
`_._|_. _i_._ U
`100
`200
`300
`400
`Time _ s
`
`R“.
`]I‘l(.‘. 9 Ncmiiiiul .~;1i'\:.ss(f__'HiII1Li 1I’llL‘. 3-i|.1'iliH (Q: VL.‘l'h'l|h iirzaw lil1‘|L'l|l lhu c:‘tI.~5~|iu;iLI xgwccii of 5mm mm ' I. M N"
`-Mn :1‘
`hizu-tic cu!‘-niymuJ'.~.. {RI} fr — El lJ-'l_‘iguii1
`{.
`.-H“ = ‘itljltltl,
`.'1-.'“.,’.+1i‘,, — 5.2.;-u—iii1ii. llI{)|.: L2"/i..{h1_n:(I.*lliii;c111
`.-13.,/r1'.’l, — 5.4.
`I..‘iI—H|1i1. mu1.. .'r‘.fi"/ii mu! Clliylcmwsciuiiu l.Zl'||T0|}z'F]ICI‘{-GI
`IL‘)
`.r» - [}.£J4| pc|n"'l.
`..-'1-in : .‘v5.U“”. »'‘r-'i.-/Mn :
`unit. mul.
`-0-*3‘?--: Edi gi
`. n.‘.m{'4gi::n ‘L: M,_ : _¥'i’_{MJ(!.
`.-'i'.".../M,, : 2.2, co-unit. mo].——3.9%. (From Ref. 21.)
`
`CO:
`
`‘
`
`Page 16 of 45
`
`.44
`
`Page 16 of 45
`
`

`
`
`
`Mechanical Properties and Parameters of Polyolefins
`
`279
`
`'60
`
`
`
`TrueStress,MPO
`
`«F 6
`
`K) O
`
`True Stroin,€
`
`(cl
`
`‘K
`
`20
`
`l0
`
`
`
`TrueStress,MP0
`
`0
`
`0
`
`.
`
`_.
`
`J.
`1
`True Strain, 8
`
`L
`2
`
`FIG. 10 True stress—strain curves of ethylene butene copolymers, MW : 157,000, M,, = 30,000, p = 0.945 gcm‘3, ac = 0.67, at
`20°C (curve a) and 80°C (curve c) and cthylene—butene copolymers. MW : 146,000, M,, : 27,000, p : 0.910gcmT3, ac = 0.35 at
`20°C (curve b). (From Ref. 22.)
`
`25
`
`lul
`
`
`
`NominalStress,MP0
`
`'5’ J
`
`200
`100
`0 mo 2oo'30o 0
`Nominal Strain,’/u
`
`linear polyethylene as
`Stress strain curves for
`|‘<‘lG..ll
`lilllcllon of
`temperature.
`(a): MW = 970,000. MW/Mn =
`4-42«01t~=0.5l,
`draw rate
`0.1
`in min";
`(b): MW:
`glimlloa MW/Mn =4.42,ozc =0.37, draw rate 1
`in min".
`(From Ref, 9,)
`
`1
`
`t'l0DC1t1es of copolymers are especially d6l.el‘I111l':CLl
`b
`--
`.
`.
`,
`1
`16 “"1lu1'e, amount and dislI'i|mtion of I..‘Ull'l()-
`Hy“
`"Iv and by the catalyst system used in their
`_
`*.\~‘n1l:esis.
`.
`_
`'|"|1'l-!
`nature of the metal-
`hlllglu-Sllfi
`Iwms Has.
`to the
`-.
`-
`.
`-L":-:'-~-
`L llli_\-'.NlEa
`.1 n-.w r.l(1.~..~. nl cnpulymers named
`l1L11m,gCm
`’‘‘“~‘9 C"|‘0|_v11ic.r:;“ lms been nhluinccl They
`'1.”
`*
`‘U
`..
`.
`.
`-
`"
`u
`I‘
`I.~.-L-mm diuiiill
`'“°i|~L-l1Ll1 wulglil.
`11'.-u'1'0\v molecttlar‘
`sI-
`'
`-
`.
`.
`.

`uI‘cl1cmi -. “mun” _(MWDl. Lmtl narmw (.ll5l.l'll'3l.|ll{‘1TI
`“"'l L‘“i11|ms1t|m1_
`
`,,
`
`These materials have improved tensile strength and
`elongation characteristics, higher stiffness at a given
`density, and better heat and stress-crack resistance
`compared to conventional highly branched low density
`polyethylene.
`feature in all of the stress—strain
`The dominant
`curves of ethylene/oz-olefins, beyond the yield region
`is
`the development of significant strain hardening.
`While for homopolymers the strain hardening region
`only becomes dominant at very high molecular weight
`(>106), for the copolymers, beginning at relatively low
`molecular weights,
`the slope of the strain hardening
`region increases with chain length.
`Homogeneous copolymers have a strong strain
`hardening rate which helps to reduce the stress con-
`centration due to localized external effects and to
`improve resistance towards crack propagation. The
`crystal
`thickness is
`the main structural parameter
`that governs
`the occurrence of the homogeneous
`crystal
`slip in addition to the experimental para-
`meters such as draw temperature and strain rate.
`Consequently,
`the reduced most probable crystal
`thickness of the homogeneous copolymers compared
`with the heterogeneous ones, at equivalent crystal con-
`tent, is suggested to be one of the basic parameters of
`the improved-use properties of the former kind of
`materials.
`The metallocene catalysts use makes possible the
`preparation of both the syndiotactie and isotactic
`polypropylene with low polydispersity (approximately
`2~2.5 compared with 6-8 for conventional poly-
`propylene). This clmracteristie conl'cr:-;
`the superior
`I'l]CI..'l‘|1ll1lL':Il properties of a syndiotuctic polymer in
`respect to polymers prepared by classical procedures.
`(Text continues on p 282)
`
`Page 17 of 45
`
`Page 17 of 45
`
`

`
` __._
`
`280
`
`Mihaies and Olaru
`
`500}
`
`__300_ ____
`
`[
`
`
`400‘
`
`'
`
`I
`
`_ O.
`
`l___ L.
`
`«$00
`
`12.00 _
`
`I5

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket