throbber

`ecfited by
`Lean J. Raciznemskl
`
`Las Cruces New Meme:
`
`>
`REV! 6:. R Creme:
`ChemiCai and £338" Screams Division
`L03 Mamas Natmnai Labaratory
`L03 Atamos New Maxim
`
`
`
`
`
`
`
`MARCEL DEKKER, INC.
`
`New York and Base!
`
`ASML 1017
`
`ASML 1017
`
`

`

`
`
`
`
`Library of Congress 611111111631ng:i114PnbtisatiQn. Dam- ,,
`Lasemnduceci 11131111118. 911"" "11%;; 11113111112111 111111 11111112311111 fippficationsf editeé
`
`
`1‘1
`3.131125111131133, "
`
`
`V
`.
`_
`11:33.11 131111111.)
`
`ISBN 832
`
`,;:';j“_gt111011131113611 1.. Radzi’ems'ki, Leon 1.,
`1 P1131111: a:
`
`‘ $9173.83
`1311*
`
`.
`
`
`
`This 11131131: is 1111111111111 1311 1111111111161 291111111.
`
`Copyright 113 1989: 11111112311331411311 1111:.
`
`2111 1111111 Reserved
`
`Nei1her this 1111113: 1111: any part may b3 repmduaed 111 transmitted in any {111111
`1:11 by 1111}; 111eans,eeiec1mnic :11 mechanicai including phetucopying, microfilming,
`and recommg, or by my ,1111‘011111111011 sterage and retrieval system: without per
`mission 1111111111151, from the pubiisher.
`
`MARCEL DEKKBR INCL
`270.Madison 11173111111, N611! York, New York 10016
`
`Current printing (last ctigit'):
`10987654321
`
`PRINTED IN THE UNITED STATES OF AMERICA
`
`
`
`

`

`Contents
`
`
`
`ster-Indxlc:efl.,’Breakfiown: An U’gxdam
`
`ayl
`
`
`
`
`
`Igtgaductian
`Caatmn afinmai Hicctrons
`,
`Eieman {Emmi} in Gases
`Lasép’ljnfiumd;Eradicflmm 0f, Balms anti {Lingias
`.. (inmiudiag Rgmarks
`,Rafmences
`
`
`
`fiddling.bfiwsifiraakaawn Phenomena
`wharf G Ram
`
`i’iitfafiaciibn
`{1315553525811 0f a ’Pmpagating E’iasma
`Absmptign Chafanteristits {3f Heatsfi Gases
`Fat-11:55.33? fiagagazing Plasmas
`
`
`
`Caitwflimeasianal Laserfiuppm‘ted Batonatian Wave
`OneJBimansimai Laserfiuppfirted Radiating Wave
`'fiansiéfia‘n Reg-ism
`Radial Exgansian
`8 Thgztmal Cgupiing
`3:313. Otherfiactom
`212 Summary
`References
`

`
`
`
`3 lintmductiun to Laser 'Piasma. Diagnostics
`,,
`,» Allan A. Heme: and Hector A. Baldis
`
`34.1
`3.2
`
`Introduction
`
`Introduction to Optical Diagnostics
`
`ix
`
`iii
`3;"
`
`36
`
`59
`
`6.29
`
`6‘9
`
`'38
`
`72
`
`7,5
`7’?
`
`88
`
`9'2
`
`93
`
`:95
`
`99
`
`100
`
`101
`
`1-01
`
`105 ‘
`
`105
`
`110
`
`

`

`
`
`
`
`x
`
`3
`
`Cantenis
`
`3.3
`
`Intmduatéon to X—ray Diagnostics
`
`References
`
`4 Lgse'nsvtxstaineti Pias’mas
`Dennis R. Keefer
`
`‘
`
`Intmducticn
`4.1
`Princigfics cf Qperzifian
`4.2
`Afifii’yfical Medals
`43
`Experimental Studies
`4.4
`4.5 Applieatimzs (if the LasapSustaixzed P15511121»
`Refemnces
`v
`,.
`
`‘
`
`.
`
`5
`
`{martian}! Confined. Fa’simt
`Robert L. Mchry a115,}aha; M 'Saures
`
`5.1
`5.2
`53
`5%:
`5.5
`55
`5.5?
`5.8
`
`v
`
`,
`
`IfiiS‘th‘iflfli Overview
`Laserfi'Fusion Snafing Laws
`Coronal ’Phygics
`X421}: Gena-rating by Laser~Fmdmed Plasmas
`LasabDriven 151333551;
`flyidmfiynamic Stab’fiity 9f:Abiéi’iiv’ély Di‘ifiifin; 3116113
`1535.55.92: Unifmmigy quuimmama
`Impiosifin Experiments
`Rflffii‘fifiéfis
`
`'
`
`6 LaseruBased :Semimnfimmr5535555552:
`
`Jaseph R. ’Wachie‘r
`
`15.1 Aspects 0f Semiconducter Fabrication
`5.2 Applications 0f Lasers iii-tilt“: Semiconductor Indusztry‘
`6.3
`Research Areas '
`i
`5
`6.4 Outlook
`Refarencas
`
`'
`
`7 ; S-pectmchemical Anaiysis Using Lager i’lasma Excitatiun
`Leon J. Radziamski and David A. Cremers’
`
`Review
`7.1
`-Methods. and Properties of Analysis Using Lassr I’iasmas
`7.2
`Analysis of Gases,
`73
`7.4 Analysis of Bulk Liquids
`7.5 Analysis ofParticlas
`7.6
`Analysis‘of Solids
`7.7 Advances in Instrumentation
`
`
`
`-
`
`5
`
`131.
`161.
`
`169
`
`169
`1'22
`1182
`189
`1'95
`293
`
`287
`
`20‘?
`2.11
`217'
`22-4
`227
`239
`.243
`251
`250
`
`269
`
`269
`276
`233-
`290
`2’91
`
`295
`
`295
`296
`302
`306
`309
`313
`318
`
`

`

`fiifi‘flifi
`
`
`
`ngnasi’s
`Raferences
`
`
`
`{mg W. Kim
`
`
`unfla‘meniais of fifia’ly‘sis of Semis by'Las-exsi’t‘oduced
`
`Mamas
`
`
`
`
`Gimme-r Organization
`I’mmfiuativn
`’I’ihemmanalagy {Oi Laser Heating of Candensed~Phase
`
`
`Targets.
`
`'téivafipec’triésmgy
`Quanta:
`
`‘Ifltefifii y Mcasmaments and. Elemental Analysis
`‘ Summary
`
`References
`
`Laser Vapm‘izafifln far Sample Introduetian in Nomi-(1:311:61
`sass giwctx‘fififiapy
`asap}: Sue-damn, “Rem: G. Mitchell, and NicholasS Hagar
`
`
`,fimnvcnfiimai Shim Sampifi ’Intr-oéiuctiun it» Atomic
`Spesimscapy
`Laser. Afiiafifin af’Sefid 33211333223
`Laser Ablatinn far. Sampk; Intriafinctica in. Atomic
`S-pectmampy
`Raiafim Merits {3f Lag-at Ablatian for Sam’pic ’I‘mmductim
`in Atn'mic S’pec’tmseopy
`-
`Lassa!“ Samms fur Mass Spectrumeiry
`Applicatians of Laser ’Micmpmbc
`Appliemions 0f Laser Desorption and Postionization
`:Conclusiain
`
`References
`
`
`
`
`
`Current New Appiications of Laser Plasmas
`Allan A. Bauer, David W. Forsiund, Colin J. MCKinstrie,
`Justin S; Wark, Philip J. Hargis, Jr., Roy A. Hamil, and Joseph
`M. Kindel
`
`10.1
`
`Introduction.
`
`10.2 Applications of Lassr~Plasma~Generated anys and
`Particles
`10.3 Laser~Plésma Acceleration of Particles
`
`xi
`
`321
`
`32.3
`
`32?
`
`32.7
`
`327
`
`330
`
`33,5
`
`341
`
`344
`
`345
`
`347
`
`34'?
`
`35!}
`
`353
`
`363
`
`365
`
`369
`
`372 _
`376
`
`376
`
`385
`
`385
`
`386
`
`413
`
`

`

`xii
`
`.
`
`’
`
`.
`
`Contents
`
`1&4 Lasars—Puisnd Paws: Switching
`Refierences
`
`1:1ng
`
`-
`
`f
`
`424
`432
`
`43:7
`
`
`
`

`

`
`
`
`ngoruSusi-aiood Piasmaa
`
`Semis 811139131
`
`Center for LaserKypfwoaaas
`{1511;121:1511}? of11111111333116 Spams 1213111316
`31111111191111 finaessee
`
`4.1 ZNTROBHCTION
`
`'
`
`1
`
`‘
`
`Plasmas Creatod by the 11111111111111-1111111111111111111111111.1111 11111111112111.1161?»

`.
`1
`’.
`’
`’
`.'
`.
`-
`1111:1611, rubyiasers 11111111111161
`111. 111(1963) Those 13111111111113 for
`"““121111113? :11 gas breakdown 111;
`111-1»: focus of. a 16118 and 1161113111 1
`
`’
`
`a p1asma111 a staadrstata 1111111111101111»111‘ 111.11 focus of .111311111” 11111111, 111111 1111:
`first 11131111111111; (11116111311911 of a “connnuoasoptical d1$c11a1go was 11%
`ported by Genoraiov at 111. {$711) T1113 continuous, ham—sustained 11111311111
`(LS?)111 often referred 10 as a contmuous optical 111113113131: (£20113) and 11
`has a numbox‘ of unique propartios that 11111111311 1111 interesiiog candidate for
`a varioty of apphcations.
`The laser-3113111111311 plasma shares many 12111111616111.1103 with 011161 gas
`discharges, as explainedto detail by Raizor (198(1).111 his oomprohonsiva re~
`vi,ow but it is sustained through absorption of power from an optical beam
`by the pr'ooossofmvorse bromsstrahlung.31nco the optical frequency of the
`sustaining boam is greater than the plasma-frequency, the beam is capablo of
`propagating well into the intorior 0111111. plasmawhore. it is absorbed at high
`intensity near the focus: This is in contrast to plasmas sustained by high»
`frequency electrical fields (microwave and o'loctrodoloss discharges) that
`operate at frequencies below the. plasma frequency and sustain the plasma
`through absorption within a thin layer near tho'plasma surface, This funda-
`mental difference in the power absorption mechanism makes it possible to
`
`"i 69
`
`

`

`170
`
`,
`
`Keefer
`
`generate eteadystatepiasmas havmg maximnm temperatures bf .10{30011201
`11111111111 1131111111 veieme near 1111110131111 {11111111111211 Way from any cenfimng
`3111111111111. A 1111010 01‘:111111111121.sestnmed 1:13:21 1215611 beam focusedwith a lens
`
`is 511011111 111 Fig 41;:
`.
`1,
`laser was 10
`.
`" by a. 1’
`111
`feta} 1engt11 161115 into 2 111m bf Sewing 111»
`gen. Pg 4. ( ,)shews schemancaily 1191111113 11111811121 farms within the {£31311
`regien.
`
`1- the LS? canbe operated snceehe
`"barges that operatein a fiewmg
`.
`envxenment have been caiied “pIaamatrens”111 the Soviet iiterature, and
`the laser-3113:1111ed 111.11:12:. is oft-e11 referred 10 as an. “optical phsmatmn.’
`
`
`
`
`
`
`111113; £131" "£1113 lasebsustamed pIaSma' Sinee the LS}? can.
`_
`.
`.
`roger: and the gamer can be beamed remerely, it 1121:»:
`,,
`epemte111 per
`been pxepesed that the LS? 11011111 be used fer h1gh specifieimpulse space
`11111911111011 Anumher 01 papers have-11113111111111 this. application, and it was
`the subject. of a renew by (1111111113 and Krier (1984) Thompson et a1 (1918)
`described exnerxments 1111 which 121361“ energy was converted 11110 eieetrieai'
`energy 115ng a laseesusitained argon 111211111121. Cremers e: 211. (1985) have
`suggested the L8}? as a source in: sp-eetmchemmai111111131513 and given some
`experimental results. Cress and Cremers {1986) have sustained plasmas1n
`the threat of 21 51115111 11022115: 111 produce atemic oxygen having a direeted
`vefocity of several kmlsee for the laboratory study of surface interactions at
`energies and particle fluxes similar to these experienced by satellitesInlow
`earth brbit. Other applications are suggested by analogy to other plasma
`devices including light seurces, piasma‘ chemistry, and materials processing
`The physical procesSes that determine the unique characteristics of the
`LSP will be discussed111 Sec 42, and the theoretical analyses that have been
`used to describe the LSP will be addressed111 Sec. 4 3.Expe1.imental 16311113
`obtained will be presented in Sec. 4.4 and compared with the theoretical
`predictions. Sec. 4.5 will consider some possible applications.
`
`.
`
`

`

`Laser‘suszame-a fiasmas
`
`‘
`
`1 Ti
`
`
`
`(b)
`
`(a) Photagréph of a plasma sustained by: a 600 W carbon dioxide laser?
`Figure 4.1
`bgam focused Mill 3 191mm fiscal length lens. (b) Schematic representatian ShOW~
`ing how the plasma forms within. the focal V'oiume.
`'
`
`

`

`“172
`
`Keefer
`
`4.2 FMNCIPLES 033‘ OffilRATHBN
`
`Plasmas that are creaied pr 5113131116111 113.! Erasers can, be generatedm a variety
`
`
`try usefi ta gensrata the;
`' zghfinmig}!131313136 188318 can gancram plasma
`bmakdawn {11:61:11}! 12111111111 21 gas {hat{1331:1113 in :3 transient fixgancfing 111333118
`5imi1arto an expmmon. A1; 14.31%: iasm‘ intensifies am} longs: puke {137165,
`
`
`
`
`
`, aims ccmbnstmn {1130)wave.
`Thesc: transxent plasmas have bear: {5118611336131 by Banter {1988) 211161 1111111101:
`
`51‘ 31:14:11 £113 apnea}
`
`
`
`coniaining boundamcs. A fundamemal dgfiamnce2m the way in which en—
`-ergy is absorbeé by 121691353113 is wwemifilé £01: $116313 unique» charactfiristics
`of the: LSP.
`.
`
`4.2.1 Easic Physica'i Pracesses
`
`In a dimctt current (dc) arc or in an infiuctively cougfiad plasma (RE), en-
`ergy is absm‘bed through ohmic heating predated by. the loW~fmquency or
`direct currants flowing in the plasma. The elm'trical canductivity of an ideal
`plasma 1‘sgiven by (Shka’mfsky at 211., 19613)
`
`2
`
`m,
`
`
`Wig—(V W)
`
`I
`
`(411)
`
`breakdmwnm tha gas, hmvgverg and anauxiliary saurce must be used to ini-
`tiate theplasma. A sketch-11f a steadystateIaser~5ustained plasma is shown
`in Fig 41(1)) The plasmamay 13% smiamed mthm a (131111;;ng chamber :0
`60111101 the flow and pmssure {31‘ 111-01331} air 03': a Imge chamber where the
`flaw:3 determined by {karma} buoyancy
`In many Ways, £111: laser-sustained 131513111318 3113311111” ta direct current or
`imwfraqumay eiactmsielm'22ch1:111:11. mmmwavg diachargfis that am Caper-
`
`the currents are transmitted through the plasma bstween clectrodes and
`
`m 222 ~1~ w?
`
`wheren is tht: Electron density, 8 thr: electronic charge, m the electron mass,
`co the radian frequency of tbs applied electric field, 1/ the efiéctive collision
`frequency for electrons, andi thesquarc mot 0f ml. In the dc arc (w a 0),
`
`

`

`
`
`Lasertfiumamed Plasmas
`
`'
`
`-.
`
`A 173
`
`the size of the plasma is notormined by the size and spacing of the electrode.
`and the confining boundaries.
`In the 10111116 currents are: inducsd into
`the plasma from alternating Commit flowing in a surrounding 3016110112131
`
`(2.011.. The are is sage
`111613 within a Container that determines the plafima
`diameter, whereas the Inn 131} of the plasma is determined by the length of
`the adenoid,
`‘1
`3.116%? operates at. frognenoies WEE below the {31.351113 frequent}?
`
`=2
`
`1162"» 112
`(1 .
`--'—-«
`
`’
`
`.
`
`>
`1 >
`'11.,2'
`
`whom :39 ittho permittmty of fine space In this frequent}: range, the 616-1134
`tromagnatm flair} tines not propagate as a. wave within 1116 plasma, butis
`attenuated asan: nvannsnnntwave (Holt and Hask-311,1965) over distances
`of the order ofthe skin depth '
`
`
`
`(43}
`
`when.» c: is the- speeii of night; Thus, thapmsma is 31151311166 by 61161331613,“
`sorbeti within 21.811121111813113? near its outer 5111111166 that pronouns a rathnrflat
`tnmperatnrn promo w‘ 111:; the. plotting 2111611111113 the. maximum {Endpoin-
`
`tnms that can fife obtained
`The frequency 6111116apnea; fiettis (28 THz for the it}6 pm carbon diox»
`166121361) usedfor the; LS1?is greater than the plasma frequency, and there-
`fore? {1161116168111 laser beam nan propagate -we11 into the intarior b31616
`it is signifioanfiy abs-01136661113631; the process of ,inyarse bremsstrahlung
`(Sixkarofsky at 211., 1966} Since tin: focusing of the laser beam producsd
`by a 16115 01* mirror is essentiaily preservnd as the: beam propagates into the
`plasma, very largefieiii strengths may be produced within the plasma near
`the beam {01133.1115 these; large field strengths that lead- to peak. tmnpera.w
`turns in the: LSP that are gnnnrafly greater than those obtained with eithsr
`dc arcs or the EC? and make it possible to sustain a small Volume of plasma
`near the focus, well away from any confining walls.
`Inverse brnmssttahiung is a process in, which the plasma electrons ab~
`sorts photous from the laser beam during inelastic collisions with ions, new
`11,313, and othor emotions. The Collisions betwaen electrons and ions are”
`the dominant, process for the LSP and the absorption Coefficient is given by
`(Shkarofsky et 31., 1966)
`
`
`w ire 311.506
`1~e"”“’”‘T
`(w)
`171‘
`hw/kT >
`
`(
`
`a
`
`'
`(4‘4)
`
`
`
`

`

`176
`
`’
`
`, Keefer
`
`6111616 1113 Planck’s 66116121111 11111111611 by 27'1“ 16 801161112111116 6611316111, and T
`1116 1611166161616 of 1116 6166116116. T116. 1:661:61 G is 1116 Gaunt 166161 6116 the
`£66161 11.33;; 13gives; by
`
`33-13 211m 1/3
`1611+1122
`
`113;)”~— ‘3‘“ mac}.
`,47759
`3k? ..
`
`(4 3)
`1 .
`
`'
`
`, Wh'flrc 1: is 1116161116 charge and 11;. the1611 (161111113; T116 (1611111 166161.16 6
`6116111121111 1116611661661 66116611611 16 11166111611661 11166131,611£1 661611311161611166
`
`116116 been given by K111211125 1111.6 Latter (1961) F111“
`1161161 66661611
`6:
`'
`1116 61161611 energy is 111111111 1666 1116511 1116 1116111161 ’
`>
`-
`‘
`
`6166116166 16116 111 E1; ((14313 1161115151 1116611611 ,,
`
`66611161611113 663611111111311116661116611} 111 1:116 66111116 61 1”-
`
`g66111611y,13561power 2616 663613311611 666111616111. T116
`.611
`1111
`
`£11 1116-16361: 1166111 as it prupagams 161111111 11.16 111116111616given 11318661‘6 law
`
`_ w “6 ~61”
`
`I
`
`.
`
`(46)
`
`(4.7)
`
`1166 .
`11611.1611g111 L11616 6 11611111111111,1611g1h 66616 £61£116 LS . 11166 11 {16161:
`
`1116‘ 11161611666661* Which 111611611261 is 6116611166 116111 1116116616... 1361113116666
`
`" £1
`11 12111116 311216616,
`3611,11516 11111161151611 £11 1116 111gh~16mp61611116 111161116111!
`aicmg 11.16 16.361 beam 111111116 of 1116 61661 6f 1.11:661216613311611 magi}: Eithmgh
`1116 1116 1111661611011 16ng1h that {1616111111166 {1161611g111£11
`' 6111661116{dang 1116 ,
`11611111 611111, :11 is {11616361 116616 6161116161 that 66161111111661116 1211661116 11161116
`1615. The 1116611111 6111;111:1166 16 11111116 1166111 66116 1111616 11 16 111316 1-6 61336111
`pGW§3£, 111611 161116131 1166166663 in 16111116161616 61116166 1.116 1366111 11.1.16ng11
`11161111111 66111111611611 and 1611161116 166.6 16661161116166
`T116 3166111011 61“ 1116 LS? 16161116 to 1116 £6661 paint is 61111621116 1161161111116
`111g116 6111161616 and1116 range 61 11211611161616 1‘61: which. it 61111 1.1611161111611166
`thm 1116 plasma. is 111111611611 11661 1116 13.6.3111 £06116, it pffitpagatafi 111161116
`sustaining beam and seeks 6 61211116 position. The 1366111011 68161111113; will be
`located “111616 the. 116361 intensity is just 611111616111 1661.11166116611166 power
`will baiance theless‘es due to convectian, thermal 66111111611611, 61161116111161
`radiation. A number of factors 60111131116 to (161611111116 this 1366111611 of sta-
`bilityincluding the transverse 11161316011116 incident 1166111, 1116 focal. length
`and. aberrations of the facusing 1611s or mirwr’, 1116 plasma 6166511116, and the
`incident flow vsiocity (Keefer 61; 61., 1986; Walla et 61., 1987).
`The power per unit volume that is absorbed'by the 131216111616 given by
`
`P7 :2: a]
`
`v
`
`

`

`
`
`3’15
`
`where .I is the 1013111 11111111111116: 0111113 3113317 beam. Since I depends on the
`11311311111111» profile of 11112111016311: 131111111 as "1171131 115131111 focal '3ong131 and abor~
`rations of the lens, 1111:1313 characteristics 11111 11111111111011 11111111111191: within
`the focal region at 1133111111 thoamzmmum 1111131111113 intonsity 11111121111311 For
`611311133313, 11311151111111 11111111113113 ' "11$, 11161111611311}: 1311311331311 11113111131 withup
`
`croasing distance: fromthefocus311.131the 1313311131313 1131333121:1.1121111 131611112115
`
`
`For a 1argerffnumber system, 11113311181153)? 1131312111165 1633 rap-31133,: and the»
`
`plasma win 11111311126 11?:11:13031111111 £112»
`,
`.
`.
`’
`,,
`.111: 130113. Indeed for
`
`
`11113111111131 11111g£0031 lengths111111 13
`11’
`power, 131113111133 have 138611 011v
`3-
`
`:owed to yropagaie 1111111}:
`,
`, R. 31:31", 1989) as “Iaxoosupportcd com-
`
`
`13113131111 1311311111, 311133131111”an
`
`
`
`
`“
`31313:13 113111111111111'113111111111111111
`T3111 1111111111313 3123311111 1
`
`
`111531113113 131311361111 11111 39.111111 gmm'
`- ,1 zogioak-:
`
`'
`’ "111331111111 the 1331131113,
`the gas, 111111 the flow 11111111?
`
`1.1. .1111ng that11 11313111131313
`
`ugh convectzon, conductmn,
`
` Laser~$usiained Plasmas
`
`
`
`
`11311131111111 11111151 131111. - .11-13:.
`
`chambers 1‘31”: 111 9331311 3'11}, 111161.13t: »
`
`-.
`by 1111: effects of 11113111133 buoy
`
`the 3111131116 211111 111131 1313111112
`1
`-
`' 131:3 111 13613 ""11 fogzons ofpower 3116
`
`
`pressure where.11 was 1305511311:113.
`,,
`.
`“
`,
`.
`*
`3131161}: of gases (Gen-
`
`oraiov et-31., 1912 Kozlov 111 1.11, 19:
`’
`.
`1
`1
`'
`3nd1oated that 111G113: wen: 11311361 111111 lower 11113.33 for 1311111 111161 power 31311
`331353qu 111 which the LS? 131311111 be 51111111111611
`,
`Generalov et 31. (1972) suggested that the upper 33111111131: 13-01131 was a ro~
`suit of forming the. LS? with, a horizontal boom. In this goometry, thermal
`buoyancy induces a flow 11311531113610 11131113111231 111.13. Tho 3111311111113 flow
`carries the plasma up 111113 out of the Beam whoa highm‘ 1113111: power (33115135
`the plasma to 3133311126 11111112: from 3311-1106133. Tho}; were 1111111113 20 estab-
`Iish an uppe: power 1111111 when 11111 13113311111311: Was operatod with tho beam '
`propagating vertically upward. Koziov 61.111 (1974) deyoioped a radmtivo
`model for the 1.31" and oxplainod the nope: power limit on the basis that
`the plasma must stabfilizo Close enough to-tho focal point. that the geomet~
`' ric increase of laser 33611111 intensity» going. into 1hoplasma W115 greater than
`the loss of intensity due to absorpfi-on. The}; speculated that the faii‘ure of
`Generaiov at 3'1. (1972) to observe this limit :in a vertical beam was (1116 to
`rapid extinction and reignition of the plasma.
`It. is clear from the experiments 13163116131011 at al. (1972) that flow Can
`have a large effect on the range of 13113531116 and lasor power that will support
`
`

`

`116
`
`
`
`Keefer
`
`
`
`
`
`33 3121133316 LS? P1as:1nas sustained in the; froe jet issuing from a nozzle have 3
`1363333 studied by Gerasimenko at '31 (1983) who Innasured the disChargo
`
`333333
`21331313}: 31mg 313:: beam andranges. for the 62111116111133 of 33 33323113333113
` 3333313332333canvas: 33 333133333321 31313 flow? (Walk: at 211., Z3198?)
`
`
`13; was :
`
`133333331 113211333 addmon to power and 33333333378, 130113 1138111333 and optmai ge-
`
`
`
`
`303313:1131331113 yartzcuiaroxponmmtal geometry33333331 to obtam them.
`
`
`Whan 113331 plasma3'3 ignited by an 2333331112333 333333-113 near the focal points;
`
`
`33
`”
`13" ””133energyfrom the {1013113333033313333331363131 and
`
`
`
`that thepower absorbed from 113333 beam, given31333Eq(-113333“,?)333 balanced
`
`
`1136 063861311133, 23133113311313, and 333332113033 losses 81333333133 ganerfl 1136
`
`
`the beam, the. 331333333 will adjust333 size, 313
`
`'onservaunn of momentum and 133333;“
`
`333 113333upstream region 33311363331333333 and, it:333313313331313 inward1. .
`
`
`
`
`
`“13:23mgmn{31hzgher 3331331331}! inorg-<31: to absorb anough 33033333110333
`
`:3 r.
`131. of1.3013331113131338 13233333133115, resulting1333331133333 323133313133333333 133133133
`
`non,23331133331303333321 1333121 free~fme 13331333110333 that 33333311in continuumra
`
`
`
`{1313 (33311113113? thin portion 0131136 33313131333333.3331
`'
`'
`"£1 3135933331033 0313’:
`
`
`3 on W111 not 133 313333331}: 33133133136331 by the plasma or 31333133333833333 130331133
`.
`
`togions and W111 5133333133 escape from the plasma Other 133333103333 3311136 333%
`from 331.311 138 strongiy 31333333on, resulting333 a transport of energy within tho
`
`plasma In the 33333133231313' thick 1333311 this results in a diffusive energy trans
`port 1133135 313331131: to 31333333331 1:933:33an but may be significanfly larger
`Detailed 6.331011133110133 of the 131’ (long and Keefer, 1986) indicate that this
`radiative transport is a dominant factor111 the determination of the struc—
`ture and position of the LS? In particular, it is the radiative transport that
`(16363313111335 the temperature gradientm tho upstraam 110331 of the 13121331323,
`thereby determining the position in tho beam for which c0nVection losses
`are ba1anccd byabsorption
`The position of stability fan the LSP also dopends on tho plasma pxes~
`sure The. absorptiou coefficientis a 31:1ng function of plasma density, as '
`seen from Eq ..(44). If the pressure is incroasocl and the 313303ption oooffi
`cient increases, than the plasma can absorb more power from the beam and
`will move away from the focus to a lower intensity region in the boam. At the
`
`
`
`3
`
`

`

`
`
`1661381631151811163 13161111166
`
`'
`
`‘12"!
`
`661166 111116, 1:116 61661116 1611gth aiong 11161166111 11666621365 116661136 6f the 1:16
`616.666.1211 6136611111611 1611331211 3111111116 6161116161.“ 1116166361: 16 1111 1116 161gar 6.1{135
`56611611 611116 116661. T1166, 1761‘ 1116 661116 16361 1366111 6611111116111, a 111511161:-
`
`616311616 LSF' 61:11} 111111111256
`6 901111 farther 2111631116111 1116;161:111 661111 6116
`11.6116 6 31661161:166gt11166161116161: 16110 111.611 6 T-D’Wfifiprfissurfi LS?
`1116166111 11661 66116:, as W611 as 1.1161111161111161: 6116 666116116111 61 1.116 16-
`6usmg Qpilcs, will 11166 1111111611116 1116 666111611 6.1 which 1116 LS? 61611111266
`61111111 {1161166111. E‘TQm11.16 136:6g6111g 61666661611, 11 is" 61661“ 111.61 6.6 11:166611111
`11611161: is 1116166166 the pi631116 111111 1116116 661116 1166111 away from £116. £66.61
`116161.. Th6 616131166 1.116111 11161163 16 66161111111611 by 11:16 {16661661 (166661
`.........
`
`111, 111166 1116 11116 of change:11 1266111 11111123113511 1:13.113
`.
`.-
`
`
`
`2111.6 .6621 61161611116 {366111611 (K66f61 61111;, 1986} 111 particular, 11111611611 611w
`11111111 6611111 £16111 1111 66116616 161361: 61611121161111661116116316 1.611611661161111,
`
`if?
`.111 .1116 6616116116113 6156665611 613616, 11: is 61.661 11161: 1116 663111611 61
`1116 plasma 1611111126 111 1116 166111 66.11.11. 1163 6' 66616666 611661 6111116111116116
`' 1.1116166161111166 A: 1116 1.16661116116 of 61661111}: 161 116111 1.6561 6611161“ 666
`.
`11. 66116616 11161 1116 1111161116 1166611166 111151211116 1611611 11: 616666 1:66
`
`far116111 1116 1566111 1161111. This may 1:16 (1.116 1.6 1116 1661, as proposed631,1{66166
`
`61; 61 (3133715853131 as 11116 1.3166111611161166 61111161611113? 11.61: away f
`61 11:16
`1116 1:616 61?11161-6636 6,? 1116 1166.111 1111611611}: 111 1116 6116611611 61 propagatmn
`b" ’ 611163 6111111161. $11166 1116 1661661611116 1311 111:6 13161111.: 61631.1 " 66566 1116
`
`
`666111 gfflyagmfls 11116 1116 61151166111 edge "of 11161111116111211 1161111611511}; 61’;1116'-
`”116611!1116516136111616666 1311361116 13611111, 1116 (16616636611116 136616 1111611311}!
`11116 16 611661131161116 greatez’ 111.611 1116111616636 66616 fecizsfiag, S6 1116 13163616
`1166611166 1111111211116 and 6xti‘11guis'hcs. 1166661: 66161116116111; by 36116111111. K6616:
`(198111}, 1161161261, 1111116616 11161 111616 may 61:11.31 1,6661 'r6g1666 611111111 11161.51?
`11111616 .1116 11-6611: 1111611611}: 1166166566 '63 it 1161161161611 1116 111661116.
`. A 666516616616 (166166 of 6011110161‘ the 3111161616 and position 6f 111615?
`can 66 gaimd through both optical geometry and flow, in 611111111611 16 16661
`p-(‘iWfiY 111111 6161111616 Utilization of 11168-6 6111311161161 1361611161613 11161165 it
`possible: 11) successfuliy OPS-I316 the LSP 61161 a wider 11mg6 0f expfil’imfintfll
`60111211116113, 661161ng a wider range of 13016111161 66111106116115
`
`11.2.2
`
`31111511111 Characteréstics
`
`LaSSPSuStaiflBd plasmas have been operated in 21 1121116131 of molecular and
`rare gases at 13163511165 from 1 to more than 200 61111. The resulting plasmas
`have characteristics that are similar to are plasmas operated at similar p163-
`
`

`

`178
`
`'
`
`3(55352
`
`sures, 1:353 2125 5355.32 2551553525553152335 LS? 5.35 usually somewhat highar
`2.13511 2332255 for 23.25 5232555253315 5325, 33532151155 from 2.125 plasma 5531 be a 535»
`55315552 32552155 cf the 2231531 522332.252 322553, 5:521 3553152155 22555552291535 5-
`major 25.15115 215252522535 "22325 structure 51‘ 2125 plasma, Continuum 5335525—
`21521 525::55555 are <33 5522255352“3525522522235 15 23155-5 333552555 522355 thepower
`3:5 532525233 2335 33155332535 5335523352} 2333522533 21323533. 255-5135535535
`The 5512331355222 5235525212233 5:52.555 3225533255 3:252:33 332355213255 255553230323
`(photommzatmn) and 33552255 2552253225325 (3233351555 hr5m552mhlm2g) 223
`’whiCh 323153555 are 53355533533 17223512335 1555-3" 11355222 Th5 135525522 1251351330235
`3555.255 5252222522 55213235335 3.52.213. 2555, 523252: 252555555, and 55332351 552215152
`
`
`
`
`15221.35 35?:35 313555532 5555113515235 5522225355 <2
`.
`.. 325 55231555, 5,523 2335 5.135535
`2355 55533353552 15: 23315 33255555 .15 513355135 E22; (53533.. F233: 2335 325551 55:35 in
`2335 LS? 3253 5::32‘T 553:3 2135 5135525225525 appr5xzm5251y 5555522215553 20 3125
`52:;5555 of 23353555555551523532 123225 25 3323‘ 535555wavelmgth 6532555533325,
`all 53 2135 3555325313 5555225253335! 35523235far 1125 1SP13555 335523 5322535523 55
`223g 2335 1216 5323 355551555212 5322:1255 233553215 15552: S1555 the length 55515
`355 2325 3535553535 52' the 53552 of 2135 51355553155 length 312515235213 <32 3125
`33155535 and 3115 5533.252 rcqmrecl 22:3 5552515 122555123 135 559552523 25 15525555
`dramatmaliy 355 53155352 wsmlength 355555 {1552552331, 2325 553;: other 3555225
`
`52 5523252323325 3323525122 53352333553 355525 33252 5552535 52 waveslengths <23 3 2.5
`4355-.
`LSF Thermal 2521352155 3551 325.51 1335 33155525 5355 555235223 352 neariy 511
`2335 552552 51355533523 by 2.335 5155355 353355 3135-1105 through 2135 5155535 25
`3223533 55323, will 55505222 .3233: :5 signifiaant 355532521 of 51255233521 power 5555
`when 2335 55522552333515.5555 525 155,255. 3135 212555351 radiaiimn 5537252535 2333
`5552221323351 555152205 255513355 from 2555351332252155 (12554335555 transitions)
`and bramsstrahlnng (125531255 137-5553233355) 55 W511 55 3355 355152105 (3323235335
`buund 255223522255).
`{352551511532 of 23235 radiatimi is straightfmward, 53~
`though 5523253" 25211555., when 2125 plasma is in local thermodynamic 55135
`librium (LTE) (631551, 19623). Local thermeclynamic 52111111133me is 55-»
`2223313311521 when the 5165th collisional 3:525 33120555555 23053321525 the pro-
`cesses Of radiative decay and rccembinafion. When LTE is established
`in 2115 plasma, the density in specific quantum 52525.5 is the. same- as a sys—
`tem in complete thermal equilibrium having the same total density, 25153
`perature, and chamicalcompesition.
`It 53h0u1d be 5122;33:551sz that this
`(3055 net imply that the radiation is similar ta 5 blackbody at the plasma
`temperature. In general, 1315 spectrum of the radiatien from the plasma
`will have a complex structure. consisting of the superposition of relatively
`narrow Spectral lines and 5 continuum having a complex. spsctral struc-
`ture.
`‘
`
`
`
`

`

`
`
`s.ss
`gIs
`
`g I
`
`
`
`
`
`11.116668661611166.Piasmas
`
`:1 79
`
`T1111 absorption: 6116111616111 .111 1.111: pIasma‘ 6613611611 611, 1112: waveissngzh, and
`for 1116 6112161116161666111611 of the. spectrum 11611111 11111 wavelength 111‘ 1:116 16:50»
`
`11111166111166 (II-111115111 1131,11
`'Iw’og 1:116 gmumi state), the 11161611011 is 311611eg
`
`1111561136611)! 1116 pk:
`’
`the 666161 surrounding gas This 176311113111' 6
`5,1161% 16111611116 11611211111111 11166116111316 that is Imyortsnt in 66161111111111g the
`31311611316 of the 3611311111. {311611, 1516161116 1.121113me for 3111:111eg absorbmg
`gases is 1116116166115 a {IIIIIISIV6 61161gy tramp-6113111111111 to 11161111211CQIIEIIIC~
`11611 I13 131611131111eg 161112611xagoos of1216 311661116, the radiatiw transport13
`many Iimos larger 16611 1116 16111111116 21161111111 conduction am}Is 1116 {101111116111
`I1661~traosf61 16661161115111 T111615 6111661633}: 311616 the 111331166111 regmn of
`the LS? where,
`6 16111116161616 grazimm Is Iarga, 111111 radiation transport
`
`In. this longer W6V61611gti1 region 666116 1116 16361161166 11611611113116, I116.611—
`5611111611 of 1116 16111311011 by II16 1111191116 6116 {I16 311111111116ng gas Is 31111611
`611161161. Th6 absorohon leagIh for this radmtlon is often largo-1:61:11
`{I
`
`toII1’6 6.113111616113111: 1.111116113111116 of the 1316311131, and 11111611 of 1116 1611361611
`es: 3165. I11 111111 166611 of 11163116611111113 166 1116111116 may I16 13111161116166 op~
`116653; Ihm, 11116 if1I16- 1113311121111 111 LTE, 111611 1116 6soaping1611161111111 6611 116
`113611 61 61111166161126 the temperature 111116111 1116 LSI’ (K6616; 61 3-11,, 1§86
`
` ..
`.1616 111111111 11116 1111131116 1’s far from 111111311111, as 311611111111
`.F1g»
`.2 (The 3:11... 131136 1111611 to 11616611 the 61111611111611161 temperaturesshown
`In Figs. 4.2- 4I, 11116 410.15 663611666 111 661611 in Sec 4(I23 This6131116
`31161161111 13611161111p361 {If XIII: Iémfieraifimfi 111611311166 III 1111 1395113133 .1611
`in 25 aim of =’ goo I131 11 611113611 dioxide 16661: opcraimg at ’6 wavelength of
`196 11111. The plasma length 111111 6161116161, as 66161111111613 by 1:116 III5613K
`IS-Uihfifm, are I}. 6116 4111111, 16111166111on “OR: {116 616611 {61111161611116 @6111-
`61116 that 6XISI111 the 111161166111 portion of the plasma and111 the 161.1131 61166
`{ion near 1116 Iimit of. 111616.561 beam The 16163161611116 gfadionts111 111656
`ragéions. 61:6 of the 611161 of .105 Kim In the upstream regions of the plasma,
`1116 (1116611011 of £116 CDIWIECIIVE enorgy 11611333111116 the opposi 16 09172111616116 to
`111611111211 flood-116111611 and radiation transport, and a strong 16111961611116 gra-
`dient develops to 1111161166 1:116 convective losses with thermal conduction and
`3 111131111163 1133139611., The. magnitude of the temperature gradient- dopends on
`the flow- 11116 and 11161621563 with increasing flow. Strong radial temperature
`gradients (IEVEIGP near the edge of the laser beam where the available pow-61
`decreasesrapidly and are steeper near the focus where large conduction and
`radiation transport. is 164131111611 101321161166 the large powers absorbed from
`the beam. The peak temperature in the plasma occurs near focus where
`the 16561 beam intensity is maximum, and the peak temperature has a value
`that corresponds closely to the temperature, at which the first stage of ioniza»
`tion is nearly complete. The Correspondence of the maximum temporaturo
`with complete first ionization is to be expected since, for a constant pres~
`
`

`

`1,8
`
`€33
`
`115'
`
`71.8
`
`5.4 ,
`.
`
`356 ~ 155111-551 551551131 m 5.=§3?{3 1515 .
`
`115011 to pressures 51107 51111 and Cross (1986) has operated a discharge in
`
`
`
`d‘115~i;mnce{mm}
`
`1'5:1:31511
`
`1555’: 505151 :5 55515 7
`
`5.5 5' 42 5'55 5 55 5' 55 5 55 555 5’ 55‘5 55.5
`
`’ 5
`
`55m E5351 .5 5555511 11155151, 15551: {555355 by 5 151155E
`*
`115112511151 55515was 515111511131 51153511 35£125 15553 555555 '11;
`1125 51.1151 contour at 18500K (F1515 1115115, R.,51 1:11 198* C5pyrzght .1511115115115
`
`
`155111515 of Aeronautics and Astronautics; 1551151511 51115 551151115155.3
`
`5111513 511515555 (mm)
`
`sure 51513155., the absorption coefficient passes through a maximum at that
`temperature.
`‘
`Plasmas have been sustained by carbon diaXida lasersin a variciy’ of gases
`including the rare gases xenon, argon, and 55511 and111 55125551 51015611.»
`lar 55553 including hydrogen, (155115111111, nitrogan, 'carbon dioxide, and air.
`Plasmas in the heaviar rare gases (xenon, krypton, and argon), are the easi«
`est to sustain since they 1151/5 relatively low 105552111511 potamial, their 111.51%»
`11151 conduction is relatively small, and 55 dissaciatiou energy 151151135 555
`plied. Few experiments have been rfiported using 1115 lightar rare gases,
`but Car'lotf at al. (1981) have sustained optical discharges in 1151111111 and
`
`

`

`
`
`
`
`
`
`1.3311331131311133 Piaamaa
`
`' 183
`
`1mm“: with 31111331111333133 of oxygen: 3131111131er higher laser 33133111313 were re»
`1311

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket