throbber
http://www.nist.gov/fire/fire_behavior.cfm
`
`Page 1 of 6
`
`BOREALIS EXHIBIT 1052
`
`

`
`NIST Time NIST Home
`
`About NIST
`
`Contact Us
`
`A­Z Site Index
`
`Search
`
`About
`
`Multimedia
`
`Reports Archive
`
`CDs and DVDs
`
`Subscribe
`
`Contact
`
`NIST Home > Fire.Gov > Fire Dynamics
`
`Research Areas
`
`Fire Fighting Technology
`
`Electronic Safety Equipment
`
`Fire Dynamics
`
`Firefighter Fatality & Injury Studies
`
`Fire Fighting Tactics
`
`Fire Forensics
`
`Fire Protection
`
`Personal Protective Equipment
`
`Staffing Studies
`
`Structural Collapse
`
`Wind Driven Fires
`

`
`Contact
`
`Dan Madrzykowski
`Fire Research Division
`daniel.madrzykowski@nist.gov
`
`Fire Dynamics
`
`Fire Dynamics
`Fire Dynamics is the study of how chemistry, fire science, material science and the mechanical engineering
`disciplines of fluid mechanics and heat transfer interact to influence fire behavior. In other words, Fire
`Dynamics is the study of how fires start, spread and develop. But what exactly is a fire?
`
`Defining Fire
`Fire can be described in many ways ­ here are a few:
`
`NFPA 921: "A rapid oxidation process, which is a chemical reaction resulting in the evolution of
`light and heat in varying intensities."
`
`Webster's Dictionary: "A fire is an exothermic chemical reaction that emits heat and light"
`
`Fire can also be explained in terms of the Fire Tetrahedron ­ a geometric representation of what is required
`for fire to exist, namely, fuel, an oxidizing agent, heat, and an uninhibited chemical reaction.
`
`Measuring Fire
`Heat Energy is a form of energy characterized by vibration of molecules and capable of initiating and
`supporting chemical changes and changes of state (NFPA 921). In other words, it is the energy needed to
`change the temperature of an object ­ add heat, temperature increases; remove heat, temperature
`decreases. Heat energy is measured in units of Joules (J), however it can also be measured in Calories (1
`Calorie = 4.184 J) and BTU's (1 BTU = 1055 J).
`
`Temperature is a measure of the degree of molecular activity of a material compared to a reference point.
`Temperature is measured in degrees Farenheit (melting point of ice = 32 º F, boiling point of water = 212 º
`F) or degrees Celsius (melting point of ice = 0 º C, boiling point of water = 100 º C).
`
`º C
`
`º F
`
`Response
`
`37
`
`44
`
`48
`
`55
`
`62
`
`72
`
`100
`
`140
`
`230
`
`250
`
`98.6
`
` Normal human oral/body temperature
`
`111
`
` Human skin begins to feel pain
`
`118
`
` Human skin receives a first degree burn injury
`
`131
`
` Human skin receives a second degree burn injury
`
`140
`
` A phase where burned human tissue becomes numb
`
`162
`
` Human skin is instantly destroyed
`
`212
`
` Water boils and produces steam
`
`284
`
` Glass transition temperature of polycarbonate
`
`446
`
` Melting temperature of polycarbonate
`
`482
`
` Charring of natural cotton begins
`
`>300
`
`>572
`
` Charring of modern protective clothing fabrics begins
`
`>600
`
`>1112  Temperatures inside a post­flashover room fire
`
`Heat Release Rate (HRR) is the rate at which fire releases energy ­ this is also known as power. HRR is
`measured in units of Watts (W), which is an International System unit equal
`to one Joule per second. Depending on the size of the fire, HRR is also measured in Kilowatts
`(equal to 1,000 Watts) or Megawatts (equal 1,000,000 Watts).
`
`Heat Flux is the rate of heat energy transferred per surface unit area ­ kW/m2.
`
`Heat Flux (kW/m2)
`
`Example
`
`Fire Dynamics
`
`1 of 5
`
`http://www.nist.gov/fire/fire_behavior.cfm
`
`Page 2 of 6
`
`

`
`1
`
`2.5
`
`3­5
`
`20
`
`84
`
`Sunny day
`
`Typical firefighter exposure
`
`Pain to skin within seconds
`
`Threshold flux to floor at flashover
`
`Thermal Protective Performance Test (NFPA 1971)
`
`60 ­ 200
`
`Flames over surface
`

`Temperature vs. Heat Release Rate
`One candle vs. ten candles ­ same flame temperature but 10 times the heat release rate!
`

`
`    
`
`HRR: ~ 80 W
`Temperature: 
`500 C ­ 1400 C
`(930 F ­ 2500 F)
`
`HRR: ~ 800 W
`
`Heat Transfer
`Heat transfer is a major factor in the ignition, growth, spread, decay and extinction of a fire. It is important to
`note that heat is always transferred from the hotter object to the cooler object ­ heat energy transferred to
`and object increases the object's temperature, and heat energy transferred from and object decreases
`the object's temperature.
`
`CONDUCTION
`
`Conduction is heat transfer within solids or between contacting solids.
`
`   
`
`          
`

`
`The governing equation for heat transfer by conduction is:
`

`
`Fire Dynamics
`
`2 of 5
`
`http://www.nist.gov/fire/fire_behavior.cfm
`
`Page 3 of 6
`
`

`
`Where T is temperature (in Kelvin), A is the exposure area (meters squared), L is the depth of the solid
`(meters), and k is a constant that unique for different materials know as the thermal conductivity and has
`units of (Watts/meters*Kelvin).
`
`Thermal Conductivity of Common Materials
`
`Copper = 387
`
`Gypsum = 0.48
`
`Steel = 45.8
`
`Oak = 0.17
`
`Glass = 0.76
`
`Pine = 0.14
`
`Brick = 0.69
`
`PPE = 0.034 ­ 0.136
`
`Water = 0.58
`
`Air = 0.026
`
`CONVECTION
`
`Convection is heat transfer by the movement of liquids or gasses.
`
`The governing equation for heat transfer by convection is:
`
`          
`

`
`Where T is temperature (in Kelvin), A is the area of exposure (in meters squared), and h is a constant that is
`unique for different materials known as the convective heat transfer coefficient, with units of W/m2*K. These
`values are found empirically, or, by experiment. For free convection, values usually range between 5 and 25.
`But for forced convection, values can range anywhere from 10 to 500.
`
`RADIATION
`
`Radiation is heat transfer by electromagnetic waves.
`
`          
`

`
`The governing equation for heat transfer by radiation is:
`
`Where T is temperature (in Kelvin), A is the area of exposure (in meters squared), α is the thermal diffusivity
`
`Fire Dynamics
`
`3 of 5
`
`http://www.nist.gov/fire/fire_behavior.cfm
`
`Page 4 of 6
`
`

`
`(a measure of how quickly a material will adjust it's temperature to the surroundings, in meters squared per
`second) and ε is the emissivity (a measure of the ability of a materials surface to emit energy by radiation).
`
`Fire Phenomena
`Fire Development is a function of many factors including: fuel properties, fuel quantity, ventilation (natural
`or mechanical), compartment geometry (volume and ceiling height), location of fire, and ambient conditions
`(temperature, wind, etc).
`
`Traditional Fire Development
`The Traditional Fire Development curve shows the time history of a fuel limited fire.  In other words, the fire
`growth is not limited by a lack of oxygen. As more fuel becomes involved in the fire, the energy level continues to
`increase until all of the fuel available is burning (fully developed). Then as the fuel is burned away, the energy level
`begins to decay. The key is that oxygen is available to mix with the heated  gases (fuel) to enable the completion of
`the fire triangle and the generation of energy.
`

`
`Watch
`Windows: Traditional Fire Development in a Compartment Fire 
`Mac: Traditional Fire Development in a Compartment Fire
`
`Fire Behavior in a Structure
`The Fire Behavior in a Structure curve demonstrates the time history of a ventilation limited fire. In this case the
`fire starts in a structure which has the doors and windows closed. Early in the fire growth stage there is adequate
`oxygen to mix with the heated gases, which results in flaming combustion.  As the oxygen level within the
`structure is depleted, the fire decays, the heat release from the fire decreases and as a result the temperature
`decreases. When a vent is opened, such as when the fire department enters a door, oxygen is introduced. The
`oxygen mixes with the heated gases in the structure and the energy level begins to increase. This change in
`ventilation can result in a rapid increase in fire growth potentially leading to a flashover (fully developed
`compartment fire) condition.
`

`
`Watch
`Windows: Fire Behavior in a Structure (Ventilation limited)
`
`Fire Dynamics
`
`4 of 5
`
`http://www.nist.gov/fire/fire_behavior.cfm
`
`Page 5 of 6
`
`

`
`Mac: Fire Behavior in a Structure (Ventilation limited)
`
`Flashover is the transition phase in the development of a contained fire in which surfaces exposed to the
`thermal radiation, from fire gases in excess of 600° C,  reach ignition temperature more or less
`simultaneously and fire spreads rapidly through the space. This is the most dangerous stage of fire
`development.
`
`          
`
`Videos:
`
`Compartment Fire Flashover
`
`Flashover Compilation
`
`Reports:
`
`Backdraft Phenomena
`
`Fatal Training Fires
`
`The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.
`
`Privacy Policy / Security Notice / Accessibility Statement / Disclaimer / Freedom of Information Act (FOIA) / 
`Environmental Policy Statement / No Fear Act Policy / NIST Information Quality Standards / 
`Scientific Integrity Summary / DOC Communications Policy
`
`Date created: November 17, 2010 | Last updated: July 16, 2013    Contact: Webmaster
`
` Sign Up for NIST E­mail alerts:
`Enter email address
`  Go
`
`Fire Dynamics
`
`5 of 5
`
`http://www.nist.gov/fire/fire_behavior.cfm
`
`Page 6 of 6

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket