throbber
columns were kept identical. Eluent: A: 0.05 M KHZPO4. pH : 2.5 (H3PO4):
`B; CH3OH Gradient (linear): 0~35 min from 90% A to 55% A, 35—40 min to
`40% A; 40-60 min to 40% A: 60-70 min to 25% A. 70—80 min to 20% A.
`Flow rate: 0.7 ml/min. Temperature: If not otherwise steated the experiments
`were performed at room temperature. Other selected temperatures have been
`adjusted by a column thermostat. Sample volume: 20 [.11. Absorbance: 285 nm.
`HPLC system: Gradient system 600 E (Fa. Millipore Waters). diodenarray
`detector 990 (Fzt. Millipore Waters). HPLC-column thermostat 5—85 :C (Fa.
`Knauer).
`
`3.2.2. Pu://r izlcnlifimrimi
`Retention times and UV—spectra of reference substances have been used to
`identify the peaks in the chromatograms. The different reference substances
`have been checked by ‘H- and “C-NMR-spectroscopy.
`
`3.3. Solid phase NMR spectroscopy
`NMR-Unit: Bruker AMX 300 with a CP-MAS Unit.
`
`3.3.]. 1°Si-CP-MAS-NMR
`1\/Ieasuring frequency: 59.63 MHZ. Proton resonance: 300.14 MHZ. Optimal
`contact-time: 20000 usec for LiChrospher 60 RP-select B. 5000 usec for
`Nucleosil 100 AB.
`
`3.3.2. “C-CP—iUAS-NMR
`Measuring frequency: 75.48 MHZ. Proton resonance: 300.14 MHZ. Optimal
`contact-time: 2000 [.lS€C for Nucleosil 100 AB, 2000 usec for LiChrospher 60
`RP-select B. 2000 usec for Eurospher 100.
`
`to our colleague Mr. Lubda (Fa.
`Acknowledgement: We are most grateful
`Merck) for running the CP-MAS—NMR spectra.
`
`This material may be protected by Copyright law (Title 17 U.S. Code)
`
`References
`
`
`
`
`
`O\UI4>-UJlJ>—-
`
`
`
`Gilpin. R. K.: Burke. M. F.: Anal. Chem. 45. 1383 (1973)
`Dorsey, J. G.: Dill. K. A.: Chem. Rev. 89. 331 (1989)
`Eisenbeifi. 1-7.: Ber. Bunsenges. Phys. Chem. 93. 1019 (1989)
`Morterrn. C.: Low. M. J. D.: J. Catul. 28.265 (1973)
`Waksmundzki. A.; Rudzinski. W.; Suprynowicz, Z.: Leboda. R.: J. Chroma-
`togr. 92. 9 (1974)
`(Ed.):
`in: Horvath. Cs.:
`Karger. B. L.: Le Page. J. N.: Tanaka. N.:
`High-Performance Liquid Chromatography. Advances and Perspectives.
`Vol. I, S. 159. Academic Press. New York 1980
`7 Nakum, A.: Horvath. C.: J. Chromatogr. 203. 53 (1981)
`oo
`Kohler. J.: Kirkland, J. J.: Chromatogr. 385. 125 (1987)
`9 Kohler. J.: Chase. D. B.: Farlee. R. D.: Vega. A. J.: Kirkland. J. J.: J.
`Chromatogr. 352. 275 (1986)
`10 Unger. K. K.: Porous Silica. Journal of Chromatography Library. Vol. 16.
`Elsevier. Amsterdam 1979
`Pfleiderer. B.: Albert. K.: Bayer. E.: J. Chromatogr. 506. 343 (1990)
`Sinsdorf, D. W.: Maciel. G. E.: J. Am. Chem. Soc. 105, 1487 (1983)
`Sindorf, D. W.; Maciel. G. E.: J. Am. Chem. Soc. 103.4263 (1981)
`Bayer. E.: Albert. K.: Reiners. J.; Nieder. M.: Miiller. D.: J. Chromatogr.
`264, 197 (1983)
`15 Szabo. K.: Le Ha. N.: Schneider. P.: Zeltner. P.: Kovats. E.: Helv. Chim.
`Acta 67. 2128 (1984)
`16 Hetem. M.; van de Ven. L.: de Haan. J.: Cramers, C.: Albert. K.: Bayer.
`E.: J. Chromatogr. 479. 269 (1989)
`17 Kinkel. J. N.: Unger. K. K.: J. Chromatogr. 316. 193 (1984)
`18 Sokolowski. A.: Wahlund. K.-G.: J. Chromatogr. 189. 299 (1980)
`19 Freytag. W. E.; Stapf. W.: Pharm. Ztg. Wiss. 6./138. 126 (1993)
`20 Fulde. G.: Dissertation Marburg 1993
`21 Jones. R. R.: Harkrader. R. J.:Southard. G. L.: J. Nat. Prod. 49, 1109 (1986)
`22 Berthold. A.: J. Chromatogr. 549.
`1 (1991)
`23 Unger. K. K.: Porous Silica, Journal of Chromatography. Library. Vol. 16,
`S. 102. Elsevier. Amsterdam 1979
`24 Sander. L. C.; Wise. S. A.: Anal. Chem. 56. 504 (1984)
`
`,_.._.,_.,_
`
`-J;uJt\z._.
`
`Received January 27. 1994
`Accepted March 20. 1994
`
`Dr. Hanns Haberlein
`Institut fiir Pharmazeutische Biologic
`der Philipps-Universitat Marburg
`Deutschhausstra|3e 17‘/1
`D-35037 Marburg
`
`l||. Medizinische Klinik und Poliklinik Abteilung Hématologiez, des Klinikums der Johannes Gutenberg-
`Apotheke‘,
`Universitét, Mainz
`
`Stabilitéit von Bendamustinhydrochlorid in lnfusionsliisungen
`
`BIRGIT IVIAAS‘, C. HUBER2 und IRENE KRAMER‘
`
`Bendamustinhydrochlorid wurde mittels Reversed Pha-
`se HPLC bestimmt. Die chemische Stabilitéit (tgo) des
`Zytostatikums (0.25 mg/ml) betragt in 0.9% Kochsalz-
`losung bei4 QC 120 h und bei 23 “C 9 h. Stabilitéitsbeein-
`tlussende Faktoren sind pH-Wert, Temperatur und
`Chloridionenkonzentration. Kochsalzlosung 0,9"/o ist
`als Tréigerlosung fiir Bendamustin-Infusionslosungen
`einzusetzen. Die Stabilitatszeitréiume gewéihrleisten eine
`unproblematische Aufbewahrung und Applikation in
`der klinischen Praxis.
`
`Stability of bendamustine hydrochloride in infusions
`
`The stability of bendamustine hydrochloride (0.25 mg/
`ml) in 0.9% sodium chloride was studied after storage
`at 4 ‘C and 23 °C using Reversed Phase HPLC. Bend-
`amustinhydrochloride is stable at 4 “C for 120 h and at
`23 °C for 9 11. Temperature, pH and chloride concentra-
`tion are important factors which influence stability.
`Isotonic sodium chloride must be used for the prepa-
`ration of bendamustine hydrochloride infusions.
`
`1. Einleitung
`
`(Ribomustin‘5‘, 4-[5-Bis(2-chlorethyl)amino]-
`Bendamustin
`1-methy1-2-benzimidazolylbutanséiure) ist ein wirksames Che-
`
`motherapeutikum in derBehand1ung maligner Erkrankungen.
`Die Stabilitéit der lyophilisierten Trockensubstanz ist bereits
`bekannt [1]. Im Rahmen von Untersuchungen zur Pharmako-
`kinetik Von Bendamustin am Menschen wurden auch in vitro-
`Messungen zur Stabilitéit der gelosten Substanz bei einer
`Temperatur Von 37 "C in gepuffertem Medium (pH : 7,5;
`tso = 6,2 min) und in heparinisiertem Plasma (t90 = 1.67 h)
`durchgefiihrt [2]. Es fehlen aber bislang Angaben zur Halt-
`barkeit Von Bendamustin-Infusionslosungen. Da die Her-
`stellung patientenbezogener. applikationsfertiger Zytostatika—
`Injektions- oder -Infusionslosungen immer héiufiger durch eine
`zentrale Zytostatikazubereitung in der Krankenhausapotheke
`erfolgt und die Infusion nicht mehr unrnittelbar vor ihrer
`Applikation zubereitet wird, sind Kenntnisse zur Stabilitéit
`Von Bendamustinhydrochlorid in wéiBriger Losung erf0rder—
`lich [3].
`
`2. Untersuchungen und Ergebnisse
`
`in wéiffariger Losung sehr in-
`Bendamustinhydrochlorid ist
`stabil. In schwach saurer. neutraler sowie alkalischer Losung
`erfolgt eine Hydrolyse der Bis-2-Chloretylaminofunktion.
`Analog der Hydrolyse Von Melphalan entsteht vermutlich
`iiber ein Aziridium-Kation zunachst das Monohydroxybend-
`amustin und nachfolgend das Dihydroxyderivat (Schema) [4].
`In stark saurer Losung wird die Hydrolyse durch Proto-
`
`Pharmazie 49 (1994), H. 10
`
`AGILA ET AL - EXHIBIT 1007 775
`
`0001
`
`AGILA ET AL - EXHIBIT 1007
`
`0001
`
`

`
`ist allerdings die nur méifiige Loslichkeit der Substanz in
`diesem Medium, so daB die Zersetzung bereits walirend des
`zeitaufwendigen Lésevorgangs beginnt. In reinem Wasser ist
`Bendaniustinhydrochlorid gut léslich. Es empfiehlt sich daher
`das Losen in einer geringen Menge Wasser fiir Injektions-
`zwecke und das sofortige Verdiinnen mit isotonischer Na-
`triunichloridlésung.
`
`stimmt. Die Mefiergebnisse sind in Tabelle 2 zusammengefafit.
`Die Geschwindigkeitskonstante (lk) und die Zeit bis zum
`Verlust Von 10% (I90) wurden mittels exponentieller Regres-
`sion berechnet. Fiir ‘k ergab sich ein Wert von —0,01165 h‘1
`(Korrelationskoeffizient 0,9985). Hieraus errechnet sich fiir
`die Stabilitéit von Bendamustinhydrochlorid (tgo) in Natrium-
`chloridlosung 0,81% bei 23 “C ein Wert Von 9,2 h.
`
`Schema
`
`T
`/—c1
`R—N 4: C1’+R —N +
`\—c1
`\—ci
`
`LHZO
`
`_
`HT+R ~N
`
`OH
`
`\-C1
`
`
`+ fOH
`—
`_
`Cl +R N
`
`H10
`-
`
`R_N
`
`r0H .
`+H,
`
`\—oH
`
`Aufgrund entsprechender Vorversuche wurden folgende Be-
`dingungen fur die Stabilitéitsuntersuchungen gewahlt: 25 mg
`Bendamustinhydrochlorid (=1 Ampulle Ribomustin"—‘) Wur-
`den zunéichst in 10 ml Wasser gelést und anschliefiend rnit
`0,9% Natriumchloridlosung zu 100 ml Verdiinnt. Die damit
`hergestellte Konzentration Von 0,25 mg/ml entspricht thera-
`peutischen Erfordernissen. Die Stabilitéitsuntersuchung wurde
`bei Temperaturen Von 4°C und 23 °C durchgefiihrt. Die
`Bestimmung Von Bendamustinhydrochlorid erfolgt mittels
`Reversed Phase HPLC. Der
`fiir Bendamustin charakte-
`ristische Peak (Abb.) erscheint bei einer Retentionszeit (RT)
`Von 5,93 min. Das erste Zersetzungsprodukt, vermutlich das
`Monohydrolyseprodukt, erscheint mit einer RT von 4,14 min.
`Bei dem als ,,unknown“ bezeichneten Peak bei einer RT Von
`5,23 min handelt es sich um ein Nebenprodukt aus der
`Synthese. Mittlerweile ist es durch Optimierung des Syn-
`theseverfahrens gelungen, die Verunreinigung véllig zu elimi-
`nieren [6]. Die Fléiche dieses Peaks andert sich wéihrend der
`gesamten Analysezeit nicht. Nach einer Aufbewahrungszeit
`Von 119 h ist
`im Chromatogramm neben der deutlichen
`Zunahme des Monohydroxyderivates ein vierter Peak bei
`einer RT Von 3,78 min zu erkennen, wobei es sich um das
`Dihydroxyderivat handelt. Mit einer Probe der kiirzlich als
`Dihydroxyderivat charakterisierten Verbindung [7] war es
`moglich, dieses Zersetzungsprodukt in unserem HPLC Assay
`zu identifizieren.
`
`Aufgrund der rasch fortschreitenden Hydrolyse von wafirigen
`Bendamustinhydrochloridlésungen di'11'fen bei allen chroma-
`tographischen Bestimmungen und entsprechenden Validie-
`rungen nur frisch hergestellte Losungen verwendet werden,
`die unrnittelbar nach ihrer Zubereitung injiziert werden mus-
`sen. Samtliche Standardproben zur Validierung der Methode
`wurden mit Rib0mustin‘~‘ durchgefiihrt. Die Mefiergebnisse
`erlauben somit eine relative Aussage zur Stabilitéit von Benda-
`
`776
`
`Tabelle 1: Stabilitéitsdaten fiir Bendamustinhydrochlorid bei 4 °C
`Zeil
`Mittelwerl der
`Slandurd-
`Variz1lions-
`Gehall an
`[11]
`gemessenen
`abweichung
`koeffizient
`Bendumus1in-
`Kon7.en1ra-
`[D/n]
`HCI [%]
`lionen an
`(to : 100%)
`Bendamuslim
`I-{Cl [mg/‘m|]
`fiir n = 9
`
`0,00
`19,77
`42,57
`71,63
`92,55
`118,27
`
`0,2499
`0,2478
`0,2422
`0,2369
`0,2316
`0,2232
`
`0,00160
`0,00l75
`0,00230
`0,00047
`0,00052
`0,00049
`
`0,64
`0,71
`0,95
`0,20
`0,22
`0,22
`
`100
`99,14
`96,22
`94,79
`92,68
`89,29
`
`
`
`
`
`A}.-5.9:Eiannlnunun
`
`3 00»
`
`2.00-
`
`1 00>
`
`~1011/u1L's
`
`0 00
`
`O 20
`
`0 =10
`
`,——44*’
`
`4uHyamym
`523unknnvn
`1 r
`
`0 ED
`
`0 B0
`
`FIT[10‘ min]
`
`Zeit
`[h]
`
`0,00
`19,77
`42,52
`71,63
`92,55
`118,27
`
`Mittelwert der
`gemessenen
`Konzentrationen
`an Bendamustin-
`HCI [mg/ml]
`fur n : 9
`
`Varia1ions- Gehalt
`Standard—
`abweichung koeffizient
`an Benda-
`["/n]
`mustin-HCI
`[%]
`(10 2 100%)
`
`0,2499
`0,2478
`0,2422
`0,2369
`0,2316
`0,2232
`
`0,00160
`0.00175
`0,00230
`0,00047
`0,00052
`0,00049
`
`0,64
`0.71
`0,95
`0,20
`0,22
`0,22
`
`100
`99,14
`96,22
`94.79
`92,68
`89,29
`
`Abb.: HPLC—Chr0matogramm von Bendamustinhydrochlorid (0,25 mg/ml in
`NaCl 0.81% unmiltelbar nuch Verdiinnung
`
`Pharmazie 49 (19®® @210
`
`0002
`
`

`
`
`
`
`
`
`
`
`
`Tabelle 2: Stabilitéitsdaten fiir Bendamustinhydrochlorid bei 23 °C
`
`HZSO4), Methanol 40/60 (V/V). Fluliratez 0,3 ml/min. Wellenliinge: 254 mm,
`lnjektionsvolumenz 101.11. Me13temperz1lur: 4 ‘C bzw. 23 °C.
`
`Sl‘dl‘ld7.1l’Cl-
`2\lJ\\’€lLZl‘|\ll1g
`
`Vz1rizitions-
`["/o]
`koeflizient
`
`Gehtilt an
`HCI [%]
`Bendumuslinv
`(tn = 100%)
`
`0,00107
`0.00212
`0,00130
`0,00211
`0,00404
`0,00139
`
`0,43
`0,85
`0,54
`0,89
`1,80
`0,71
`
`100
`99,31
`95,06
`94,04
`88,84
`77,87
`
`Z5“
`[11]
`
`0500
`0,57
`4,17
`6,33
`10,25
`21,50
`
`Miltelwert der
`K0|'1Z€nlI'£\-
`gemessenen
`tion an
`Benclzunustin-
`l—1Cl [mg/ml]
`fiir n : 3
`
`0,2525
`0,2508
`0,2401
`0,2375
`0,2243
`0,1966
`
`3. Diskussion
`
`Die Messungen zeigen, dalfi sowohl bei 4 “C als auch 23 °C
`die hydrolytische Zersetzung wéifiriger Bendamustinhydro-
`chloridlosungen in dem gemessenen Bereich linear Verléiuft.
`Fiir die Zersetzung von Melphalan ist eine Kinetik pseudo-
`erster Ordnung beschriebeii [8], die aufgrund des identischen
`Hyd1'olysemechanismus auch fiir das
`strukturverwandte
`Bendamustin angenommen werden kann. Die mittels expo-
`nentieller Regression berechneten Korrelationskoeffizienten
`unterstiitzen diese Annahme. Neueste Untersuchungen zur
`Hydrolysekinetik Von Bendamustin in Wasser bei RE1L11I1-
`temperatur iiber den gesamten Zersetzungszeitraum verifi-
`zieren die Zersetzungskinetik pseudo-erster Ordnung [7]. Alle
`Untersuchungslésungen wiesen den stabilitéitsbegiinstigenden
`pH—Wert von 4 auf. In Vorversuchen wurde die Hydrolyse
`Von Bendamustinhydrochlorid in Wasser
`fiir
`Injektions-
`zwec1<ei'1be1‘pri'1ft, wobei gezeigt werden konnte, daB in diesem
`chloridfreien Medium das Ausmafi der Hydrolyse trotz
`gleichen pH-Wertes wesentlich gr6Ber ist. Fiir Losungen der
`Ausgangskonzentration 0,25 mg/ml wurde bei Raumtempe-
`ratur exemplarisch eine tgo Von 4,211 bestimmt. Dies belegt
`den stabilitéitserhéhenden Einllufi der Chloridionen. Als Tr'2i-
`germedium fiir Bendamustinzubereitung ist ausschliefilich
`isotonische Natriumchloridlosung zu verwenden.
`Die Hydrolyse von Bendamustinhydrochlorid ist erwartungs—
`geméili stark temperaturabhéingig. Die Stabilitfit der Losung
`mit einer Konzentration Von 0,25 mg/ml
`ist bei 4°C (190
`= 118,5 h) urn mehr als das Zehnfache gr6Ber als bei 23 °C
`(tgo = 9,211). Fiir die klinische Praxis bedeutet dies, da13
`Bendamustin-Infusionslosungen kiihl zu lagern sind. Mit
`physiologischer Kochsalzlosung als Triigermedium und unter
`Aufbewahrung im Kiihlschrank ist fur Bendamustinlésungen
`der Konzentration 0,25 mg/ml eine Haltbarkeit Von Vier d
`gegeben, so da13 eine Versorgung mit applikationsfertigen
`Bendamustin-Infusionslosungen im Rahmen einer zentralen
`Zytostatikazubereitung durch die Krankenhausapotheke
`sicher moglich ist. Fiir die empfohlene Applikation als Kurz—
`zeitinfusion iiber 30 min sind ebenfalls keine Stabi1itéits-
`probleme zu erwarten, da bei Raumtemperatur fiir diese
`Bendamustinzubereitungen eine Stabilitéit Von 9 h gegeben
`1st.
`
`4. Experimenteller Teil
`4.1. Substanzen
`
`Die Bestimmungen wurden mit Ribornustin—Ampullen der Firma ribose—
`pharm (Charge 0190393) durchgefiihrt. Jede Durclistecliflasclie mit 55 mg
`Trockensubstanz enthiilt 25 mg Bendamustinhydrochlorid (Hilfsstoll: Man-
`nitol).
`
`4.2. Clnomatograpliiselie Bedingungen
`Die Messung erlolgte mil einer Millipore/Waters HPLC-Anlage.
`Pumpe: Waters 510 HPLC-Pump, Detektor: UV-Detektor Waters 490 E.
`Probengeber: Waters 717»Autosampler. Séiule: Waters Novapak C 18, 60 A,
`4iun, 3.9>< 150 mm. Flieflmittelz wéifirige Nz1lSO4—L6sung 20 mM (pH 3.
`
`Pharmazie 49 (1994), H. 10
`
`4.3. Priizision des Geriites und der Methode
`
`Sechs Einzelinjektionen zius sechs jeweils frisch hergestellteri Referenzlésungen
`der Konzentrzition 0,25 mg/ml werden beziiglicli erinittelter Konzentrzition Lind
`Retentionszeit ziusgewertet. Die Ergebnisse sind in Tabelle 3 dargestellt.
`
`Tabe11e3: Priizision des Geréites und der Methode
`
`Probe Nr.
`
`1
`2
`3
`4
`5
`6
`Mittelwert
`Standardabweicliung
`Variationskoeflizient
`
`1\/lenge
`[mg]
`
`0,2499
`0.2494
`0.2497
`0,2493
`0.2486
`0.2492
`0,2494
`0.000433
`0.2%
`
`Retentions’/.eit
`[mg]
`
`5.93
`5.92
`5,92
`5,94
`5.93
`5.93
`5,93
`0.0063
`0.1%
`
`4.4. Eichung cles Systems
`Die Eichung des Systems erfolgt mittels Mehrpunkteichung mit externeni
`Standard. Es werden je drei Injektionen Von 10%, 100% und 200% der zu
`bestimnienden Konzentration ausgefiihrt (Tabelle 4). Dazu wird eine Ampulle
`Riboniustin“ zunficlist in 10 ml H10 gelést Lind anschlielfiend mit NaCl 0.9%
`zu 0.025 mg/ml. 0.25 mg/ml und 0,50 mg/ml verdiinnt. Die Eichgerade ergibt
`S101] aus den bereclmeten Peaklliichen. aulgetragen gegen die theoretische
`Konzentration. Der Korrelationskoeflizient betréigt 0.9997.
`
`Tabelle 4: Eichung des Systems
`Theoretiscli
`Mittelwert der
`Konzentrulion
`gefundenen
`[mg/ml]
`Konzenlrzitionen
`Hit‘ :1 : 3
`[mg/ml]
`
`Standard»
`iibweichung
`
`Vz1riations—
`koeffizient
`["/u]
`
`0.025
`0,25
`0.50
`
`0.0266
`0,2499
`0.5080
`
`0.00036
`0.0016
`0.0021
`
`1.4
`0,6
`0.4
`
`4.5. Probenvorbereitung
`
`Jeweils eine Ampulle Ribomustin“ (4.1.) wird in 10ml Wasser liir Injektions—
`zwecke gelost und €lI‘lSCl‘1llCB€11Cl mit NaCl—L6sung aus Viatlex" Beuteln der
`Firma Baxter (pl~1»Wert: 5.0—7,0) zu 1001111 verdilnnt. Daraus resultiert eine
`NaCl-Konzentration V011 0,81%. Die Zubereitung der Standzirdproben zur
`Erstellung der Eieligeraden erfolgt entsprecliend.
`
`4.6. Auswertung
`
`Die Auswertung erfolgt dureh uutoinatische Peakfléiclienintegration mittels
`Eichgerade (Software Waters Maxima 820).
`
`Literatur
`
`1 Ribomustin" Standzirdinforination fiir Krankeiiliausapotheker April 1993
`ix)
`Preiss. R.: Sohr. R.: lVl21[ll1ldS, M.: Brockmzmn, B.: Hfiller. 1-1.: Pl1'dI'I11'dZl€
`40, 782 (1985)
`Kréimer, 1.: Krankenliausphzirmzizie 8, 325 (1990)
`Stout, S. A.: Riley. C. M.: Int. J. Plmrm. 24. 193 (1985)
`Cliang, S. Y.: Evans, T. S.: Alberts. D. S.: J. Pliarm. Pharinacol. 31, 853
`(1979)
`Personliclie Mitteilung der Firina ribosepluum 1994
`Gust. R.: Unveréffentlichte Ergebnisse (Institut fur Pliarinzizie, Universitéit
`Regensburg)
`8 Flora, K. P.; Smith. S. L.; Cradock, J. C.: J. Chromatogr. 177, 91 (1979)
`
`
`
`\lO\u-42.1»
`
`Eingegangen tun 8. Juni 1994
`Angenommen am 4. Juli 1994
`
`D1". Irene Kréimer
`Apotheke des Klinikums
`Lzingcnbeckstr. 1
`D-55131 Mainz
`
`777
`
`0003
`
`0003
`
`

`
`Pharmacy1, III. Medical Clinic and Polyclinic, Division of Hematology2, of the University Medical Center of the
`Johannes Gutenberg University Mainz
`
`Stability of Bendamustine Hydrochloride in Infusions
`BIRGIT MAAS1, C. HUBER2 AND IRENE KRAMER1
`
`Bendamustine hydrochloride was identified by means of
`reverse-phase HPLC. The chemical stability (t90) of the
`cytostatic (0.25 mg/mL) in 0.9% sodium chloride is 120 h
`at 4°C and 9 h at 23°C. The pH value, temperature, and
`chloride ion concentration are influencing factors for
`stability. 0.9% sodium chloride solution must be used as
`the carrier solution for bendamustine infusion solution.
`The stability times ensure unproblematic storage and
`application in clinical practice.
`
`Stability of bendamustine hydrochloride in infusions
`The
`stability of bendamustine hydrochloride
`(0.25
`mg/mL) in 0.9% sodium chloride was studied after storage
`at
`4°C and
`23°C using
`reverse-phase HPLC.
`Bendamustine hydrochloride is stable at 4°C for 120 h and
`at 23°C for 9 h. Temperature, pH, and chloride
`concentration are key influencing factors for stability.
`Isotonic sodium chloride must be used for the preparation
`of bendamustine hydrochloride infusions.
`
`Introduction
`1.
`4-[5-bis(2-chlorethyl)amino]-1-
`Bendamustine
`(Ribomustin®,
`methyl-2-benzimidazolyl
`butyric
`acid)
`is
`an
`effective
`chemotherapeutic drug in the treatment of malignant diseases.
`
`The stability of the lyophilized dry substance is already known
`[1]. In studies of the pharmacokinetics of bendamustine in
`humans, in vitro measurements of the dissolved substance were
`carried out at a temperature of 37°C in a buffered medium (pH =
`7.5; t50 = 6.2 min) and in heparinized plasma (t90 = 1.67 h) [2].
`However, data is still lacking on the stability of bendamustine
`infusions. Since patient-specific, ready-to-use cytostatic infusions
`or injections are increasingly prepared in a central cytostatic
`preparation facility in the hospital pharmacy and the infusion is
`no
`longer
`prepared
`immediately
`before
`administration,
`information on the stability of bendamustine hydrochloride in an
`aqueous solution is imperative [3].
`
`2. Tests and results
`Bendamustine is very unstable in an aqueous solution. In a
`weakly acid, neutral, and alkaline solution, hydrolysis of the bis-
`2-chlorethylamino function occurs. As in the hydrolysis of
`melphalan, monohydroxy bendamustine presumably develops
`first via an aziridium cation, and then the dihydroxy derivative
`develops (see diagram) [4]. In a highly acidic solution, hydrolysis
`is inhibited by protonation of the free electron pair on the
`nitrogen.
`In addition to the pH value,
`the chloride ion
`concentration has a significant
`impact on the hydrolysis
`equilibrium. It is preferred that the bendamustine hydrochloride
`be regenerated as the chloride ion concentration increases, which
`suppresses
`the formation of
`the hydroxyl derivative. The
`
`Pharmazie 49 (1994), H. 10
`
`775
`
`0004
`
`

`
`for the stability (t90) of bendamustine hydrochloride in a 0.81%
`sodium chloride solution at 4°C. The stability of bendamustine
`hydrochloride infusion solution was also determined at 23°C. The
`measurement results are shown in Table 2. The rate constant (1k)
`and time to 10% loss (t90) were calculated by means of
`exponential regression. A value of -0.01165 h-1 was obtained for
`1k (coefficient of correlation 0.9985). This calculated to a value of
`9.2 h for the stability of bendamustine hydrochloride (t90) in a
`0.81% sodium chloride solution at 23°C.
`
`Table 1: Stability data for bendamustine hydrochloride at 4°C
`Time [h]
`Mean
`Standard
`Coefficient of
`Content of
`Deviation
`Variation [%]
`Concentration
`Bendamustine
`of
`HCl [%]
`(t0 = 100%)
`Bendamustine
`HCl [mg/mL]
`Measured for
`n = 9
`0.2499
`0.2478
`0.2422
`0.2369
`0.2316
`0.2232
`
`0.00
`19.77
`42.57
`71.63
`92.55
`118.27
`
`0.00160
`0.00175
`0.00230
`0.00047
`0.00052
`0.00049
`
`0.64
`0.71
`0.95
`0.20
`0.22
`0.22
`
`100
`99.14
`96.22
`94.79
`92.68
`89.29
`
`dependence of the hydrolysis equilibrium on the chloride ion
`concentration [5] and temperature [4]
`is documented for
`melphalan. On account of these relationships for the structurally
`related melphalan and the fact that it is administered to the patient
`as an infusion, isotonic sodium chloride solution seems to be
`suitable as a carrier solution for bendamustine hydrochloride. The
`merely moderate solubility of the substance in this medium is,
`however, unfavorable, because decomposition already begins
`during the time-consuming dissolution process. In pure water,
`bendamustine has good solubility. It is therefore recommended
`that it be dissolved in a small amount of water for injection and
`then immediately diluted with an isotonic sodium chloride
`solution.
`
`Diagram
`
`following
`the
`Based on corresponding preliminary tests,
`conditions were selected for
`stability testing: 25 mg of
`bendamustine hydrochloride (= 1 ampoule of Ribomustin®) was
`dissolved first in 10 mL of water and then diluted with 0.9%
`sodium chloride solution to 100 mL. The produced concentration
`of 0.25 mg/mL meets therapeutic requirements. The stability test
`was performed at
`temperatures of 4°C and 23°C. The
`bendamustine hydrochloride was identified by reverse-phase
`HPLC. The characteristic peak of bendamustine (see figure)
`occurs at a retention time (RT) of 5.93 min. The first
`decomposition product, presumably the monohydrolysis product,
`appears at an RT of 4.14 min. The “unknown” peak at an RT of
`5.23 min is a by-product from synthesis. By optimizing the
`synthesis procedure in the meantime, we have been able to
`completely eliminate the impurity [6]. The area of this peak does
`not change during the entire time of analysis. After a storage time
`of 119 h, in addition to the clear increase in the monohydroxy
`derivative, a fourth peak can be seen at an RT of 3.78 min, which
`is the dihydroxy derivative. With a sample of the compound
`recently characterized as a dihydroxy derivative [7], we were able
`to identify this decomposition product in our HPLC assay.
`Due
`to
`the
`rapid
`hydrolysis of
`aqueous bendamustine
`hydrochloride solutions, only freshly prepared solutions which
`must be injected immediately following their preparation may be
`used in chromatographic determinations and corresponding
`validations. All standard samples for validation of the method
`were performed with Ribomustin®. The measurement results thus
`allow us to determine the relative stability of bendamustine,
`which is sufficient for our investigation.
`Before the start of testing, the freshly prepared test solution had a
`pH of 4. The decomposition of bendamustine hydrochloride
`infusions was determined first at 4°C. The measurement results
`are shown in Table 1. The rate constant (1k) and the time to 10%
`loss were calculated by means of exponential regression. A value
`of -0.00093 h-1 was obtained for 1k. The coefficient of correlation
`was determined as 0.9892. This calculated to a value of 118.5 h
`
`Figure: HPLC chromatogram of bendamustine hydrochloride (0.25
`mg/mL in 0.81% NaCl immediately after dilution
`
`[Translator’s note: See Table 1 for translation of figure.]
`
`776
`
`Pharmazie 49 (1994), H. 10
`
`0005
`
`

`
`Table 2: Stability data for bendamustine hydrochloride at 23°C
`Time [h]
`Mean
`Standard
`Coefficient of
`Content of
`Deviation
`Variation [%]
`Concentration
`Bendamustine
`of
`HCl [%]
`(t0 = 100%)
`Bendamustine
`HCl [mg/mL]
`Measured for
`n = 9
`0.2525
`0.2508
`0.2401
`0.2375
`0.2243
`0.1966
`
`0.00
`0.67
`4.17
`6.33
`10.25
`21.50
`
`0.00107
`0.00212
`0.00130
`0.00211
`0.00404
`0.00139
`
`0.43
`0.85
`0.54
`0.89
`1.80
`0.71
`
`Equipment and method precision
`4.3
`Six different injections from six freshly prepared reference solutions with
`a concentration of 0.25 mg/mL were analyzed for concentration obtained
`and retention time. The results are shown in Table 3.
`
`Retention Time
`[mg]
`5.93
`5.92
`5.92
`5.94
`5.93
`5.93
`5.93
`0.0063
`0.1%
`
`Table 3: Precision of equipment and method
`Sample No.
`Quantity
`[mg]
`0.2499
`0.2494
`0.2497
`0.2493
`0.2486
`0.2492
`0.2494
`0.000433
`0.2%
`
`ean value
`Standard deviation
`Coefficient of variation
`
`123456M
`
`System calibration
`4.4
`The system was calibrated by means of multiple-point calibration with an
`external standard. Three injections of 10%, 100%, and 200% of the
`concentration to be determined were performed (Table 4). For this
`purpose one ampoule of Ribomustin® was first dissolved in 10 mL of
`H2O and then diluted with 0.9% NaCl to 0.025 mg/mL, 0.25 mg/mL, and
`0.50 mg/mL. The calibration curve was derived from the calculated peak
`areas plotted against the theoretical concentration. The coefficient of
`correlation was 0.9997.
`
`Table 4: System calibration
`Theoretical
`Mean Value of
`Concentration
`Concentrations
`[mg/mL]
`Found for n = 3
`[mg/mL]
`0.0266
`0.2499
`0.5080
`
`0.025
`0.25
`0.50
`
`Standard
`Deviation
`
`Coefficient of
`Variation [%]
`
`0.00036
`0.0016
`0.0021
`
`1.4
`0.6
`0.4
`
`Sample preparation
`4.5
`Each ampoule of Ribomustin® (4.1) was dissolved in 10 mL of water for
`injection and then diluted to 100 mL with NaCl solution from ViaFlex
`bags from the company Baxter (pH 5.0–7.0). This resulted in an NaCl
`concentration of 0.81%. The standard samples for the calibration curves
`were prepared in the same way.
`
`4.6 Analysis
`The analysis was performed with automatic peak area integration using
`the calibration curve (Waters Maxima 820 software).
`
`Literature
`1 Ribomustin® Standardinformation für Krankenhausapotheker, April
`1993
`2 Preiss, R.; Sohr, R.; Matthias, M.; Brockmann, B.; Hüller, H. Pharmazie
`40, 782 (1985)
`3 Krämer, I.: Krankenhauspharmazie 8, 325 (1990)
`4 Stout, S.A.; Riley, C.M.: Int. J Pharm 24,193 (1985)
`5 Chang, S.Y.; Evans, T.S.; Alberts, D.S.: J Pharm. Pharmacol. 31, 853
`(1979)
`6 Personal memo from the Ribosepharm company, 1994
`7 Gust, R.: Unpublished results (Institute of Pharmacy, University of
`Regensburg)
`8 Flora, K.P.; Smith, S.L.; Cradock, J.C.: J Chromatogr. 177, 91 (1979)
`
`Submitted on June 8, 1994
`Accepted on July 4, 1994
`
`Dr. Irene Krämer
`Apotheke des Klinikums
`Langenbeckstr. 1
`D-55131 Mainz
`
`777
`
`100
`99.31
`95.06
`94.04
`88.84
`77.87
`
`3. Discussion
`The measurements show that the hydrolytic decomposition of
`aqueous bendamustine hydrochloride solutions is linear over the
`range measured at both 4°C and 23°C. A pseudo first-order
`kinetic reaction is described for melphalan [8], which can also be
`assumed for the structurally related bendamustine because of the
`identical hydrolysis mechanism. The coefficients of correlation
`calculated by exponential regression support this assumption. The
`latest studies of the hydrolysis kinetics of bendamustine in water
`at room temperature verify the pseudo-first-order decomposition
`kinetics [7]. All test solutions had the stability-promoting pH of 4.
`In
`preliminary
`tests,
`the
`hydrolysis
`of
`bendamustine
`hydrochloride was tested in water for injection and,
`in this
`chloride-free medium, the degree of hydrolysis was substantially
`higher despite having the same pH value. Typically for solutions
`with the initial concentration of 0.25 mg/mL, a t90 of 4.2 h was
`determined at room temperature. This is evidence of the stability-
`increasing effect of the chloride ions. Isotonic sodium chloride
`solution must be used exclusively as the carrier medium for
`bendamustine preparation.
`As expected, the hydrolysis of bendamustine hydrochloride is
`highly temperature-dependent. The stability of the solution with a
`concentration of 0.25 mg/mL is more than ten times greater at
`4°C (t90 = 118.5 h) than at 23°C (t90 = 9.2 h). For clinical practice,
`this means that bendamustine infusions must be kept cool. If a
`physiological salt solution is used as the carrier medium and the
`infusions are stored in a refrigerator, the storage time is four days
`for bendamustine solutions with a concentration of 0.25 mg/mL,
`so a supply with ready-to-use bendamustine infusions is certainly
`possible within the framework of central cytostatic preparation in
`the
`hospital
`pharmacy. Likewise
`for
`the
`recommended
`administration as a short
`infusion over 30 min, no stability
`problems are expected, since these bendamustine preparations
`have a stability of 9 h at room temperature.
`
`4. Experiment
`4.1
`Substances
`The determinations were performed using Ribomustin ampoules from the
`company Ribosepharm (batch 0190393). Each vial with 55 mg of dry
`substance contains 25 mg of bendamustine hydrochloride (excipient:
`mannitol).
`
`Chromatographic conditions
`4.2
`The measurement was performed using a Millipore/Waters HPLC system.
`Pump: Waters 510 HPLC pump; detector: Waters 490E UV detector;
`proton donor: Waters 717 autosampler; column: Waters Novapak C18,
`60Å. 4µm, 3.9 x 150 mm; solvent: aqueous Na2SO4 solution 20 mM (pH
`3, H2SO4), methanol 40/60 (v/v); flow rate 0.3 mL/min; wavelength: 254
`mm; injection volume: 10 µL; measuring temperature: 4°C and 23°C.
`
`Pharmazie 49 (1994), H. 10
`
`0006
`
`

`
`475241stAveSW, SteB
`Seattle WA, 98116
`
`HiSI
`*
`
`.".:•,
`
`I
`
`AFFIDAVIT OF ACCURACY
`
`Phone: 206-938-3600
`
`I, Amanda Olson, hereby declare as follows:
`
`I am a translator fluent in the German and English languages, and am authorized to provide this
`
`
`
`
`affidavit on behalf of German Language Services. I am over eighteen years of age and fully
`
`
`
`competent to make this affidavit. I have personal knowledge of the information contained in this
`affidavit, and it is true and accurate to the best of my knowledge.
`
`I have reviewed the German original and the English translation of Maas et at., Pharmazie, vol.
`
`
`
`
`49, No. 10, pp. 291-299 (1994) ("Maas").
`
`
` To the best of my knowledge and belief, the English
`translation is a complete and accurate translation of Maas.
`
`In signing this affidavit, I understand that the affidavit will be filed as evidence in a petition
`
`
`
`
`before the Patent Trial and Appeal Board of the United States Patent and Trademark Office. I
`
`
`
`
`
`
`declare under penalty of perjury of the laws of the United States of America that the foregoing
`
`
`
`
`information is true and accurate to the best of my knowledge. understand that I willful false
`
`
`
`
`statements and the like are punishable by fine or imprisonment, or both (18 U.S.C. § 1001) and
`may jeopardize the validity of the petition.
`
`Executed June 30, 2015 in Seattle, WA.
`
`Signed
`
`NOTARY'S DECLARATION
`
`On this 30th day of June, 2015, in King County, Seattle, WA, USA, Amanda Olson identified
`
`
`
`
`herself to me as the person who signed the declaration above.
`
`Signed
`
`(Notary PubUc)
`
`0007

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket