throbber
(19) FRENCH REPUBLIC
`
`NATIONAL INSTITUTE
`FOR INDUSTRIAL PROPERTY
`
`PARIS
`
`(11) Publication No.:
`(To be used only when
`ordering copies)
`
`(21) National Registration No.:
`
`2 554 302
`
`84 16445
`
`(51) Int. Cl4: H 05 H 1/46.
`
`(12)
`
`(22) Filing date: 26th October 1984.
`
`(30) Priority: DD, 1st November 1983
`No. WP H 05 H/256 179.
`
`PATENT APPLICATION
`(71) Applicant(s): Company named: VEB
`CARL ZEISS JENA, Company under
`German law. — DD.
`
`A1
`
`(72) Inventor(s): Walther Gärtner, Wolfgang
`Retschke and Klaus Günther.
`
`(43) Date of publication of application:
`B.O.P.I. - "Patents" No. 18 of 3rd May 1985.
`
`(73) Proprietor(s):
`
`(60) References to other related national
`documents:
`
`(74) Agent(s): Cabinet Madeuf, industrial
`property consultants.
`
`(54) Radiation source for optical devices, notably for photolithographic reproduction systems.
`
`(57) Radiation source for optical devices, notably
`for photolithographic reproduction systems,
`characterised in that a gas-tight chamber 1 filled
`with a discharge medium 2 comprises at least one
`entry aperture 3 and 4 which allows laser
`radiation to pass and at least one exit aperture 5
`which allows plasma radiation to pass and in that
`the production and maintenance of a radiation-
`emitting plasma in the discharge medium are
`ensured, in a known manner, by at least one laser
`situated outside the chamber 1, whereby optical
`means ensuring the focussing of the laser
`radiation in the discharge medium are mounted at
`an entry aperture, such that the plasma is situated
`at a certain distance from the wall of the chamber
`1 and that the plasma radiation exits the chamber
`via exit aperture 5.
`
`D
`
`Printed copies available for sale from the IMPRIMERIE NATIONALE (French National Press) – 75732 PARIS CEDEX 15
`
`i
`
`ASML 1103
`
`FR 2 554 302 –A1
`
`

`
`1
`
`2554302
`
`The present invention relates to a radiation source for optical devices, in particular for
`photolithographic reproduction systems. It is preferably applied in cases where a radiated power
`is required which is greater than that from pressurised mercury vapour lamps, such as in
`photolithographic appliances for illuminating a photoresist layer on a semiconductor wafer.
`
`Currently, numerous radiation source systems are known which are used in scientific devices and
`of which the properties have been widely adapted to the conditions in the field of use. These
`properties relate to the spectral distribution of the emission and to the obtainable radiation
`density, as well as to the spatial and angular distribution of the produced radiation. Requirements
`relating to spectral radiated powers which exceed the spectral radiated power of a black body
`above the melting point of solid bodies can only be satisfied through plasma. Plasmas are
`obtained by heating an active medium, preferably by passing an electric current through it or by
`the action of high-frequency electromagnetic fields. The achievable spectral radiation densities
`are upwardly limited by the maximum value of the harnessable electrical power per volume unit
`which can be thermally withstood by the constitutent materials of the electrodes and walls. In the
`case of high-frequency heating, limitation due to electrode loading no longer occurs, but the
`problem of the spatial concentration of the high-frequency energy does arise.
`
`If the stationary operation of the radiation source is dispensed with, an increase, by a fairly large
`order of magnitude, in the power harnessed can be obtained for a short time, since the
`conversion of the fed-in power into radiation proceeds significantly faster than its transmission to
`the walls and, if there are any, to the electrodes of the discharge cavity. However, even with this
`mode of operation, alongside mechanical stresses due to the shock waves which, however, have
`sufficient action only in unfavourable cases, the evaporation and erosion of the materials which
`form the walls and electrodes contistute, when the radiation source must have a certain lifespan,
`an impediment to the production of intense radiant flux. In this regard, it should be noted that in
`the case of sources which operate in a stationary manner and in the case of sources which
`operate by pulses, above a power level which is type-dependent and which is achieved
`practically universally in the technical applications, any further increase in the radiated power is
`obtained at the expense of a reduction in the lifespan.
`
`However, these short-lived radiation sources cannot be used for many applications because they
`unreasonably increase the maintenance costs for the devices into which they are incorporated,
`since changing a lamp generally entails complicated adjustment and long adaptation operations
`
`5
`
`10
`
`15
`
`20
`
`25
`
`30
`
`1
`
`

`
`2
`
`2554302
`
`of the optical transmission system to the specific radiant flux of the lamp in question. Within
`certain limits, it is possible to increase the radiated power whilst retaining the overall charge of
`the electrical energy invested in the radiation, for the desired wavelength and the preferred
`spread width. This can be achieved by giving the active medium an optimal composition and by
`creating optimal pressure and temperature conditions for the plasma during the production of the
`radiation. However, consideration should be given to the limitations which arise from the existing
`incompatibility, at working temperature, between various active media and the consituent
`materials of the electrodes and the walls, such that, taking into account the withstand time of
`these materials, discharge conditions which are far from optimal frequently have to be selected.
`In the case of non-stationary operation, further limitations result from the fact that the radiation
`source simultaneously has to fulfil the functions of an electrical heavy-duty switch and of a
`converter of electrical energy into radiation. In this case too, the scope for optimising the radiation
`production is restricted, because the safety of ignition and switching is linked to certain plasma
`states.
`
`In the case of the stationary operation and in the case of pulsed operation, there are, in electrode
`radiation devices, dead solid angles in which the radiation cannot be used, although the insertion
`of suitable optical components, such as ellipsoidal reflectors and/or light-conducting fibres
`theoretically make it possible to also use the areas formed by these angles and, as a result, to
`provide the maximum amount of radiation energy to the optical system. To illuminate optical
`systems used in photolithography microinstallations, lasers are also used as radiation sources
`(SPIE Vol. 174 [1979], p.28...36, “Coherent illumination improves step-and-repeat printing on
`wafers” [Un éclairage cohérent améliore l’impression “graduelle et répétée” sur les galettes”], by
`Michel Lacombat et al.) The main limitations of these light sources result from their high spatial
`coherence and the structural distortions which result therefrom, their high monochromy and the
`effects of the resulting standing waves in photosensitive materials. Furthermore, generally, lasers
`with high radiated power or favourable efficiency are generally not present in advantageous
`spectral areas. The use of “excimer” lasers which emit the necessary energy in the desired
`wavelength region (UV region) are limited to contact-lithographic methods (SPIE Vol. 334 [1982],
`p.259...262, “Ultrafast high resolution contact lithography using excimer laser" [“Lithographie par
`contact é forte résolution ultrarapide au moyen de laser excimer”], by K. Jain et al.), because the
`partial spatial coherence necessary for the illumination of projection-lithography systems cannot
`be achieved to a degree as justified by its technical use.
`
`5
`
`10
`
`15
`
`20
`
`25
`
`30
`
`2
`
`

`
`3
`
`2554302
`
`The aim of the invention is to achieve a highly powerful radiation source which has a long
`lifespan and which makes it possible to include a substantial area of solid angles and precise
`and fast illumination of photosensitive areas and which, as a result, ensures a high productivity
`in photolithographic installations. Therefore the invention is intended to make it possible to
`achieve a radiation source for optical devices, in particular for photolithographic reproduction
`systems, which uses plasma radiation. By a spatial separation between the plasma and the wall
`or other installations associated with a cavity and without use of electrodes mounted in the
`cavity nor high-frequency fields for spatial concentration of the energy, it must make it possible
`to obtain a long lifespan and high power density. Furthermore, there is a reduction of stresses
`on the cavity though shock waves when the radiation source is in pulsed operation, and there
`are no dead solid angles due to electrodes or other installations in the cavity. The radiation
`source according to the invention is intended to possess a wide scope for optimisation of the
`radiation production in the desired wavelength region, because the active media and pressure
`and temperature conditions must be selected regardless of the compatibility with the materials
`which the electrodes are made of. With regard to the laser radiation, the radiation source has
`the advantage that, especially in the case of photolithographic reproduction systems, it has a
`significant partial spatial coherence and that its spectral structure is such that the effects of
`standing waves in the photosensitive material are attenuated.
`
`This aim is achieved, according to the invention, by the fact that a gas-tight chamber filled with a
`discharge medium contains at least one entry aperture which allows laser radiation to pass and at
`least one exit aperture which allows plasma radiation to pass, and that the production and
`maintenance of a radiation-emitting plasma in the discharge medium are ensured, in a known
`manner, by at least one laser situated outside the chamber, whereby optical means for focussing
`the laser radiation in the discharge medium are mounted at an entry aperture, such that the
`plasma is at a certain distance from the wall of the chamber and that the plasma radiation exits
`the chamber via the exit aperture.
`
`When the radiated power of a laser as supplied is not sufficient for a discharge in the discharge
`medium, it is advantageous that the device includes, to ignite the discharge medium, outside the
`chamber, at least one further pulse-operated laser which is directed by optical means to ensure
`focussing of the same volume at an entry aperture.
`
`An advantageous variant, with regard to changing of position of the radiation-emitting plasma,
`
`5
`
`10
`
`15
`
`20
`
`25
`
`30
`
`3
`
`

`
`4
`
`2554302
`
`consists in placing the optical means which ensure the focussing of the laser radiation outside
`the chamber. It is then possible to advantageously arrange installations which make it possible
`to adjust the optical means which ensure the focussing of the laser radiation.
`
`5
`
`10
`
`It is possible to advantageously simplify the realisation of the radiation source by placing optical
`means which ensure the focussing of the laser radiation inside and/or on the surface of the
`chamber. In these conditions, the inner wall of the chamber constitutes an optical means for
`focussing the radiation coming from outside. To include as large an area of dead solid angles as
`possible, it is advantageous to give the inner wall of the chamber a shape such that it
`constitutes an optical means for ensuring the reflection of the radiation coming from the plasma.
`It is therefore advantageous for the inner wall of the chamber to have the shape of a convex
`mirror or an ellipsoidal mirror.
`
`To obtain high power densities and to increase the lifespan, it is advantageous to provide the
`chamber with an external cooling system.
`
`15
`
`Various other characteristics of the invention further emerge from the following detailed
`description.
`
`20
`
`Embodiments of the subject of the invention are shown, by way of non-limiting examples, in the
`attached drawings.
`
`Fig. 1 schematically shows an embodiment of the radiation source according to the invention.
`
`25
`
`Fig. 2 shows an exemplary embodiment in which the inner wall of the chamber has a shape
`such that it constitutes an optical element.
`
`Fig. 3 and 4 show embodiments wherein the discharge chamber has the shape of an
`ellipsoidal reflector.
`
`30
`
`Fig. 1 schematically shows an embodiment of the radiation source according to the invention in
`which a gas-tight chamber 1 contains the discharge medium 2. The chamber 1 includes two
`entry apertures 3 and 4 which allows laser radiation to pass and an exit aperture 5 which allows
`plasma radiation to pass. The entry aperture 3 is sealed by the window 6 which allows infrared
`
`4
`
`

`
`5
`
`2554302
`
`5
`
`10
`
`15
`
`20
`
`25
`
`30
`
`to pass, and the entry aperture 4 is sealed by the lens 7 which allows ultraviolet to pass. The
`exit aperture 5 is provided with a window 8. The device includes two lasers 9 and 10 outside the
`chamber 1. The coherent radiation 11 from the laser 9, which is a stationary CO2 gas laser,
`penetrates into the chamber 1 through the window 6 and is focussed by the concave mirror 12
`mounted on the wall of the chamber. The radiation 13 from the laser 10, which is a nitrogen
`pulse laser, is focussed on the same point by the lens 7 which allows ultraviolet to pass and
`produces an electrical discharge there, and as a result an absorbent plasma 14 which is heated
`to high temperatures under the influence of the radiation 11. The radiation 15 from the plasma
`can be fed into the downstream optical system through the window 8.
`
`If the radiation source is meant to be pulse-operated, the continuous laser 9 is replaced by a
`pulsed CO2 carbon dioxide laser. As a rule, it is possible to dispense with the pulsed laser 10,
`because the field strength of the pulsed CO2 carbon dioxide laser is in many cases sufficient to
`bring about the discharge. With such a device, it is possible to obtain, near-ellipsoidal plasmas
`from 4 mm to 5 mm in diameter up to a temperature of 16000 K, for example in an argon or
`xenon atmosphere as active medium with a working pressure of 106 Pa. The optical depth and
`the temperature can be varied within a vast range by altering the pressure. As the pressure
`increases, the temperature falls and the spectral distribution approaches Planck’s function. As
`pressure decreases, the temperature increases, and the emission becomes linear.
`Temperatures far in excess of 20000 K can be reached by using, as active medium, helium
`which in conventional pulsed light sources, operating electrically, can no longer be used
`practically due to the heavy wear and tear on the electrodes. In these conditions, the density of
`radiation and its spectral distribution can be altered in a much wider range than in the case of
`conventional radiation sources.
`
`Figure 2 shows an embodiment in which the inner wall of the chamber constitutes, by its shape,
`an optical element. A casing 16, the concave mirror 17 and the quartz window 18 constitute the
`gas-tight chamber containing the discharge medium 19. The coherent radiation 20 from a
`pulsed CO2 carbon dioxide laser 21 is focussed by the lens 22 which lets infrared pass and
`penetrates the chamber via the window 23 which allows infrared to pass. The pulsed laser 21 is
`mounted displaceably in the X direction, 24, and in the Y direction, 25, and the lens for infrared
`22 can be displaced in the X direction, 24, and in the Y direction, 25, and in the Z direction, 26.
`Accordingly, the position of the focal point, which corresponds to the position of the plasma 27,
`may be adjusted relative to the optical axis 28. The plasma radiation 27 is sent directly, and by
`
`5
`
`

`
`6
`
`2554302
`
`means of the concave mirror 17, through the quartz window 18 to the condenser lens 29 of the
`optical system placed downstream.
`
`The gas-tight chamber is surrounded by a container 30. The free space 31 which they demarcate
`is traversed by a refrigerating means 32 which enters, via the tube 33, and exits via the tube 34
`and evacuates the heat produced by the pulsed laser radiation 21 and plasma radiation 27. It is
`possible to dispense with the quartz window 18 if the condenser lens 29 is installed instead.
`
`Figs. 3 and 4 show embodiments wherein the discharge chambers 35 and 36 are constituted by
`ellipsoidal reflectors. The radiation 37 from the carbon dioxide (CO2) laser 38 is focussed by the
`focussing elements, a concave mirror 39 or a lens 40 which allows infrared to pass, onto focal
`points 41 and 42 of the ellipsoid formed by the reflecting layers of the ellipsoidal mirror 43 and 44.
`The light emitted by the plasma producing the radiation is concentrated by the ellipsoidal mirror
`onto the second focal point 45 or 46 of the ellipsoid. The plasma formed at these focal points 45,
`46 serves as a source of secondary radiation for the optical system situated downstream and
`starting at the condenser lenses 47, 48.
`
`5
`
`10
`
`15
`
`6
`
`

`
`7
`
`Claims
`
`2554302
`
`1.
`
`2.
`
`3.
`
`4.
`
`5.
`
`5
`
`10
`
`15
`
`20
`
`25
`
`A radiation source for optical devices, in particular for photolithographic reproduction
`systems, characterised in that a gas-tight chamber (1) filled with a discharge medium (2)
`contains at least one entry aperture (3 and 4) which allows laser radiation to pass and at
`least one exit aperture (5) which allows plasma radiation to pass, and that the production
`and maintenance of a radiation-emitting plasma in the discharge medium are ensured, in a
`known manner, by at least one laser situated outside the chamber (1), whereby optical
`means for focussing the laser radiation in the discharge medium are mounted at an entry
`aperture, such that the plasma is at a certain distance from the wall of the chamber (1) and
`that the plasma radiation exits the chamber via the exit aperture (5).
`
`The radiation source according to claim 1, characterised in that the ignition of the
`discharge medium is ensured outside the chamber (1) by at least one further pulse-
`operated laser (10) which is directed by optical means (7) to focus it on the same volume
`after passing in an entry aperture (4).
`
`The radiation source according to one of claims 1 or 2, characterised in that the optical
`means (22) which ensure the focussing of the laser radiation (21) are situated outside the
`chamber (19).
`
`The radiation source according to claim 3, characterised in that the installation
`includes devices for adjusting the optical means which ensure the focussing of the
`laser radiation.
`
`The radiation source according to one of claims 1 or 2, characterised in that optical
`means which ensure the focussing of the laser radiation are placed inside and/or on the
`wall of the chamber.
`
`30
`
`6.
`
`The radiation source according to claim 5, characterised in that the inner wall of the
`chamber has a shape such that it constitutes an optical means for focussing the
`laser radiation coming from outside.
`
`7.
`
`The radiation source according to claim 1, characterised in that the inner wall of the
`
`7
`
`

`
`8
`
`2554302
`
`chamber has a shape such that it constitutes an optical means for reflecting the radiation
`emitted by the plasma.
`
`The radiation source according to claim 7, characterised in that the inner wall of the
`chamber partially has the shape of a concave mirror or an ellipsoidal mirror (43, 44).
`
`The radiation source according to claim 1, characterised in that the chamber is equipped
`with an external cooling system (31, 32, 33, 34).
`
`5
`
`8.
`
`9.
`
`8
`
`

`
`FR 2 554 302
`
`l, James McGill, of Murgitroyol & Company, Scotland House, 165-169 Scotland Street,
`
`Glasgow G5 8PL, hereby declare that l am the translator of the document attached and
`
`certify that the following is a true translation to the best of my knowledge and belief.
`
`.............
`
`5
`
`lf ll
`
`r
`
`.
`
`(2
`
`ll
`
`I
`
`Dated this 15th of December2014
`
`9
`
`

`
`népusuoue FRANCAISE
`-"—‘—
`INST"-UT NATIONAL
`
`DE LA PROPFNETE INDUSTRIELLE
`PARIS
`
`2 554 302
`
`® N"de publication:
`la n'utiIiser que pour les
`commandos de reproduction)
`
`® N‘ d'enregistrement national :
`
`@ Int cu‘ : H 05 H 1/46.
`
`DEMANDE DE BREVET D'lNVENTIOi\l
`
`Date de dépfit : 26 octobre 1984.
`
`Priorité : DD,
`n° WP H 05 H/256 179.
`
`1°’ novémbre
`
`dire : VEB CARL ZEI
`@ Demandeurlsl : Entreprise
`JENA, Entreprise de droit allemand. — DD.
`'
`
`@ lnventeur(s) : Walter Gfirtner, Wolfgang Fletschke et
`Klaus Gunther.
`
`Date de la miss a disposition du public de la
`demands : BOPl « Brevets » n° 18 du 3 mai 1985.
`
`Références 5 d'autres documents nationaux appa-
`rentés:
`’
`
`® 'l'Itu|aire(s) :
`
`@ Source de rayonnement pour appareils d'optique, notamment pour systémes de reproduction par photolithographie.
`
`Mandataire(s): Cabinet Madeuf, Conseils en propriété
`industrlelle.
`—
`'
`
`Source de rayonnement pour appareils d’optique, notam-
`ment pour systémes de reproduction photolithographique, ca-
`ractérisée en ce qu'une enceinte 1 étanche aux gaz remplie
`par un milieu de décharge 2 comporte au moins une ouverture
`d'entrée 3 et 4 laissant passerun rayonnement laser et au
`moins une ouverture de sortie 5 Iaissant passer un rayonne-
`ment de plasma et en ce que la production at I'entretien d'un
`plasma émettant un rayonnement dans le milieu de décharge
`sont assurés. d'une maniére connue, par au moins un laser
`situé é |‘extérieur de l'enceinte 1, des moyens optiques assu-
`rant
`la focalisation du rayonnement
`laser dans le milieu de
`décharge étant mcntés au niveau d'une ouverture d'entrée, de
`sorte que le plasma se trouve a une certaine distance de la
`paroi'de |'enceinte 1 et que le rayonnement du plasma sort de
`l'enceinte par |'ouverl:ure de sortie 5.
`
`Vents des fascicules a YIMPRIMERIE NATIONALE. 27. rue de la Convention — 75732 PARIS CEDEX 15
`
`10
`10
`
`FR2554302-A1
`
`

`
`1
`
`2554302
`
`La présente invention est relative a une source
`
`de rayonnement pour appareils d'optique, notamment pour
`systémes de reproduction par photolithographie. Elle s'ap-
`plique de préférence dans les cas ou il faut une puissance
`de rayonnement supérieure a celle des lampes a vapeur de
`mercure sous pression, par exemple dans les installations
`
`de photolithographie, pour l'éc1airement d'une couche
`
`de vernis photo sur une plaque de semi-conducteur.
`
`on connait actuellement de nombreux systémes de'
`
`sources de rayonnement qui sont utilisés dans des appareils
`
`scientifiques et dont les propriétés ont été largement
`
`adaptées aux conditions inhérentes au domaine d'utilisation.
`
`Ces propriétés sont relatives a la repartition spectrale
`de l'émission et a la densité de rayonnement susceptible
`d'étre obtenue ainsi qu'a la répartition spatiale et
`
`angulaire du rayonnement produit. Les exigences relatives
`
`a des puissances de rayonnement dépassant la puissance
`
`de rayonnement spectrale d'un corps noir au-dessus du
`
`point de fusion des corps solides ne peuvent étre satis-
`
`faites que par du plasma. Les plasmas s'obtiennent par
`chauffage d'un milieu actif, de préférence par passage
`d'un courant électrique ou par action de champs é1ectro-
`magnétiques de haute fréquence. Les densités de rayonnement
`spectrales susceptibles d'étre atteintes sont limitées
`
`vers le haut par la valeur maximale de la puissance élec-
`trique, pouvant étre mise en jeu par unité de volume, a
`
`laquelle les matériaux constituant les électrodes et les
`
`parois peuvent résister thermiquement. Dans le cas du
`
`chauffage a haute fréquence, il n'y a plus de limitation
`
`due a la charge des électrodes, mais le probléme qui se
`
`pose alors est celui de la concentration spatiale de
`1'énergie de haute fréquence.
`
`Si l'on renonce a un fonctionnement stationnaire
`
`de la source de rayonnement, on peut obtenir, pendant un
`
`temps court, une augmentation, d'un ordre de grandeur assez
`
`11
`
`

`
`2
`
`2554302
`
`important, de la puissance mise en jeu, du fait que la
`
`transformation en rayonnement de la puissance fournie
`
`s'effectue beaucoup plus rapidement que sa transmission
`aux parois et, s'i1 y en a, aux électrodes de la cavité
`
`de décharge. Cependant, méme avec ce mode de fonctionnement,
`
`a cfité des charges mécaniques dues aux ondes de choc
`
`qui, cependant, n'ont une action suffisante que dans
`
`des cas défavorables, la vaporisation et l'érosion des
`
`matériaux qui forment les parois et les électrodes cons-
`
`tituent, lorsque la source de rayonnement doit avoir une
`
`certaine durée de vie, un obstacle a la production de
`
`I1 y a lieu de remarquer
`flux de rayonnement intense-
`a ce sujet que, dans le cas de sources ayant un fonction-
`
`nement stationnaire comme dans le cas de sources ayant
`
`un fonctionnement par impulsions, au-dessus d'un niveau
`
`de puissance qui dépend du type adopté et qui, dans les
`
`applications techniques, est pratiquement atteint partout,
`toute augmentation supplémentaire de la puissance de
`
`rayonnement s'obtient aux dépens de la diminution de
`la durée de vie.
`Z
`
`Cependant, ces sources de rayonnement de courte
`
`durée sont inutilisables pour beaucoup d'app1ications, car
`
`elles augmentent d'une maniére inadmissible les frais
`
`d'entretien des appareils auxquels elles sont incorporées,
`du fait que le remplacement d'une lampe entraine géné-
`
`ralement un réglage compliqué et de longues operations
`
`d'adaptation du systéme optique de transmission au flux
`
`de rayonnement spécifique de la lampe en question. on
`peut, entre certaines limites, augmenter la puissance de
`rayonnement tout en conservant la charge totale de l'éner-
`
`gie électrique investie dans le rayonnement, pour la
`
`longueur d'onde voulue et la largeur d'étalement préférée.
`
`on peut y parvenir en donnant au milieu actif une compo-
`
`sition optimale et en réalisant des conditions de pres-
`
`sion et de température optimales pour le plasma lors de
`
`12
`
`

`
`3
`
`2554302
`
`la production du rayonnement. I1 y a lieu cependant deT
`
`tenir compte de limitations qui découlent de 1'incompa-
`
`tibilité existant, a la température de fonctionnement,
`
`entre différents milieux actifs et les matériaux qui‘
`
`constituent les électrodes et les parois, de sorte que,
`
`compte tenu de la durée de résistance de ces matériaux,
`
`les conditions de décharge doivent étre choisies souvent
`
`de telle maniére qu'elles s'écartent sensiblement des
`
`valeurs optimales. D'autres limitations résultent, dans
`
`le cas d'un fonctionnement non stationnaire, du fait
`
`que la source de rayonnement doit remplir en méme temps
`
`les fonctions de commutateur électrique a grande puissance
`
`et de transformateur d'énergie électrique en rayonnement.
`Dans ce cas également,
`le jeu pour l'optimisation de la
`production d'un rayonnement efficace se trouve limité,
`
`T
`
`car la sécurité de l'allumage et de la commutation est
`
`liée a certains états du plasma.
`Dans le cas du fonctionnement stationnaire comme
`
`dans le cas du fonctionnement par impulsions, il y a,
`
`dans les appareils de rayonnement a électrodes, des angles
`
`solides morts dans lesquels le rayonnement ne peut pas
`
`étre utilisé bien que l'insertion d'éléments optiques
`
`convenables, comme, par exemple, des réflecteurs ellip-
`
`soidaux et/ou des fibres conductrices de la lumiére,
`permette
`théoriquement d'utiliser également les zones
`formées par ces angles et, de ce fait, de fournir au
`
`systéme optique le maximum d'énergie de rayonnement. Pour
`
`l'éclairement des systémes optiques utilisés dans les
`
`micro-installations de photolithographie, on utilise
`
`également, comme sources de rayonnement, des lasers (SPIE
`
`Vol. 174 (1979) p. 28 ... 36 "Un éclairage cohérent
`
`améliore 1‘impression "graduelle et répétée" sur les
`galettes" par Michel Lacombat et autres). Les principales
`limitations de ces sources lumineuses résultent de leur
`
`grande cohérence spatiale et des distorsions de structure
`
`13
`
`

`
`4
`
`2554302
`
`qui en résultent, de leur forte monoohromie et des effets
`
`d'ondes stationnaires qui en résultent dans les matériels
`
`sensibles a
`
`la lumiére. De plus, en général, dans les
`
`zones du spectre avantageuses, il n'y a pas de laser
`
`ayant une grande puissance de rayonnement ou un rendement
`d'efficacité favorable. L'uti1isation de 13S€IS"excimer",
`
`qui émettent l'énergie nécessaire dans le domaine de
`longueurs d'ondes voulu (domains ultraviolet),
`se limite
`
`a des procédés de lithographie par contact
`
`(SPIE Vol. 334
`
`(1982) p 259 ... 262 “Lithographie par contact a forte
`
`résolution ultrarapide au moyen de laser excimer" par
`
`K. Jain et autres), car la cohérence partielle spatiale
`
`nécessaire a l'éclairement des systémes de lithographie
`
`par projection ne peut pas étre réalisée a un degré tel
`que son utilisation technique se justifie.
`Le but de 1'invention est la réalisation d‘une
`
`source de rayonnement de grande puissance qui ait une
`longue durée de vie et permette 1'inclusion d'une zone
`
`importante d'ang1es solides et un éclairement précis et
`
`rapide de zones photosensibles et qui, de ce fait, assure
`
`a des installations de photolithographie une grande
`
`productivité. L'invention doit donc permettre de réaliser
`
`une source de rayonnement pour appareils d'optique, notam-
`
`ment pour systémes de reproduction photolithographiques,
`
`qui utilise le rayonnement d'un plasma. Par une séparation
`spatiale entre le plasma et la paroi ou d'autres instal-
`lations associées a une cavité et sans utilisation
`
`d'électrodes montées dans la cavité ni de champs de haute
`fréquence pour la concentration spatiale de l'énergie,
`
`elle doit permettre d'obtenir une longue durée de vie
`
`et une densité de puissance élevée. De plus, il y a dimi-
`
`nution des charges imposées a la cavité par les ondes
`
`de choc en cas de fonctionnement par impulsions de la
`source de rayonnement et i1 n‘y a pas de zones d'angles
`solides morts dues a des électrodes ou a d'autres instal-
`
`14
`
`

`
`5
`
`2554302
`
`lations montées dans la cavité. La source de rayonnement
`suivant l'invention doit comporter un jeu large pour
`l'optimation de la production du rayonnement dans le
`domaine de longueurs d'onde voulu, car le choix des
`milieux actifs et des conditions de pression et de tempe-
`rature doit se faire indépendamment de la compatibilité
`avec les matériaux constituant les électrodes. En ce
`qui concerne le rayonnement laser, la source de rayon-
`nement présente l'avantage que, notamment dans le cas
`des systemes de reproduction photolithographiques, elle
`présente une cohésion partielle spatiale notable et que
`sa structure spectrale est telle que les effets d'ondes
`
`stationnaires dans le matériel photosensible sont atténués.
`
`Ce but est atteint, suivant l'invention,du fait
`
`qu'une enceinte étanche aux gaz remplie par un milieu
`de décharge comporte au moins une ouverture d'entrée lais—
`sant passer un rayonnement laser et au moins une ouver—
`
`ture de sortie laissant passer un rayonnement de plasma
`et que la production et le maintien d'un plasma‘émettant
`
`un rayonnement dans le milieu de décharge sont assurés,
`d'une maniére connue, par un laser au moins situé a
`l'extérieur de l'enceinte, des moyens optiques assurant
`la focalisation du rayonnement laser dans le milieu de
`
`décharge étant montés au niveau d'une ouverture d'entrée,
`de sorte que le plasma se trouve a une certaine distance
`
`de la paroi de l'enceinte et que le rayonnement de
`
`plasma sort de l'enceinte par l'ouverture de sortie.
`
`Lorsque la puissance de rayonnement d'un laser
`
`telle qu'el1e est fournie n'est pas suffisante pour une
`décharge dans le milieu de décharge, il est avantageux
`que l'appareil comporte, pour l'a1lumage du milieu de
`
`décharge, a l'extérieur de l'enceinte, au moins un autre
`
`laser fonctionnant par impulsions qui est dirigé par des
`
`moyens optiques pour assurer la focalisation, au niveau
`
`35 d'une ouverture d'entrée, du méme volume.
`
`15
`
`

`
`6
`
`2554302
`
`Une variante avantageuse,en ce qui concerne le
`changement de position du plasma émettant le rayonnement,
`consiste A placer les moyens optiques assurant la foca-
`lisation du rayonnement laser 5 1'extérieur de l'enceinte.
`
`on peut alors disposer avantageusement des installations
`
`permettant le réglage des moyens optiques assurant la
`
`focalisation du rayonnement laser.
`
`On peut simplifier avantageusement la réalisation
`de la source de rayonnement en-placant les moyens optiques
`assurant la focalisation du rayonnement laser a l'intérieur
`et/ou a la surface de l'enceinte. Dans ces conditions,
`la paroi intérieure de l'enceinte constitue un moyen
`optique assurant la focalisation du rayonnement provenant
`de l'extérieur. Pour inclure une zone d'ang1es solides
`
`morts aussi grande que possible, il est avantageux de
`donner a la paroi intérieure de l'enceinte une forme telle
`
`qu'elle constitue un moyen optique assurant la réflexion
`
`du rayonnement provenant du plasma. 11 est alors avantageux
`que la paroi intérieure de l'enceinte ait la forme d'un
`
`miroir convexe ou d'un miroir ellipsoidal.
`
`Il est avantageux, pour obtenir de fortes densités
`
`de puissance et pour augmenter la

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket