throbber
Primitive Data Types (The Java™ Tutorials > Learning the Java Language > Language Basics)
`
`Documentation
`
`The Java™ Tutorials
`
`Download Ebooks
`Download JDK
`Search Java Tutorials
`Hide TOC
`
`Language Basics
`Variables
`Primitive Data Types
`Arrays
`Summary of Variables
`Questions and Exercises
`Operators
`Assignment, Arithmetic,
`and Unary Operators
`Equality, Relational,
`and Conditional
`Operators
`Bitwise and Bit Shift
`Operators
`Summary of Operators
`Questions and Exercises
`Expressions, Statements,
`and Blocks
`Questions and Exercises
`Control Flow Statements
`The if-then and if-then-
`else Statements
`The switch Statement
`The while and do-while
`Statements
`The for Statement
`Branching Statements
`Summary of Control
`Flow Statements
`Questions and Exercises
`
`« Previous • Trail • Next »
`
`Home Page > Learning the Java Language > Language Basics
`
`Primitive Data Types
`The Java programming language is statically-typed, which means that all variables must first be declared before
`they can be used. This involves stating the variable's type and name, as you've already seen:
`
`int gear = 1;
`Doing so tells your program that a field named "gear" exists, holds numerical data, and has an initial value of
`"1". A variable's data type determines the values it may contain, plus the operations that may be performed on
`it. In addition to int, the Java programming language supports seven other primitive data types. A primitive type
`is predefined by the language and is named by a reserved keyword. Primitive values do not share state with
`other primitive values. The eight primitive data types supported by the Java programming language are:
`
`byte: The byte data type is an 8-bit signed two's complement integer. It has a minimum value of -128
`and a maximum value of 127 (inclusive). The byte data type can be useful for saving memory in large
`arrays, where the memory savings actually matters. They can also be used in place of int where their
`limits help to clarify your code; the fact that a variable's range is limited can serve as a form of
`documentation.
`
`short: The short data type is a 16-bit signed two's complement integer. It has a minimum value of -
`32,768 and a maximum value of 32,767 (inclusive). As with byte, the same guidelines apply: you can
`use a short to save memory in large arrays, in situations where the memory savings actually matters.
`int: By default, the int data type is a 32-bit signed two's complement integer, which has a minimum
`value of -231 and a maximum value of 231-1. In Java SE 8 and later, you can use the int data type to
`represent an unsigned 32-bit integer, which has a minimum value of 0 and a maximum value of 232-1.
`Use the Integer class to use int data type as an unsigned integer. See the section The Number Classes
`for more information. Static methods like compareUnsigned, divideUnsigned etc have been added to
`the Integer class to support the arithmetic operations for unsigned integers.
`long: The long data type is a 64-bit two's complement integer. The signed long has a minimum value of
`-263 and a maximum value of 263-1. In Java SE 8 and later, you can use the long data type to
`represent an unsigned 64-bit long, which has a minimum value of 0 and a maximum value of 264-1. Use
`this data type when you need a range of values wider than those provided by int. The Long class also
`contains methods like compareUnsigned, divideUnsigned etc to support arithmetic operations for
`unsigned long.
`
`float: The float data type is a single-precision 32-bit IEEE 754 floating point. Its range of values is
`beyond the scope of this discussion, but is specified in the Floating-Point Types, Formats, and Values
`section of the Java Language Specification. As with the recommendations for byte and short, use a
`float (instead of double) if you need to save memory in large arrays of floating point numbers. This
`data type should never be used for precise values, such as currency. For that, you will need to use the
`java.math.BigDecimal class instead. Numbers and Strings covers BigDecimal and other useful classes
`provided by the Java platform.
`
`double: The double data type is a double-precision 64-bit IEEE 754 floating point. Its range of values is
`beyond the scope of this discussion, but is specified in the Floating-Point Types, Formats, and Values
`section of the Java Language Specification. For decimal values, this data type is generally the default
`
`https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html[10/19/2015 5:14:22 PM]
`
`Patent Owner Finjan, Inc. - FIN-2002, p. 1
`
`

`
`Primitive Data Types (The Java™ Tutorials > Learning the Java Language > Language Basics)
`
`choice. As mentioned above, this data type should never be used for precise values, such as currency.
`
`boolean: The boolean data type has only two possible values: true and false. Use this data type for
`simple flags that track true/false conditions. This data type represents one bit of information, but its "size"
`isn't something that's precisely defined.
`
`char: The char data type is a single 16-bit Unicode character. It has a minimum value of '\u0000' (or
`0) and a maximum value of '\uffff' (or 65,535 inclusive).
`In addition to the eight primitive data types listed above, the Java programming language also provides special
`support for character strings via the java.lang.String class. Enclosing your character string within double quotes
`will automatically create a new String object; for example, String s = "this is a string";. String
`objects are immutable, which means that once created, their values cannot be changed. The String class is
`not technically a primitive data type, but considering the special support given to it by the language, you'll
`probably tend to think of it as such. You'll learn more about the String class in Simple Data Objects
`Default Values
`
`It's not always necessary to assign a value when a field is declared. Fields that are declared but not initialized
`will be set to a reasonable default by the compiler. Generally speaking, this default will be zero or null,
`depending on the data type. Relying on such default values, however, is generally considered bad programming
`style.
`
`The following chart summarizes the default values for the above data types.
`
`Default Value (for fields)
`Data Type
`0
`byte
`0
`short
`0
`int
`0L
`long
`0.0f
`float
`0.0d
`double
`'\u0000'
`char
`String (or any object) null
`boolean
`false
`
`Local variables are slightly different; the compiler never assigns a default value to an uninitialized local variable.
`If you cannot initialize your local variable where it is declared, make sure to assign it a value before you attempt
`to use it. Accessing an uninitialized local variable will result in a compile-time error.
`
`Literals
`
`You may have noticed that the new keyword isn't used when initializing a variable of a primitive type. Primitive
`types are special data types built into the language; they are not objects created from a class. A literal is the
`source code representation of a fixed value; literals are represented directly in your code without requiring
`computation. As shown below, it's possible to assign a literal to a variable of a primitive type:
`
`boolean result = true;
`char capitalC = 'C';
`byte b = 100;
`short s = 10000;
`int i = 100000;
`
`Integer Literals
`
`An integer literal is of type long if it ends with the letter L or l; otherwise it is of type int. It is recommended
`that you use the upper case letter L because the lower case letter l is hard to distinguish from the digit 1.
`
`https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html[10/19/2015 5:14:22 PM]
`
`Patent Owner Finjan, Inc. - FIN-2002, p. 2
`
`

`
`Primitive Data Types (The Java™ Tutorials > Learning the Java Language > Language Basics)
`
`Values of the integral types byte, short, int, and long can be created from int literals. Values of type long
`that exceed the range of int can be created from long literals. Integer literals can be expressed by these
`number systems:
`
`Decimal: Base 10, whose digits consists of the numbers 0 through 9; this is the number system you use
`every day
`Hexadecimal: Base 16, whose digits consist of the numbers 0 through 9 and the letters A through F
`Binary: Base 2, whose digits consists of the numbers 0 and 1 (you can create binary literals in Java SE 7
`and later)
`
`For general-purpose programming, the decimal system is likely to be the only number system you'll ever use.
`However, if you need to use another number system, the following example shows the correct syntax. The prefix
`0x indicates hexadecimal and 0b indicates binary:
`// The number 26, in decimal
`int decVal = 26;
`// The number 26, in hexadecimal
`int hexVal = 0x1a;
`// The number 26, in binary
`int binVal = 0b11010;
`
`Floating-Point Literals
`
`A floating-point literal is of type float if it ends with the letter F or f; otherwise its type is double and it can
`optionally end with the letter D or d.
`The floating point types (float and double) can also be expressed using E or e (for scientific notation), F or f
`(32-bit float literal) and D or d (64-bit double literal; this is the default and by convention is omitted).
`
`double d1 = 123.4;
`// same value as d1, but in scientific notation
`double d2 = 1.234e2;
`float f1 = 123.4f;
`
`Character and String Literals
`
`Literals of types char and String may contain any Unicode (UTF-16) characters. If your editor and file system
`allow it, you can use such characters directly in your code. If not, you can use a "Unicode escape" such as
`'\u0108' (capital C with circumflex), or "S\u00ED Se\u00F1or" (Sí Señor in Spanish). Always use 'single
`quotes' for char literals and "double quotes" for String literals. Unicode escape sequences may be used
`elsewhere in a program (such as in field names, for example), not just in char or String literals.
`The Java programming language also supports a few special escape sequences for char and String literals:
`\b (backspace), \t (tab), \n (line feed), \f (form feed), \r (carriage return), \" (double quote), \' (single
`quote), and \\ (backslash).
`There's also a special null literal that can be used as a value for any reference type. null may be assigned to
`any variable, except variables of primitive types. There's little you can do with a null value beyond testing for
`its presence. Therefore, null is often used in programs as a marker to indicate that some object is unavailable.
`Finally, there's also a special kind of literal called a class literal, formed by taking a type name and appending
`".class"; for example, String.class. This refers to the object (of type Class) that represents the type
`itself.
`
`Using Underscore Characters in Numeric Literals
`
`In Java SE 7 and later, any number of underscore characters (_) can appear anywhere between digits in a
`numerical literal. This feature enables you, for example. to separate groups of digits in numeric literals, which
`can improve the readability of your code.
`
`For instance, if your code contains numbers with many digits, you can use an underscore character to separate
`digits in groups of three, similar to how you would use a punctuation mark like a comma, or a space, as a
`separator.
`
`https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html[10/19/2015 5:14:22 PM]
`
`Patent Owner Finjan, Inc. - FIN-2002, p. 3
`
`

`
`Primitive Data Types (The Java™ Tutorials > Learning the Java Language > Language Basics)
`
`The following example shows other ways you can use the underscore in numeric literals:
`
`long creditCardNumber = 1234_5678_9012_3456L;
`long socialSecurityNumber = 999_99_9999L;
`float pi = 3.14_15F;
`long hexBytes = 0xFF_EC_DE_5E;
`long hexWords = 0xCAFE_BABE;
`long maxLong = 0x7fff_ffff_ffff_ffffL;
`byte nybbles = 0b0010_0101;
`long bytes = 0b11010010_01101001_10010100_10010010;
`You can place underscores only between digits; you cannot place underscores in the following places:
`
`At the beginning or end of a number
`Adjacent to a decimal point in a floating point literal
`Prior to an F or L suffix
`In positions where a string of digits is expected
`
`The following examples demonstrate valid and invalid underscore placements (which are highlighted) in numeric
`literals:
`// Invalid: cannot put underscores
`// adjacent to a decimal point
`float pi1 = 3_.1415F;
`// Invalid: cannot put underscores
`// adjacent to a decimal point
`float pi2 = 3._1415F;
`// Invalid: cannot put underscores
`// prior to an L suffix
`long socialSecurityNumber1 = 999_99_9999_L;
`
`// OK (decimal literal)
`int x1 = 5_2;
`// Invalid: cannot put underscores
`// At the end of a literal
`int x2 = 52_;
`// OK (decimal literal)
`int x3 = 5_______2;
`
`// Invalid: cannot put underscores
`// in the 0x radix prefix
`int x4 = 0_x52;
`// Invalid: cannot put underscores
`// at the beginning of a number
`int x5 = 0x_52;
`// OK (hexadecimal literal)
`int x6 = 0x5_2;
`// Invalid: cannot put underscores
`// at the end of a number
`int x7 = 0x52_;
`
`« Previous • Trail • Next »
`
`Your use of this page and all the material on pages under "The Java Tutorials" banner is subject to these legal
`notices.
`
`Problems with the examples? Try Compiling and Running the Examples:
`FAQs.
`
`Copyright © 1995, 2015 Oracle and/or its affiliates. All rights reserved.
`
`Complaints? Compliments? Suggestions? Give us your feedback.
`
`https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html[10/19/2015 5:14:22 PM]
`
`Patent Owner Finjan, Inc. - FIN-2002, p. 4

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket