throbber
This material may be protected by Copyright law (Title 17 U.S. Code)
`
`FRESENIUS KABI 1004-0001
`
`

`
`nierung des freien Elektronenpaares am Stickstoff erschwert.
`Neben dem pH-Wert hat die Chloridionenkonzen[ration
`einen wesentlichen Einfluli auf die Lage des Hydro1ysegleich-
`gewichtes. Mit stcigcnder Chloridionenkonzentration sollte
`bevorzugt die Regeneration des Bendamustinhydrochlorids
`erfolgen, wodurch die Bildung des Hydroxyderivates zur1'ick-
`gedréingl wird, Ffir Melphalan ist die Abhéingigkeir des
`HydrolysegleichgewichLes von der Ch1oridionenk0nzentra—
`tion [5] u11d der Temperatur dokumentierl [4]. In Kenntnis
`dieser Zusammenhange fur das strukturverwandte Melphalan
`und untcr dem Aspekt der Anwendung am Patienten als
`Infusion erscheint isotonischc Natriumchloridlijsung als Tra-
`gerlosung fiir Bendamustinhydrochlorid geeignet. Ungiinstig
`ist allerdings die nur méifiige Loslichkeit der Substanz in
`diesem Medium, so daI3 die Zersetzung bereits wiihrend des
`zeitaufwendigen Losevorgangs beginnt. In reinem Wasser ist
`Bendamustinhydrochlorid gut loslich. Es empfiehlt sich daher
`das Losen in einer geringen Menge Wasser fiir Injektions—
`zwecke und das sofortige Verdfinncn mit isotonischer Na-
`t1'iumch1orid16sung.
`
`mustin, was fiir unsere Fragestellung ausrcichcnd ist.
`Vor Versuchsbeginn hatte die frisch hergestellte Untersu.
`chungslésung einen pH-Wert Von 4. Die Bestimmung der Zer-
`setzung von Bendamustinhydrochlorid-Infusionslbsungen er.
`folgte zunéichst bei 4 “C. Die Mefiergebnisse si11d in Tabelle 1
`msamlnengefafit. Die Geschwindigkeitskonstante (lk) und
`die Zeit bis zum Verlust von 10% wurden mittels exponen.
`tieller Regression berechnet. Fiir 1k ergab sich ein Wert V011
`—0,00093 h” 1. Der Korrelationskoeffizient wurde mit 0,9892
`ermittelt. Hieraus erreehnel sich fur die Stabilitéil
`(I90) Von
`Bendainustinhydrochlorid in Natriumchloridldsung 0,81%
`bei 4 “C ein Wert von 118,5 h. Weiterhin wurde die Stabilitéit
`Von Bendamustinhydrochlorid—Infusionslosung bei 23 “C be.
`stimmt. Die Mefiergebnissc sind in Tabelle 2 zusammengefaBt_
`Die Geschwindigkeits.konstante (lk) und die Zeit bis zum
`Verlust Von 10% (I90) wurden mittels exponentieller Regres-
`sion berechnet. Fur ‘k ergab sich ein Wert Von —0,01165 h '1
`(Korrelationskoeffizient 0,9985). Hieraus errechnet sich fiir
`die Stabilitéit von Bendamustinhydrochlorid (tgo) in Nalrium-
`chloridlosung 0,81% bei 23 “C ein Wert Von 9,2 h.
`
`Tabellel: Stabilitéitsdaten fiir Bendamustinhydrochlorid bei 4 °C
`Zeit
`.\«Iille|wcrt dcr
`Standard-
`Variations»
`Gehall an
`[I1]
`gemessenen
`abweichung
`koeffizient
`Bendumustin-
`Km17enlr2i-
`["/u]
`HCI [%]
`‘Lioncn an
`(to : 100"/u)
`Bendamustin—
`HCI [mg/ml]
`{fir n = 9
`
`0,00
`19,77
`42,57
`71,63
`92,55
`118,27
`
`0,2499
`0,2478
`0,2422
`0,2369
`0,2316
`0,2232
`
`0,00160
`0,00175
`0,00230
`0,00047
`0,00052
`0,00049
`
`0,64
`0,71
`0,95
`0,20
`0,22
`0,22
`
`100
`99,14
`96,22
`94,79
`92,68
`89,29
`
`Schema
`
`T
`/—Cl
`R —N : C1’ + R —N +
`\—C1
`¥CI
`LHEO
`,
`on
`H7 + R —N
`
`¥ CI
`
`
`
`011
`
`F0”
`H20
`c1-+ R —+Nf
`\> :> R—N\¥OH+H"
`
`Aufgrund entsprechender Vorversuche wurden folgende Be-
`dingungen fur die SLabilitéitsuntersuchungen gewéihlt: 25 mg
`Bendamustinhydrochlorid (=1 Ampulle Ribomustini“) Wur-
`den zunéichst in 10ml Wasser gelést und anschliefiend mit
`09% Natriumchloridlosung zu 100 ml Verdiinnt. Die damit
`hergestellte Konzentrarion Von 0,25 mg/ml entspricht thera-
`peutischen Erfordernissen. Die Stabilitiitsuntersuchung wurde
`bei Temperaturen Von 4°C und 23 °C durchgeffihrt. Die
`Bestiinmung Von Bendamustinhydrochlorid erfolgt mittels
`Reversed Phase HPLC. Der
`fiir Bendamustin eharakte-
`ristische Peak (Abb.) erscheint bei einer Retentionszeit (RT)
`Von 5,93 min. Das erstc Zersetzungsprodukt, vermutlich das
`Monohydrolyseprodukt, erscheint mit einer RT Von 4,14 min.
`Bei dem als ,,unknown“ bezeichneten Peak bei einer RT Von
`5,23 min handeit es sich um ein Nebenprodukt aus der
`Synthese. Mitllerweile ist es durch Optimierung des Syn-
`theseverfahrens gelungen, die Verunreinigung viillig zu elimi-
`nieren [6]. Die Fléiche dieses Peaks éindert sich wéihrend der
`gesamten Analysezeit nicht. Nach einer Aufbewahrungszeit
`Von 119 h ist
`im Chromatogramm neben der deutlichen
`Zunahme des Monohydroxyderivates ein vierter Peak bei
`einer RT Von 3,78 min zu erkennen, wobei es sich um das
`Dihydroxyderivat handelt. Mit einer Probe der kfirzlich als
`Dihydroxyderivat charakterisierten Verbindung [7] war es
`moglich, dieses Zersetzungsprodukt in unserem HPLC Assay
`zn identifizieren.
`Aufgrnnd der rasch fortsehreitcndcn Hydrolyse Von wéiflrigen
`Bendamustinhydrochloridlosungen diirfen bei allcn chroma-
`tographischen Bestiinmungen und entsprechenden Va1idie-
`rungen nur friseh hergestellte Losungen verwendet werden,
`die unmittelbar nach ihrer Zubereitung injiziert werden mus-
`sen. Séimtliche Standardproben zur Validierung der Melhode
`wurden mit Ribomustini durchgefuhrt. Die Mefiergebnisse
`erlauben somit cine rclativc Aussage 7.ur Stabilitéit Von Benda-
`
`776
`
`-5.5:um.mun
`
`fT;“__é*-
`
`300
`
`0n:lLs
`
`0:1
`
`.41|Nynnlylul
`.5.z3unknwn
` u ‘an
`FlT[10‘ min]
`
`J’
`
`/'
`
`Zcit
`[h]
`
`0,00
`19,77
`42,52
`71,63
`92,55
`118,27
`
`Mittelwert der
`gemessenen
`Kon7.entratinnen
`an Bendamustin-
`HC1 [mg/ml]
`fiir n : 9
`
`Variations- Gehalt
`Standard-
`abweichung kneffizient
`an Benda-
`[”/u]
`muslin-HCI
`[°/i]
`(ID = 100%)
`
`0,2499
`0,2478
`0,2422
`0.2369
`0,2316
`0,2232
`
`0,0016O
`000175
`0.00230
`0,00047
`0,00052
`0,0004‘)
`
`0,64
`0,71
`0,95
`0,20
`0,22
`0,22
`
`100
`99,14
`96,22
`94,79
`92,68
`89,29
`
`Abb.: HPLC-Chromatogramm von Bendamusrinhydrochlorid (0,25 mg/ml in
`NaC1 0.81% unmittelbar nach Verdiinnung
`
`7
`Pharmazie 49 (1994 H. 10
`FRESENIUS KAB|)1004-0002
`FRESENIUS KABI 1004-0002
`
`

`
`'[‘uhelle2: Stnbilitiitsdaten fiir Bendamustinhydrnchlorid bei 23 °C
`
`Stand1ird-
`;iliweie|ning
`
`V2iiiations-
`I”/ii]
`koeffizieiil
`
`Geliiili 2m
`HCI [“/ii]
`Bcndamustinv
`(tn = 100%)
`
`0,00107
`000212
`0,00130
`0,00211
`0,00404
`0.00139
`
`0,43
`0,85
`0,54
`0,89
`1,80
`0,71
`
`100
`99,31
`95,06
`94,04
`88,84
`77,87
`
`Zen
`[11]
`
`0,00
`0,67
`4,17
`5,33
`10725
`21,50
`
`Miltelwert der
`Konzenlrzi-
`geinessenen
`Lion an
`Eendamiistim
`HCl [irig/ml]
`fiir n = 3
`
`0,2525
`0,2 508
`0,2401
`0,2375
`0,2243
`0,1966
`
`3. Diskussion
`
`Die Messungen zeigeii, daB sowohl bei 4 °C als auch 23 “C
`die hydrolytische Zersetzung wéifiriger Bendai11ustiiihydro-
`cliloridlésungen in dem gemesseneii Bereicli linear Verléiuft.
`Ffir die Zersetzung VDI] Melplialan ist eiiie Kinctik pseudo-
`erster Ordiiung beschrieben [8], die aufgrund des identischen
`Hydrolyseinechanismus aiich fiir das
`strukturverwaiidte
`Beiidamustin angenommcn werden l(aI111. Die mittels expo-
`ueiitieller Regression berechneten Korrelationskoeflizieiiteii
`untcrstiitzen diese Annahme. Neueste Uiitersucliurigeii zur
`Hydrolysekinetik Von Bendainustin in Wasser bei Raum-
`teinperatur fiber den gesainten Zersetzungszeitraum ven'fi-
`zieren die Zersetzungskinetik pseudo-erster Ordnung [7]. Alle
`Uritersucliungslfjsungen wiesen deii stabilitéitsbegfiristigenden
`pH-Wert von 4 aiif. In Vorversuchen wurde die Hydrolyse
`von Bendaniustinhydrochlorid in Wasser
`fiir 1iijektions-
`zwecke iiberpriift, wobei gezeigt werden korinte, dals in dieseiii
`chloridfreieii Medium das Ausmalfi der Hydrolyse trotz
`gleicheri pH-Wertes wesentlicli gr6Ber ist. Fiir Lésuiigen der
`Ausgaiigskoiizeiitration 0,251ng/ml wurde hci Raumten:ipe-
`ratur exeinplarisch eine tgo Von 4,211 bestimmt. Dies belegi
`den stabilitétserhéhenden Einflulfi der Chloridionen. Als Tréi-
`germcdium ffir Bendamustinzubereitung ist ausschliefllich
`isotoiiische Natriumchloridlésung zu verwenden.
`Die Hydrolyse Von Bendamustinhydrochlorid ist erwartungs—
`geméifi Stark temperaturabhéingig. Die Stabilitét der Lésung
`mit eiiier Koiizentration Von 0,25 mg/ml
`ist bei 4 °C (190
`= 118,5 h) um mehr als das Zchnfache gréifier als bei 23 °C
`(190 2 9,2 h). Fiir die klinische Praxis bedeutet dies, daI3
`Bendamustiii-Infusionslésungen kiihl zu lagern sind. Mit
`physiologischer Kochsalzlésung als Triigermediuni und unter
`Aufbewahruiig irn Kfihlschrank ist ffir Bendaniustinlésiingeii
`der Konzentration 0.25 mg/ml eine Haltbarkeit vori vier d
`gegebeu, so dalfi cine Versorgurig mit applikatioiisfertigeii
`Bendamustin-lnfusionslésungen im Rahmen eiiier zentralen
`Zytostatikazubercitung dureh die Krankenhausapotheke
`sichcr mfiglich ist. F1"1r die empfohlene Applikatioii als Kurz—
`zeitinfusion fiber 30 min sind ebenfalls keine Stabi1itéits-
`probleme zu erwarten, da bei Raurnteinperatur fur diese
`Bendamustiiizubereituiigen cine Stabilitéit Von 9 h gegeben
`ist.
`
`4. Experimenteller Teil
`4.1. Substanzeii
`
`Die Bcstirniiiuiigeii wurden mit Ribornustin-Ampullen der Firma ribose-
`pharm (Charge 0190393) durcligefiilirt. Jede Durclistechllasclic mit 55mg
`Trockeiisubsiaiiz eiithiill 25 mg Bendamiistinhydmchlorid (Hillsstollz Man-
`riitol).
`
`4.2. Cliromatograpliiselie Bediiigurigen
`Die Messuiig crfolgte mit eiiier Millipore/Waters HPLC-Anlage.
`Pumpe: Waters 510 HPLC-Pump. Detektor: UV—Detek1or Waters 490 E,
`Pmbengeber: Waters 717-Autosampler, Séiule: Waters Novapak C 18, 60 A,
`r-liiiii, 3,9x150 mm. Flieljinittelz wéifirigc Na3SO..-Lésuiig 20mM (pH 3,
`
`Pharrnazie 49 (1994), H. 10
`
`H1504), Methanol 40/60 (V/V), FlL1B1":Il€I 0,3 ml/min, Wellenliingez 254 mm,
`Irijektioiisvolumeii: 10 1.11. Mefllemperatur: 4 EC bzw. 23 °C‘.
`
`4.3. Préizisiun Lles Geriires und der Metliode
`
`Sechs Eirizelinjektionen nus seclis jeweils friscli hergestellten Referenzlésiiiigen
`der Konzcntration 0,25 rrig/ml warden beziiglicli ermittelter Konzentratioii urid
`Reteiitionszclt ausgewertet. Die Ergebnisse sind iri Tzibelle 3 dargestellt.
`
`Tabel1c3: Prrizision des Geréites und der Methode
`
`Pmhe Nr
`
`1
`2
`3
`4
`5
`6
`Mittelwert
`Standardabweichiing
`Variatioiiskoeffiziem
`
`Menge
`lmgl
`
`0,2499
`0.2494
`0.2497
`0,2493
`0.2486
`0,2492
`0,2494
`0.000433
`0.2 %
`
`Reteritionszeil
`["131
`
`5,93
`592
`5,92
`5,94
`5,93
`5,93
`5,93
`0.0063
`0,1 %
`
`4.4.1iic1iurig des Systems
`Die Eichung des Systems erfolgt miltels Melirpuiikteieliiing mit externem
`Standard. Es werdeii je drei Injektionen von 10%, 100% und 200% der 7.1.1
`bestimmeriden Konzeiitration ausgefiihrt (Tabelle 4). Dazu wird eine Ampulle
`Riboniustin“ zunficlist in 10 ml H30 gelést und anschlieflend mit N2iCl 0,9‘!/u
`zu 0,025 mg/ml, 0.25 mg/ml und 0,50 mg/ml \’e1'dl.lIl1‘1I. Die Eichgerade ergibt
`sich aus den bcrcchneteii Peakfliichen. aufgetragen gegen die tlieoretisclie
`Knnzentration. Der Korrclationskoeffizient betréigt 0,9997.
`
`Tabelle 4: Eichung dcs Systems
`Theoretisch
`Mittelweit der
`Konzentriition
`gefundenen
`[mg/ml]
`Konzeiitrationen
`1111
`ll : 3
`[mg/ml]
`
`St:indard-
`abweicliiing
`
`Variations-
`koeffizient
`[%]
`
`0.025
`0,25
`0,50
`
`0.0266
`0,2499
`0,5080
`
`0.00036
`0,0016
`0,0021
`
`1,4
`0,6
`0,4
`
`4.5. Probeiivorbereiiiiiig
`Jeweils eirie Ainpulle Rilmmu:tin“‘ (4.1.) wird in 10 ml Wasser [fir 1nje1<tioi1s-
`zwecke gclbst und aiiscliliefleiid mit NaCl-Lésurig aus Viatlcx" Beuteln der
`Firmzt Baxter (pl-I-Wert: 5,0-7,0) All 100 ml \’E1‘(‘ll11‘1I1[. Daraus resultiert cine
`NaC1-Konzeiitratioii von 0,81%. Die Zubereimng C161’ Staiidardproben zur
`Erstelluiig der Eicligeraden erfolgt eiitsprechend.
`
`4.6. Aiiswertimg
`Die Auswertung erfolgt durch uiitomatische Peakfliicheiiiiitegratioii
`Eicligcradc (Software Waters Maxirna 820).
`
`initials
`
`Literatur
`
`
`
`\IO‘vi~t>uJM-—-
`
`Riboniiistiifl“ Stziridardinfnnnatioii fijr Kmiikeiihausapothcker April 1993
`Preiss, R.: Solir, R.: Matthias, M.: Brnckniziiiu, B.; I-liillcr, H.: 1’1iarmazie
`-'10, 782 (1985)
`Ki‘é"'imer, 1.: Krankeiiliauspliarnia/.ie 8, 325 (1990)
`Stout, S. A.; Riley, C. M.: Int. J. Pharm. 24. 193 (1985)
`Chang, S. Y.; EV€11'1S, T. S.; Alberts, D. S.; J. Pliai-in. Plizirinacol. 31, 853
`(1979)
`Persénliclic Mitteiluiig der Firina ribosepliiirin 1994
`Gust, R.: Unveriiffeiitlichte Ergebnisse (liistitut fiii‘ Pliarmazie, Umversitéit
`Regensburg)
`8 Flora, K. P; Smith. S. L.; Cradock, J. C.: J. Chroiuzltogr. 177, 91 (1979)
`
`Eiiigegaiigen am 8. Juni 1994
`Aiigeiiommeu am 4. Juli 1994
`
`Dr. Irene Krzimer
`Apotheke des Kliiiikuius
`Laiigenbcckstr. 1
`D-55131 Nlaiiiz
`
`777
`
`
`
`FRESENIUS KABI 1004-0003
`FRESENIUS KABI 1004-0003
`
`

`
`Pharmacy1, III. Medical Clinic and Polyclinic, Division of Hematology2, of the University Medical Center of the
`Johannes Gutenberg University Mainz
`
`Stability of Bendamustine Hydrochloride in Infusions
`
`BIRGIT MAAS1, C. HUBER2 AND IRENE KRAMER1
`
`Bendamustine hydrochloride was identified by means of
`reverse-phase HPLC. The chemical stability (t90) of the
`cytostatic (0.25 mg/mL) in 0.9% sodium chloride is 120 h
`at 4°C and 9 h at 23°C. The pH value, temperature, and
`chloride ion concentration are influencing factors for
`stability. 0.9% sodium chloride solution must be used as
`the carrier solution for bendamustine infusion solution.
`The stability times ensure unproblematic storage and
`application in clinical practice.
`
`Stability of bendamustine hydrochloride in infusions
`
`(0.25
`stability of bendamustine hydrochloride
`The
`mg/mL) in 0.9% sodium chloride was studied after storage
`4°C and
`23°C using
`reverse-phase HPLC.
`at
`Bendamustine hydrochloride is stable at 4°C for 120 h and
`at 23°C for 9 h. Temperature, pH, and chloride
`concentration are key influencing factors for stability.
`Isotonic sodium chloride must be used for the preparation
`of bendamustine hydrochloride infusions.
`
`1.
`
`Introduction
`
`4-[5-bis(2-chlorethyl)amino]-1-
`(Ribomustin®,
`Bendamustine
`methyl-2-benzimidazolyl
`butyric
`acid)
`is
`an
`effective
`chemotherapeutic drug in the treatment of malignant diseases.
`
`The stability of the lyophilized dry substance is already known
`[1]. In studies of the pharmacokinetics of bendamustine in
`humans, in vitro measurements of the dissolved substance were
`carried out at a temperature of 37°C in a buffered medium (pH =
`7.5; t50 = 6.2 min) and in heparinized plasma (t90 = 1.67 h) [2].
`However, data is still lacking on the stability of bendamustine
`infusions. Since patient-specific, ready-to-use cytostatic infusions
`or injections are increasingly prepared in a central cytostatic
`preparation facility in the hospital pharmacy and the infusion is
`longer
`prepared
`immediately
`before
`administration,
`no
`information on the stability of bendamustine hydrochloride in an
`aqueous solution is imperative [3].
`
`2. Tests and results
`
`Bendamustine is very unstable in an aqueous solution. In a
`weakly acid, neutral, and alkaline solution, hydrolysis of the bis-
`2-chlorethylamino function occurs. As in the hydrolysis of
`melphalan, monohydroxy bendamustine presumably develops
`first via an aziridium cation, and then the dihydroxy derivative
`develops (see diagram) [4]. In a highly acidic solution, hydrolysis
`is inhibited by protonation of the free electron pair on the
`In addition to the pH value,
`the chloride ion
`nitrogen.
`concentration has a significant
`impact on the hydrolysis
`equilibrium. It is preferred that the bendamustine hydrochloride
`be regenerated as the chloride ion concentration increases, which
`the formation of
`the hydroxyl derivative. The
`suppresses
`
`Pharmazie 49 (1994), H. 10
`
`775
`
`FRESENIUS KABI 1004-0004
`
`

`
`dependence of the hydrolysis equilibrium on the chloride ion
`concentration [5] and temperature [4]
`is documented for
`melphalan. On account of these relationships for the structurally
`related melphalan and the fact that it is administered to the patient
`as an infusion, isotonic sodium chloride solution seems to be
`suitable as a carrier solution for bendamustine hydrochloride. The
`merely moderate solubility of the substance in this medium is,
`however, unfavorable, because decomposition already begins
`during the time-consuming dissolution process. In pure water,
`bendamustine has good solubility. It is therefore recommended
`that it be dissolved in a small amount of water for injection and
`then immediately diluted with an isotonic sodium chloride
`solution.
`
`Diagram
`
`for the stability (t90) of bendamustine hydrochloride in a 0.81%
`sodium chloride solution at 4°C. The stability of bendamustine
`hydrochloride infusion solution was also determined at 23°C. The
`measurement results are shown in Table 2. The rate constant (1k)
`and time to 10% loss (t90) were calculated by means of
`exponential regression. A value of -0.01165 h-1 was obtained for
`1k (coefficient of correlation 0.9985). This calculated to a value of
`9.2 h for the stability of bendamustine hydrochloride (t90) in a
`0.81% sodium chloride solution at 23°C.
`
`Table 1: Stability data for bendamustine hydrochloride at 4°C
`
`Time [h]
`
`Mean
`Concentration
`of
`Bendamustine
`HCl [mg/mL]
`Measured for
`n = 9
`
`Standard
`Deviation
`
`Coefficient of
`Variation [%]
`
`Content of
`Bendamustine
`HCl [%]
`(t0 = 100%)
`
`0.00
`19.77
`42.57
`71.63
`92.55
`118.27
`
`0.2499
`0.2478
`0.2422
`0.2369
`0.2316
`0.2232
`
`0.00160
`0.00175
`0.00230
`0.00047
`0.00052
`0.00049
`
`0.64
`0.71
`0.95
`0.20
`0.22
`0.22
`
`100
`99.14
`96.22
`94.79
`92.68
`89.29
`
`following
`the
`Based on corresponding preliminary tests,
`conditions were selected for
`stability testing: 25 mg of
`bendamustine hydrochloride (= 1 ampoule of Ribomustin®) was
`dissolved first in 10 mL of water and then diluted with 0.9%
`sodium chloride solution to 100 mL. The produced concentration
`of 0.25 mg/mL meets therapeutic requirements. The stability test
`was performed at
`temperatures of 4°C and 23°C. The
`bendamustine hydrochloride was identified by reverse-phase
`HPLC. The characteristic peak of bendamustine (see figure)
`occurs at a retention time (RT) of 5.93 min. The first
`decomposition product, presumably the monohydrolysis product,
`appears at an RT of 4.14 min. The “unknown” peak at an RT of
`5.23 min is a by-product from synthesis. By optimizing the
`synthesis procedure in the meantime, we have been able to
`completely eliminate the impurity [6]. The area of this peak does
`not change during the entire time of analysis. After a storage time
`of 119 h, in addition to the clear increase in the monohydroxy
`derivative, a fourth peak can be seen at an RT of 3.78 min, which
`is the dihydroxy derivative. With a sample of the compound
`recently characterized as a dihydroxy derivative [7], we were able
`to identify this decomposition product in our HPLC assay.
`Due
`to
`the
`rapid
`hydrolysis of
`aqueous bendamustine
`hydrochloride solutions, only freshly prepared solutions which
`must be injected immediately following their preparation may be
`used in chromatographic determinations and corresponding
`validations. All standard samples for validation of the method
`were performed with Ribomustin®. The measurement results thus
`allow us to determine the relative stability of bendamustine,
`which is sufficient for our investigation.
`Before the start of testing, the freshly prepared test solution had a
`pH of 4. The decomposition of bendamustine hydrochloride
`infusions was determined first at 4°C. The measurement results
`are shown in Table 1. The rate constant (1k) and the time to 10%
`loss were calculated by means of exponential regression. A value
`of -0.00093 h-1 was obtained for 1k. The coefficient of correlation
`was determined as 0.9892. This calculated to a value of 118.5 h
`
`776
`
`Figure: HPLC chromatogram of bendamustine hydrochloride (0.25
`mg/mL in 0.81% NaCl immediately after dilution
`
`[Translator’s note: See Table 1 for translation of figure.]
`
`Pharmazie 49 (1994), H. 10
`
`FRESENIUS KABI 1004-0005
`
`

`
`Table 2: Stability data for bendamustine hydrochloride at 23°C
`
`4.3
`
`E q u i p m en t a n d m et h od p r ec i si on
`
`Standard
`Deviation
`
`Coefficient of
`Variation [%]
`
`Content of
`Bendamustine
`HCl [%]
`(t0 = 100%)
`
`Six different injections from six freshly prepared reference solutions with
`a concentration of 0.25 mg/mL were analyzed for concentration obtained
`and retention time. The results are shown in Table 3.
`
`Table 3: Precision of equipment and method
`
`Retention Time
`[mg]
`
`5.93
`5.92
`5.92
`5.94
`5.93
`5.93
`5.93
`0.0063
`0.1%
`
`Quantity
`[mg]
`
`0.2499
`0.2494
`0.2497
`0.2493
`0.2486
`0.2492
`0.2494
`0.000433
`0.2%
`
`Sample No.
`
`1 2 34 5 6M
`
`ean value
`Standard deviation
`Coefficient of variation
`
`4.4
`
`S ys t em c a li b ra t i on
`
`The system was calibrated by means of multiple-point calibration with an
`external standard. Three injections of 10%, 100%, and 200% of the
`concentration to be determined were performed (Table 4). For this
`purpose one ampoule of Ribomustin® was first dissolved in 10 mL of
`H2O and then diluted with 0.9% NaCl to 0.025 mg/mL, 0.25 mg/mL, and
`0.50 mg/mL. The calibration curve was derived from the calculated peak
`areas plotted against the theoretical concentration. The coefficient of
`correlation was 0.9997.
`
`Table 4: System calibration
`
`Theoretical
`Concentration
`[mg/mL]
`
`Mean Value of
`Concentrations
`Found for n = 3
`[mg/mL]
`
`Standard
`Deviation
`
`Coefficient of
`Variation [%]
`
`0.025
`0.25
`0.50
`
`0.0266
`0.2499
`0.5080
`
`0.00036
`0.0016
`0.0021
`
`1.4
`0.6
`0.4
`
`4.5
`
`S a mp l e p r ep a r a t i on
`
`Each ampoule of Ribomustin® (4.1) was dissolved in 10 mL of water for
`injection and then diluted to 100 mL with NaCl solution from ViaFlex
`bags from the company Baxter (pH 5.0–7.0). This resulted in an NaCl
`concentration of 0.81%. The standard samples for the calibration curves
`were prepared in the same way.
`
`4.6 An a l ysi s
`
`The analysis was performed with automatic peak area integration using
`the calibration curve (Waters Maxima 820 software).
`
`Literature
`
`1 Ribomustin® Standardinformation für Krankenhausapotheker, April
`1993
`2 Preiss, R.; Sohr, R.; Matthias, M.; Brockmann, B.; Hüller, H. Pharmazie
`40, 782 (1985)
`3 Krämer, I.: Krankenhauspharmazie 8, 325 (1990)
`4 Stout, S.A.; Riley, C.M.: Int. J Pharm 24,193 (1985)
`5 Chang, S.Y.; Evans, T.S.; Alberts, D.S.: J Pharm. Pharmacol. 31, 853
`(1979)
`6 Personal memo from the Ribosepharm company, 1994
`7 Gust, R.: Unpublished results (Institute of Pharmacy, University of
`Regensburg)
`8 Flora, K.P.; Smith, S.L.; Cradock, J.C.: J Chromatogr. 177, 91 (1979)
`
`Submitted on June 8, 1994
`Accepted on July 4, 1994
`
`Dr. Irene Krämer
`Apotheke des Klinikums
`Langenbeckstr. 1
`D-55131 Mainz
`
`777
`
`FRESENIUS KABI 1004-0006
`
`Time [h]
`
`Mean
`Concentration
`of
`Bendamustine
`HCl [mg/mL]
`Measured for
`n = 9
`
`0.00
`0.67
`4.17
`6.33
`10.25
`21.50
`
`0.2525
`0.2508
`0.2401
`0.2375
`0.2243
`0.1966
`
`0.00107
`0.00212
`0.00130
`0.00211
`0.00404
`0.00139
`
`0.43
`0.85
`0.54
`0.89
`1.80
`0.71
`
`100
`99.31
`95.06
`94.04
`88.84
`77.87
`
`3. Discussion
`
`The measurements show that the hydrolytic decomposition of
`aqueous bendamustine hydrochloride solutions is linear over the
`range measured at both 4°C and 23°C. A pseudo first-order
`kinetic reaction is described for melphalan [8], which can also be
`assumed for the structurally related bendamustine because of the
`identical hydrolysis mechanism. The coefficients of correlation
`calculated by exponential regression support this assumption. The
`latest studies of the hydrolysis kinetics of bendamustine in water
`at room temperature verify the pseudo-first-order decomposition
`kinetics [7]. All test solutions had the stability-promoting pH of 4.
`In
`preliminary
`tests,
`the
`hydrolysis
`of
`bendamustine
`hydrochloride was tested in water for injection and,
`in this
`chloride-free medium, the degree of hydrolysis was substantially
`higher despite having the same pH value. Typically for solutions
`with the initial concentration of 0.25 mg/mL, a t90 of 4.2 h was
`determined at room temperature. This is evidence of the stability-
`increasing effect of the chloride ions. Isotonic sodium chloride
`solution must be used exclusively as the carrier medium for
`bendamustine preparation.
`As expected, the hydrolysis of bendamustine hydrochloride is
`highly temperature-dependent. The stability of the solution with a
`concentration of 0.25 mg/mL is more than ten times greater at
`4°C (t90 = 118.5 h) than at 23°C (t90 = 9.2 h). For clinical practice,
`this means that bendamustine infusions must be kept cool. If a
`physiological salt solution is used as the carrier medium and the
`infusions are stored in a refrigerator, the storage time is four days
`for bendamustine solutions with a concentration of 0.25 mg/mL,
`so a supply with ready-to-use bendamustine infusions is certainly
`possible within the framework of central cytostatic preparation in
`the
`hospital
`pharmacy. Likewise
`for
`the
`recommended
`administration as a short
`infusion over 30 min, no stability
`problems are expected, since these bendamustine preparations
`have a stability of 9 h at room temperature.
`
`4. Experiment
`
`4.1
`
`Substanc es
`
`The determinations were performed using Ribomustin ampoules from the
`company Ribosepharm (batch 0190393). Each vial with 55 mg of dry
`substance contains 25 mg of bendamustine hydrochloride (excipient:
`mannitol).
`
`4.2
`
`C h ro ma t og ra p h i c c on d i t i on s
`
`The measurement was performed using a Millipore/Waters HPLC system.
`Pump: Waters 510 HPLC pump; detector: Waters 490E UV detector;
`proton donor: Waters 717 autosampler; column: Waters Novapak C18,
`60Å. 4µm, 3.9 x 150 mm; solvent: aqueous Na2SO4 solution 20 mM (pH
`3, H2SO4), methanol 40/60 (v/v); flow rate 0.3 mL/min; wavelength: 254
`mm; injection volume: 10 µL; measuring temperature: 4°C and 23°C.
`
`Pharmazie 49 (1994), H. 10
`
`

`
`E
`
`4752 41”‘ Ave sw, Ste B
`Seattle WA, 98116
`
`phone- 295.933.3500
`
`AFFIDAVIT OF ACCURACY
`
`L Antanda Olson. hereby declare as follows:
`
`I am a translator fluent in the Gennan and ljitglish languages. and am authorized to provide this
`affidavit on behalf of German Language Services.
`I am over eighteen years of age and fully
`competent to make this affidavit.
`I have personal knowledge of the inforntation contained in this
`aflidavit. and it is true and accurate to the best of my knowledge.
`
`l have reviewed the German original and the English translation oi" Maas er al.. Pharmazie. vol.
`49, No. 10. pp. 291-299 (1994) ("Maas"). To the best of my knowledge and belief. the English
`translation is a complete and accurate translation of Maas.
`
`I understand that the affidavit will he tiled as evidence in a petition
`In signing this aflidax-'it.
`before the Patent Trial and Appeal Board of the United States Patent and Tt‘adcma1'k Office.
`I
`declare under penalty of pczfjur_v of the laws of the United States of America that the foregoing
`iitformatiott is true and accurate to the best of tny knowledge.
`I understand that willful false
`statements and the like are punishable by line or imprisonment, or both (18 U.S.C. § l0(}l) and
`may jeopardize the validity nfthc petition.
`
`l".-Lxectited June 30, 20l5 in Seattle. WA.
`
`Signed
`
`.
`
`'L-—'“v.—-——~—*-—-_-rC- c~
`
`‘—~c._*.
`
`NOTARWS DECLARATION
`
`On this 30th day olfilune, 2015. in King County, Seattle. WA. USA. Arnanda Olson identified
`hersellto me as the person who signed the declaration above.
`
`Signed
`
`(Notary Pub L‘)
`
`OW
`
`FRESENIUS KABI 1004-0007
`FRESENIUS KABI 1004-0007

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket