throbber

`(19) FRENCH REPUBLIC
`
`NATIONAL INSTITUTE
`
`FOR 'NDUSTR'AL PROPERTY
`PARIS
`
`
`(11) Publication No.:
`(To be used only when
`ordering copies)
`
`2 554 302
`
`(21) National Registration No.:
`
`84 16445
`
`(51) int. or“: H 05 H 1/46.
`
`
`
` (12> PATENT APPLICATION A1
`
`
`
`(22) Filing date: 26th October 1984.
`
`15‘ November 1983
`(30) Priority: DD,
`N0. WP H 05 H/256 179.
`
`(71) Applicant(s): Company named: VEB
`CARL ZE/SS JENA, Company under
`German law. —— DD.
`
`(72) lnventor(s): Walther Gartner, Wolfgang
`Retschke and Klaus GUnther.
`
`(43) Date of publication of application:
`B.O.P.l. - "Patents" No. 18 of 3rd May 1985.
`
`(73) Proprietor(s):
`
`(60) References to other related national
`documents:
`
`(74) Agent(s): Cabinet Madeuf, industrial
`property consultants,
`
`
`(54) Radiation source for optical devices, notably for photolithographic reproduction systems.
`
`(57) Radiation source for optical devices, notably
`for photolithographic reproduction systems,
`characterised in that a gas—tight chamber 1 filled
`with a discharge medium 2 comprises at least one
`entry aperture 3 and 4 which allows laser
`radiation to pass and at least one exit aperture 5
`which allows plasma radiation to pass and in that
`the production and maintenance of a radiation-
`emitting plasma in the discharge medium are
`ensured, in a known manner, by at least one laser
`situated outside the chamber 1, whereby optical
`means ensuring the focussing of the laser
`radiation in the discharge medium are mounted at
`an entry aperture, such that the plasma is situated
`at a certain distance from the wall of the chamber
`1 and that the plasma radiation exits the chamber
`via exit aperture 5.
`
`_l‘>,
`
`
`unu-‘“I
`gyms
`
`
`
`D
`
`Printed copies available for sale from the lMPRlMERlE NATIONALE (French National Press) ~ 75732 PARlS CEDEX 15
`
`FR2554302—A1
`
`ASML 1004
`
`

`

`1
`
`2554302
`
`The present invention relates to a radiation source for optical devices, in particular for
`
`photolithographic reproduction systems. it is preferably applied in cases where a radiated power
`
`is required which is greater than that from pressurised mercury vapour lamps, such as in
`
`photolithographic appliances for illuminating a photoresist layer on a semiconductor wafer.
`
`Currently, numerous radiation source systems are known which are used in scientific devices and
`
`of which the properties have been widely adapted to the conditions in the field of use. These
`
`properties relate to the spectral distribution of the emission and to the obtainable radiation
`
`density, as well as to the spatial and angular distribution of the produced radiation. Requirements
`
`relating to spectral radiated powers which exceed the spectral radiated power of a black body
`
`above the melting point of solid bodies can only be satisfied through plasma. Plasmas are
`
`obtained by heating an active medium, preferably by passing an electric current through it or by
`
`the action of high-frequency electromagnetic fields The achievable spectral radiation densities
`
`are upwardly limited by the maximum value of the harnessable electrical power per volume unit
`
`which can be thermally withstood by the constitutent materials of the electrodes and walls. in the
`
`case of high—frequency heating, limitation due to electrode loading no longer occurs, but the
`
`problem of the spatial concentration of the high-frequency energy does arise.
`
`If the stationary operation of the radiation source is dispensed with, an increase, by a fairly large
`
`order of magnitude, in the power harnessed can be obtained for a short time, since the
`
`conversion of the fed-in power into radiation proceeds significantly faster than its transmission to
`
`the walls and, if there are any, to the electrodes of the discharge cavity. However, even with this
`
`mode of operation, alongside mechanical stresses due to the shock waves which, however, have
`
`sufficient action only in unfavourable cases, the evaporation and erosion of the materials which
`
`form the walls and electrodes contistute, when the radiation source must have a certain lifespan,
`
`an impediment to the production of intense radiant flux. in this regard, it should be noted that in
`
`the'case of sources which operate in a stationary manner and in the case of sources which
`
`operate by pulses, above a power level which is type—dependent and which is achieved
`
`practically universally in the technical applications, any further increase in the radiated power is
`
`obtained at the expense of a reduction in the lifespan.
`
`10
`
`15
`
`20
`
`25
`
`30
`
`However, these short—lived radiation sources cannot be used for many applications because they
`
`unreasonably increase the maintenance costs forthe devices into which they are incorporated,
`
`since changing a lamp generally entails complicated adjustment and long adaptation operations
`
`

`

`2
`
`2554302
`
`of the optical transmission system to the specific radiant flux of the lamp in question. Within
`
`certain limits, it is possible to increase the radiated power whilst retaining the overall charge of
`
`the electrical energy invested in the radiation, for the desired wavelength and the preferred
`
`spread width. This can be achieved by giving the active medium an optimal composition and by
`
`creating optimal pressure and temperature conditions for the plasma during the production of the
`
`radiation. However, consideration should be given to the limitations which arise from the existing
`
`incompatibility, at working temperature, between various active media and the consituent
`
`materials of the electrodes and the walls, such that, taking into account the withstand time of
`
`these materials, discharge conditions which are far from optimal frequently have to be selected.
`
`in the case of non—stationary operation, further limitations result from the fact that the radiation
`
`source simultaneously has to fulfil the functions of an electrical heavy—duty switch and of a
`
`converter of electrical energy into radiation. in this case too, the scope for optimising the radiation
`
`production is restricted, because the safety of ignition and switching is linked to certain plasma
`states.
`
`In the case of the stationary operation and in the case of pulsed operation, there are, in electrode
`
`radiation devices, dead solid angles in which the radiation cannot be used, although the insertion
`
`of suitable optical components, such as ellipsoidal reflectors and/or light—conducting fibres
`
`theoretically make it possible to also use the areas formed by these angles and, as a result, to
`
`provide the maximum amount of radiation energy to the optical system. To illuminate optical
`
`systems used in photolithography microinstallations, lasers are also used as radiation sources
`
`(SPlE Vol. 174 [1979]. p.28...36, “Coherent illumination improves step—and~repeat printing on
`
`wafers” [Un éc/airage coherent amé/iore I’impression “gradual/e et re’pe’tée” sur les galettes’j, by
`
`Michel Lacombat et al.) The main limitations of these light sources result from their high spatial
`
`coherence and the structural distortions which result therefrom, their high monochromy and the
`
`effects of the resulting standing waves in photosensitive materials. Furthermore, generally, lasers
`
`with high radiated power or favourable efficiency are generally not present in advantageous
`
`spectral areas. The use of “excimer” lasers which emit the necessary energy in the desired
`
`wavelength region (UV region) are limited to contact-lithographic methods (SPIE Vol. 334 [1982],
`
`p.259...262, “Ultrafast high resolution contact lithography using excimer laser” [“Lithographie par
`
`contact é forte resolution ultrarapide au moyen de laser excimer], by K. Jain et al.), because the
`
`partial spatial coherence necessary for the illumination of projection-lithography systems cannot
`
`be achieved to a degree as justified by its technical use.
`
`10
`
`15
`
`20
`
`25
`
`30
`
`

`

`3
`
`2554302
`
`The aim of the invention is to achieve a highly powerful radiation source which has a long
`
`lifespan and which makes it possible to include a substantial area of solid angles and precise
`
`and fast illuminationof photosensitive areas and which, as a result, ensures a high productivity
`
`in photolithographicinstallations Therefore the invention is intended to make it possible to
`
`achieve a radiation source for optical devices, in particular for photolithographic reproduction
`
`systems, which uses plasma radiation. By a spatial separation between the plasma and the wall
`
`or other installations associated with a cavity and without use of electrodes mounted in the
`
`cavity nor high~frequency fields for spatial concentration of the energy, it must make it possible
`
`to obtain a long lifespan and high power density. Furthermore, there is a reduction of stresses
`
`on the cavity though shock waves when the radiation source is in pulsed operation, and there
`
`are no dead solid angles clue to electrodes or other installations in the cavity, The radiation
`
`source according to the invention is intended to possess a wide scope for optimisation of the
`
`radiation production in the desired wavelength region, because the active media and pressure
`
`and temperature conditions must be selected regardless of the compatibility with the materials
`
`which the electrodes are made of. With regard to the laser radiation, the radiation source has
`
`the advantage that, especially in the case of photolithographic reproduction systems, it has a
`
`significant partial spatial coherence and that its spectral structure is such that the effects of
`
`standing waves in the photosensitive material are attenuated.
`
`This aim is achieved, according to the invention, by the fact that a gas—tight chamber filled with a
`
`disCharge medium contains at least one entry aperture which allows laser radiation to pass and at
`
`least one exit aperture which allows plasma radiation to pass, and that the production and
`
`maintenance of a radiation—emitting plasma in the discharge medium are ensured, in a known
`
`manner, by at least one laser situated outside the chamber, whereby optical means for focussing
`
`the laser radiation in the discharge medium are mounted at an entry aperture, such that the
`
`plasma is at a certain distance from the wall of the chamber and that the plasma radiation exits
`the chamber via the exit aperture.
`
`When the radiated power of a laser as supplied is not sufficient for a discharge in the discharge
`
`medium, it is advantageous that the device includes, to ignite the discharge medium, outside the
`
`chamber, at least one further pulse—operated laser which is directed by optical means to ensure
`
`focussing of the same volume at an entry aperture.
`
`An advantageous variant, with regard to changing of position of the radiation-emitting plasma,
`
`10
`
`15
`
`20
`
`25
`
`30
`
`

`

`4
`
`2554302
`
`consists in placing the optical means which ensure the tocussing of the laser radiation outside
`
`the chamber. It is then possible to advantageously arrange installations which make it possible
`
`to adjust the optical means which ensure the focussing of the laser radiation.
`
`it is possible to advantageously simplify the realisation of the radiation source by placing optical
`
`means which ensure the focussing of the laser radiation inside and/or on the surface of the
`
`chamber. in these conditions, the inner wall of the chamber constitutes an optical means for
`
`focussing the radiation coming from outside. To include as large an area of dead solid angles as
`
`possible, it is advantageous to give the inner wall of the chamber a shape such that it
`
`1O
`
`constitutes an optical means for ensuring the reflection of the radiation coming from the plasma.
`
`it is therefore advantageous for the inner wall of the chamber to have the shape of a convex
`
`mirror or an ellipsoidal mirror.
`
`To obtain high power densities and to increase the lifespan, it is advantageous to provide the
`
`15
`
`chamber with an external cooling system.
`
`Various other characteristics of the invention further emerge from the following detailed
`
`description.
`
`20
`
`25
`
`30
`
`Embodiments of the subject of the invention are shown. by way of non—limiting examples, in the
`
`attached drawings.
`
`Fig. 1 schematically shows an embodiment of the radiation source according to the invention.
`
`Fig. 2 shows an exemplary embodiment in which the inner wall of the chamber has a shape
`
`such that it constitutes an optical element.
`
`Fig. 3 and 4 show embodiments wherein the discharge chamber has the shape of an
`
`ellipsoidal reflector.
`
`Fig, 1 schematically shows an embodiment of the radiation source according to the invention in
`
`which a gas-tight chamber 1 contains the discharge medium 2. The chamber 1 includes two
`
`entry apertures 3 and 4 which allows laser radiation to pass and an exit aperture 5 which allows
`
`plasma radiation to pass. The entry aperture 3 is sealed by the window 6 which allows infrared
`
`

`

`5
`
`2554302
`
`to pass, and the entry aperture 4 is sealed by the lens 7 which allows ultraviolet to pass. The
`
`exit aperture 5 is provided with a window 8. The device includes two lasers 9 and 10 outside the
`chamber 1. The coherent radiation 11 from the laser 9, which is a stationary 002 gas laser,
`
`penetrates into the chamber 1 through the window 6 and is focussed by the concave mirror 12
`mounted on the wall of the chamber. The radiation 13 from the laser 10, which is a nitrogen
`
`pulse laser, is focussed on the same point by the lens 7 which allows ultraviolet to pass and
`
`produces an electrical discharge there, and as a result an absorbent plasma 14 which is heated
`
`to high temperatures under the influence of the radiation 11. The radiation 15 from the plasma
`
`can be fed into the downstream optical system through the window 8,
`
`if the radiation source is meant to be pulse-operated, the continuous laser 9 is replaced by a
`
`pulsed COZ carbon dioxide laser, As a rule, it is possible to dispense with the pulsed laser 10,
`
`because the field strength of the pulsed COZ carbon dioxide laser is in many cases sufficient to
`
`bring about the discharge. With such a device, it is possible to obtain, near-ellipsoidal plasmas
`
`from 4 mm to 5 mm in diameter up to a temperature of 16000 K, for example in an argon or
`
`xenon atmosphere as active medium with a working pressure of 106 Pa. The optical depth and
`
`the temperature can be varied within a vast range by altering the pressure. As the pressure
`
`incte'ases, the temperature falls and the spectral distribution approaches Planck’s function. 'As
`
`presisure decreases, the temperature increases, and the emission becomes linear.
`
`Temperatures far in excess‘of 20000 K can be reached by using, as active medium, helium
`
`which in conventional pulsed light sources, operating electrically, can no longer be used
`
`practically due to the heavy wear and tear on the electrodes. In these conditions, the density of
`
`radiation and its spectral distribution can be altered in a much wider range than in the case of
`conventional radiation sources.
`
`Figure 2 shows an embodiment in which the inner wall of the chamber constitutes, by its shape,
`
`an optical element. A casing 16, the concave mirror 17 and the quartz window 18 constitute the
`
`gas-itight chamber containing the discharge medium 19I1The coherent radiation 20 from a
`
`pulsed C02 carbon dioxide laser 21 is focussed by the lens 22 which lets infrared pass and
`
`penetrates the chamber via the window 23 which allows infrared to pass. The pulsed laser 21 is
`
`mounted displaceably in the X direction, 24, and in the Y direction, 25, and the lens for infrared
`
`22 can be displaced in the X direction, 24, and in the Y direction, 25, and in the Z direction, 26.
`
`Accordingly, the position of the focal point, which corresponds to the position of the plasma 27,
`
`may be adjusted relative to the optical axis 28. The plasma radiation 27 is sent directly, and by
`
`10
`
`15
`
`20
`
`25
`
`30
`
`

`

`6
`
`2554302
`
`means of the concave mirror 17, through the quartz window 18 to the condenser lens 29 of the
`
`optical system placed downstream.
`
`The gas—tight chamber is surrounded by a container 30‘ The free space 31 which they demarcate
`
`is traversed by a refrigerating means 32 which enters, via the tube 33, and exits via the tube 34
`
`and evacuates the heat produced by the pulsed laser radiation 21 and plasma radiation 27. lt is
`
`possible to dispense with the quartz window 18 if the condenser lens 29 is installed instead.
`
`Figs. 3 and 4 show embodiments wherein the discharge chambers 35 and 36 are constituted by
`
`ellipsoidal reflectors, The radiation 37 from the carbon dioxide (C02) laser 38 is focussed by the
`
`focussing elements, a concave mirror 39 or a lens 40 which allows infrared to pass, onto focal
`
`points 41 and 42 of the ellipsoid formed by the reflecting layers of the ellipsoidal mirror 43 and 44.
`
`The light emitted by the plasma producing the radiation is concentrated by the ellipsoidal mirror
`
`onto the second focal point 45 or 46 of the ellipsoid. The plasma formed at these focal points 45.
`
`46 serves as a source of secondary radiation for the optical system situated downstream and
`
`10
`
`15
`
`starting at the condenser lenses 47, 48,
`
`

`

`7
`
`
`Claims
`
`2554302
`
`A radiation source for optical devices, in particular for photolithographic reproduction
`
`systems, characterised in that a gas—tight chamber (1) filled with a discharge medium (2)
`
`contains at least one entry aperture (3 and 4) which allows laser radiation to pass and at
`
`least one exit aperture (5) which allows plasma radiation to pass, and that the production
`
`and maintenance of a radiation—emitting plasma in the discharge medium are ensured, in a
`
`known manner, by at least one laser situated outside the chamber (1), whereby optical
`
`means for focussing the laser radiation in the discharge medium are mounted at an entry
`
`aperture, such that the plasma is at a certain distance from the wall of the chamber (1) and
`
`that the plasma radiation exits the chamber via the exit aperture (5).
`
`The radiation source according to claim 1, characterised in that the ignition of the
`
`discharge medium is ensured outside the chamber (1) by at least one further pulse»
`
`operated laser (10) which is directed by optical means (7) to focus it on the same volume
`
`after passing in an entry aperture (4).
`
`10
`
`15
`
`The radiation source according to one of claims 1 or 2, characterised in that the optical
`
`means (22) which ensure the focussing of the laser radiation (21) are situated outside the
`
`20
`
`chamber (19).
`
`25
`
`30
`
`The radiation source according to claim 3, characterised in that the installation
`
`includes devices for adjusting the optical means which ensure the focussing of the
`laser radiation.
`
`The radiation source according to one of claims 1 or 2, characterised in that optical
`
`means which ensure the focussing of the laser radiation are placed inside and/or on the
`wall of the chambers
`
`The radiation source according to claim 5, characterised in that the inner wall of the
`
`chamber has a shape such that it constitutes an optical means for focussing the
`
`laser radiation coming from outside.
`
`The radiation source according to claim 1, characterised in that the inner wall of the
`
`

`

`8
`
`2554302
`
`chamber has a shape such that it constitutes an optical means for reflecting the radiation
`
`emitted by the plasma.
`
`The radiation source according to claim 7, characterised in that the inner wall of the
`
`chamber partially has the shape of a concave mirror or an ellipsoidal mirror (43, 44).
`
`The radiation source according to claim 1, characterised in that the chamber is equipped
`
`with an external cooling system (31, 32, 33, 34).
`
`

`

`FR f3 55% 302
`
`§_ mrmés; S‘ficGé‘éi,
`
`:31" Mmgétmyfi 3% Sommny, Scotiand Heuw, ”$635489 Ewtianszz‘ Street.
`
`Gfiezsgmw {35 SPL, hereby daciare that? i am the iransiafisr Qf {he dammem attached and
`
`Q-emfy mat the s‘oifcwmg fig 23 {we irat‘ksiafion $0 1318 Ms: 0? my knewkedge and beiieé
`
`
` _.
`,,,,,,,, . .....
`
`........... Qatedéhig 153th 0f Decemmzméé
`
`

`

`aéwauaas FRANizASSE
`
`3&an NAHGNAL
`{:5 LA Pfiopfiié‘fl? mammals
`
`PARDS
`
`: ® w (13 publication :
`RE n‘mifise: use my? 325
`tommmdcs dz: mpwdccxion)
`
`2 554 302
`
`@ N“ d'Bmegisiremam nations! :
`
`84 16445
`
`@ m: (:14 = H as H V46.
`
`@
`
`biMANDE DE BREVET D’iNVENTiON
`
`M
`
`031368 dépé: : 26 octobre m8»:
`
`O®30 Priorité : 8D,
`
`:1“ WP H 05 H/256 179.
`
`1" nevembre
`
`$83,
`
`(Me: VEB CARL
`Demandauxis} : Entreprzke
`JENA/ Enfmprise 5’9 draft alfsmgnd - 3E3.
`
`2&3“;
`
`Invemeuris} : Waiter Gér‘mez, Wolfgang Resschke 91
`Rims Gfinther.
`
`Thutairew} :
`
`Mandata‘iwb} : Cabinet Madeui Consefis an pmpdété
`industrieile.
`'
`
`
`
`Bate d9 33 misa é é§sp05ition 8:1 public {is Fa
`demamia : BOPi (firearms; n° 38 flu 3 mai 1835.
`
`Références é d’autrss decumems naticnavx 3mm
`rentés :
`
`@ @
`
`80:;ch {is rayonnsmesst paw appareiis d’optique, notamment pear systémes Ge reproduetion gar phamlitfiegraptzie,
`
`Source {is rayomament pour appareils d‘opzéque, natarw
`mam pear syszémes de repméuction photeiithogmphiqug. ca-
`ractérésée as :39 qu‘me enceime 1 étanche aux gaz .rempiia
`par un miiieu de déc‘hargge 2 cemporte ax} mains une auvertwe
`d'entrée 3 at 4 iaissant passsgr un rayannemem laser at an
`mains we immune de some: 5 £aissant passer un rayome~
`men: de magma e? en ce we {a productien at i’entrefien ci'un
`piasma émemm 1m raysnnemem dans Ie miFéeu de éécbarge
`sent ESSUfézi, dame maniére comma, pa! au moins un Ease:
`simé é i'axtériem de Yanceénie 1, des mews antiques assu-
`ram ta focafisation do mmmam Eager dang Ea miléau x218
`décharga émnt mantés Si: néveatz é’une ouvenure d‘gntrée. (39
`some que {a piasma se mauve s was certaine éistance de Ea
`para; :38 i‘esweime 1 at (we is rayunnssmem du pissma sort (is
`E'encaime par E’ouvemsre de some 5.
`
`
`
`D
`
`
`Van!» 4335 faszzicu§es é I’iMi’RiMEWE NAWOMXLE‘ 27. we 66 $3 Cnflvwfion — 75732 PAWS 6502)“: i5
`
`10
`
`FR2554302-A?
`
`

`

`3534302
`1
`La présente invention est relative é une source
`
`d9 rayonnement your appareils d‘optique, notamment pour
`
`systémes fie reproduction par photolithographie. Elle s‘ap-
`
`plique de préférence dans les cas 9% i1 faut une puissance
`
`de raycnnement supérieure é celle des lampes é vapaur dg
`mercuze sous pression, par exemplg dans les installatiOnS
`
`fie yhotolithagxaphie, pour l‘éclairement d‘una couche
`
`fie vernis photo sur une plaque d3 aemi~conducteur.
`
`On cannait actuallament de nombreux systémes fie
`
`sources de rayonnement qui sont utilisés &ans des appareils
`
`scientifiques et fiont les propriétés ont été largement
`afiaptées aux conditions inhérentes an domaine d‘utilisation.
`
`69$ propriétés sant relatives 3 1a répartitian spectrale
`
`6e l‘émissicn at a la &ensité de rayonnement susceptible
`
`d‘étre obtenue ainsi qu‘a la réyartition spatiale et
`
`angulaire du xayonnement profiuit. Le$ exigences ralatives
`
`é fies puissancas de rayonnement dépassant 1a puissance
`
`de rayonmement fipectrale d‘un corys moi: au~dessus du
`
`point 615: finsion fies some. soliées ne pauvent étée satis-
`faitas qua par du plasma. L33 piasmas s‘obtiannent par
`chauffage d‘un miliéu actif, da pxéférence par passage
`d'un courant élactriqua ou par action fie champ$ électro~
`magnétiques de haute fréquence. Les densités de rayonnement
`spectrales susceptiblas d‘étre atteintes sent limitées
`vers le haut par la vaieur maximale de la puissance élec-
`txique, pouvant étre miae an 363 par unité de volume, a
`
`laquelle les matériaux constituant les élactrcées et les
`parois peuvent résistar'thermiquement. Dans le cas §u
`
`chauffage é haute fréquence,
`:1 n‘y a plus de limitation
`due a la Charge das électrodes, mais le psobléme qui se
`pOSe alors est celui de la cancentration gpatiale de
`
`l‘énergxe fie haute fréquence.
`
`'
`
`Si l'on renance é um fonctionnement stationnaire
`
`de la source ée rayonnement, on pent obtenir, pendant un
`
`temps csurt, une augmentaticn, d‘un oxdra'ée gran§eur assez
`
`10
`
`15
`
`20
`
`25
`
`30
`
`35
`
`11
`
`

`

`2
`
`2554302
`
`fie la puiSsance misa en jeu, du iaii que la
`important,
`transfermation an rayonnement de la puissance fournie
`
`s‘effectue beaucaup plus rapiéement qua sa transmission
`
`aux parois at, s‘il y en a, aux électxades fie la cavité
`
`de décharge. Ceyenfiant, méme avec ce made fie fonctionnémant,
`
`é cété fies charges mécaniques dues aux onées fie choc
`
`qui, cagenéant, n'ont une action suffisante que fians
`
`des Gas défavorables, la vaporisation at l‘érosian des
`
`matériaux qui formant les parois et les électrcdes cons-
`
`tituent,
`
`lorsque la source de rayannement éoit avoir une
`
`certaine durée de via, an obstacle é ia productien de
`
`flux fie rayonnement intense.
`
`I1 y a lieu de remarquer
`
`a ca sufiet que, dans le cas de sources ayant an fonction-
`
`nement stationnaire comma éans 1e cas de sources ayant
`
`§5
`
`un fonctionnfiment par impulsions, au~de$$u$ é'un niveau
`
`de puissance gal dépend an type aficpté et qui, dans les
`
`applications techniqnes, est gratiquement atteint partaut,
`
`taute augmentation suyplémentaire fie 1a puissance de
`
`rayonnement s'obtient aux déyens de la diminution de
`la durée de vie.
`
`Cagendant, ces sources d9 rayonnemeat de courte
`éurée sont inutilisahles pour beaucoup d‘applications, car
`
`elles augmenteat d'una maniére inaémissible les fixais
`
`d’entxetien deg appaxeils auxquels eiles sonfi incorgarées,
`
`éu fait qua la remplacement d‘une lamps entraine généw
`
`ralement un réglage compliqué et de lengues opérations
`
`é‘aéaptatian an systéme optique de transmission an flux
`
`&e rayonnement spécifique de la lampe an question. On
`pent, extra certaines lifiites, augmenter 1a puissance de
`rayonnemeni tout en conservant la charge tofiale fie l‘éner-
`gie électrique investie dan5 1e rayonnement, pour la
`
`longuaux é‘onde voulue at la largeur d‘étalement préférée.
`
`On peat y parvenir en donnant au milieu actif_une compo—
`
`sition ogtimale at an réalisant fies conditiens as pres‘
`
`35
`
`sion at fie température optimales pour 19 plasma 10:8 fie
`
`12
`
`

`

`3
`
`2554302
`
`la production du rayonnement. 11 y a lieu cependant fie
`
`tenir compte ée limitations qui.éécoulent de l’incompaa
`
`tibilité axistant, a la température de fonctionnement,
`
`entre aifférents milieux aciifs et les matériaux qui
`
`constituent les électredes et les parois, de sorta qua,
`
`compte tenu de la éurée de résistance de ces matériaux,
`
`las conditicns fie fiécharga éoivent étre chaisias souvent
`
`de telle maniéra qufelles s‘écartent sensiblement des
`valeurs optimales. D‘autres limitatians résultent, dans
`le Gas fi‘un fonctionnement non stationnaire, du fait
`
`que la sourca $9 rayonnement doit remplir en méme temps
`
`les fonctiong fie commutateur électrique é gxanfia puissance
`
`et de transformateur é‘énergie éleetrique en rayonnement.
`
`Sans 09 Gas éga§ement,
`
`la jeu pour l'ogtimisaticn de la
`
`production d‘un rayonnememt efficace 5e trcuve limité,
`
`car la sécurité de l’allumaga at de la commutation est
`
`liée é cert&ins états du plasma.
`Dans 15 Gas fin fonctiennement stationnaire comma
`
`Gang le cas du fonctionnement par impulsions,
`
`i1 y a,
`
`flans leg app&reils d8 rayonnement é électrodes, deg angles
`
`solides morts dans lesquels la rayennam&nt ne peut pas
`étre utilisé hian que l‘insertion d‘élémants optiques
`convenables, comma, par example,
`fies réflecteuxs ellipw
`soiéaux et/ou fies fibres conductrices fie la lumiére,
`
`permette
`
`théoriguement d’utiliser égalament leg zones
`
`farmées par Gas anglas at, 69 as fait; fie fournir au
`
`Systéme optique 1e maximum é‘énargie de rayonnement. Pour
`l‘éelairement des systémes optiques utilisés dans les
`
`micrc-installations fie yhotolithograghie, on utilisa
`
`également, camme saurces fie rayonnement,
`
`fies la$ers {SPEE
`
`V01. 174 {39?9) p. 28 ..‘ 36 “Sn éclaixage cchérent
`
`améliore l‘imprezsion “grafiuelle at répétée“ sur les
`
`galettes“ pai Michel Lacembat et antres}. Les principales
`limitations de ces sources lumineuses résultant fie ieur
`
`granéa cohérence spatiale at fies fiistorsions de structure
`
`10
`
`@5
`
`20
`
`25
`
`30
`
`35
`
`13
`
`

`

`4
`
`2554302
`
`qui an résultent, da leur forta monochromie et des effets
`&’ondes stationnaireg qui en résultent fians lea matériels
`
`sensibles a
`
`la lumiére. De plus, en général, dans les
`
`zones du 5§ectre avantageuses,
`
`i1 n‘y a pas de laser
`
`ayant una granée puissance de rayonnement on an rendemgnt
`d‘affieacité favorable. L‘utilisatian de 3fi8€r§“excimer“,
`
`qui émettent l’énergie nécess&ire &ans le domaine fie
`longueurs é‘ondes voulu (domaine ultravislet§,
`se limits
`
`é des prccééés de lithographie par contact
`
`(SPIE Vol. 334
`
`10
`
`15
`
`(1982} p 259 ‘.. 262 ”Lithographie par cantact a forte
`
`résolutian ultrarapide an moyan da laser excimer“ p&r
`
`K. Jain et autres), car la cahérence partielle spatiale
`
`nécessaire é l'éclairement des systémes fie lithegraphie
`
`par projection ma pent gas étre réalisée a un fiegxé tel
`
`que son utilisatimn technique se justifie.
`Le but fie l‘invention est la réalisation a‘une
`
`source &a rayonnement de granae puissance qui ait une
`
`longue éurée de vie &t permette l’inclusion d‘une zone
`importante d'angles solidas at an éclairemant précis at
`
`rayida de zones photosensibles et qui, de ce iait, assure
`a des inatallations fie photolithographie une granfie
`
`proéuctivité. L'inventien doit donc permettre de réaliser
`une source fie rayonnement pour appareils fl'optique, metam-
`
`ment pour systémeg d9 reprofiuction phetolithographiques,
`
`qui utilise le rayannamant d'un ylasma. gar une séparation
`
`spatiale entre la plasma et la paroi cu d'autres instalw
`latians associées a une cavité at sans utilisation
`
`d’électredes montéas dans la cavité ni 6e champs fie haute
`fréquance pour la concentfation séatiale fie l‘énexgia,
`
`39
`
`@116 $01: parméttre d‘ohtenir une longue aurée fie vie
`
`et une densité de puissance élevéa. De plug, 11 y a dimi-
`
`nution fies chaxges imposéas é la cavité gar les ondes
`de choc en Gas &9 functionnement par impulsions fie la
`
`source fie rayonnement at 11 n’y a pas da ZGDB$ d’angles
`solides morts dues a des élactrodes cu é d‘autres instal—
`
`14
`
`

`

`5
`
`2554302
`
`lations montées dans la cavité. La source de rayonnemant
`
`suivant l'invention doit comparter un,jeu large pour
`
`l'optimation da la production fin rayonnemant dans la
`
`éamaine de langueurg d'onde vaulu, car 1e choix des
`
`milieux actifs et des conditions fie pression at as tempé~
`rature doit se faire inéépenaamment §e la compatibilité
`avec les matériaux constituant lea électroées. En ce
`
`qui concerne 1e rayonnement laser, 1a source de rayon~
`nement présente l'avantage qua, notamment dans le cas
`
`des systémes 3e reprcéuction photolithogxaphiques, elle
`
`présente une cohésion partielle spatiale notable at Qua
`sa structure syectrale est tellg que les effiets d'ondes
`
`stationnaires dans la matérial photosensible sent atténués.
`Ce but est atteint, suivant 1’inventinngdu fait
`
`qu‘ane enceinte étanche aux gaz remplie par un milieu
`de déchazge comporte au moins une suverture é'antrée lais~
`sant passer un rayonnement laser at au moins une caverw
`
`tare fie scrtie laissant passer un rayonnement ae plaSma
`
`et que la production at Xe maintien d‘un plasma"émettant
`
`un rayonnément dans le milieu as déchaxge sant assurés,
`
`d‘une maniére connua, par un Eager au moins situé é
`
`fies moyens optiquea agsurant
`l'extérieur de l'enceinte,
`la facalisatiofi du raycnnament lase: dans la milieu de
`
`10
`
`35
`
`20
`
`25
`
`décharge étant montés au niveau a‘une ouverture d’entrée,
`fie sorta que le ylasma se trouve % une certaine distance
`
`de la paroi de l‘enaeinte et que la rayonnemant fie
`plasma sart de l'enceinte par l‘ouverturfi fie sortie.
`
`Lorsque la puissance de rayannement d‘un laser
`
`telle qfi’elle est fournie n‘est pas suffisante your une
`
`§écharge dans le miliau de décharge, il est avantageux
`qua l‘appareil comporte, pour l'allumage du milieu de
`éécharge, & l'extérieur de l‘enceinte, au moins un autre
`
`laser fonctionnant par impuisions qui est dirigé par des
`mcyens optiques pour assure: la focalisation, au niveau
`
`d’une cuverture d‘entrée, du méme volume.
`
`30
`
`35
`
`15
`
`

`

`25511362
`
`6
`
`fine variante avantageuse,&n ce qui concerne la
`
`changement de position du plasma émettant 1e raycnnemant,
`
`congiste é placer les moyens optiques assurant 1a foca~
`
`lisation an rayonnement laser a l'extéxieur de l‘enceinte.
`
`On pent alors disposer avantageusement fies installations
`
`permettant la réglagg fies moyens optiques assurant la
`fecalisatian du rayannement laser.
`
`0n peat simplifier avantageusement la réalisation
`
`de la source de rayonnement en~placant lea moyens 0§tiques
`assurant la focalisation du rayonnement Ease: é l‘intérieur
`
`et/ou a la surface d8 l'enceinte. Dans ces canaitions,
`
`la paroi intérieurs fie l'encainte canstitue an moyen
`
`cptique assurant la focalisation fiu rayonnement provenant
`
`fie l'extérieur. Paar inclura une zone d‘angles solides
`
`morts aussi granée qua yossible, il est avantageux de
`
`dunner & 1a paxoi intérieura de l‘enceinte une forme tells
`
`qu'elle constitue an moyen optique assurant 1a réflexion
`
`an rayonnement provenant an plasma. Il est aiors avantagaux
`que la paroi intérieure de l’enceinte ait la form

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket