throbber
edited
`

`:3?!
`Chemicai and Laser Sciences. ‘Division
`ms Mamas Nat4is3n*a,¥ ‘L3i3:3ratt3rv~
`L03 Names, New Maxim
`
`
`
`MARCEL DEKKER, INC.
`
`New York" and Base!
`
`ASML 1017
`
`ASML 1017
`
`

`
`
`
`
`
`Library of Congress iiiafaljgzfgi:1g4i§14}§1}3iit;ati<2n. Data. .,
`
`cizexnifzal. afi£3,bi01¢gica1 ap.’91icaii0nsAf e»di.ted
`Lase;~it:;Iu.<:e-ti §1asm-as ::
`by Leezi
`R§1:§3}zie:31s}(i, ’33avi:1 Ag. iiremers.
`V
`'
`
`:xz::1’,t;a:1es ‘
`
`.
`
`V?1}fg:;mg. 2.1
`$1..-Cre
`,.'Eias_:
`
`
`
`
`-94%)
`,:V§f‘j;g}1’“§3;€:~:x$;reriasets.
`
`
`2;.
`
`’ 1." ¥§;a;izie:nsk.i., Leon 3...,
`
`’ §9;73.8:?{
`en?
`
`
`
`This baak is printad on miiiafrea ;p:e2;:«e,:'r'_.
`
`Copyrigh‘-t © 1989; MARC.BL.DEKI{ER. me. An Rights Reserved
`
`Neiiher this book no: any part: may ha repmduz:ed Q1‘ transnaitted in any form
`in by my means, eiectmnirz er mechanintai, in::Iuc¥i=ng plmtucopying, microfilming,
`and recording, or by any jnfexmation storage and retrieval systexn, without per
`miss.ion in writing from the publisher.
`
`MARCEL .DEK}{.B'R, INC‘
`270.Madis0n Avenue, Nexv York, New York 10016
`
`Current printing (last c¥i.gitA):
`109876543521
`
`PRINTED IN THE UNITED STATES OF AMERICA
`
`

`
`Céntents
`
`
`
`iii
`-xi‘
`
`36
`
`6]?
`
`6.Ԥ
`
`'33
`
`72
`
`7,5
`7’?
`
`88
`
`§2
`
`93
`
`:95
`
`99.
`
`I00
`
`101
`
`101
`
`105 M
`
`105
`
`110
`
`
`
`
`
`3 {ntro»duc£ion to Laser Piasma. Diagnostics
`H _ Allan A. Hans; and Hector A. Baldis
`
`?»1
`3.2
`
`Introduction
`
`Introduction to Optical Diagnostics
`
`ix
`
`fLaser-Infl11c=efl.. ’Br-eaiyfkzwzzz Au U‘§1sdat£:.
`
`;I§;;t;a:iu»c't:i;1n
`of Eicctrons
`.
`Eiemran €§'r{::§v£E1 in -.Ga$e»s
`Lasér~I:a;&.u::.:w;'z.',Eneraizzgmwxtx mi Solids am Liqzms
`.. {fim::»aiu.s:i:iz3g 'Rem_ar_i<s
` R:a:fm’*en:¢:.e:s
`
`{!(1€1iI}‘g.1§'f .P?us£—Br=eakti.ox&In Phenomena
`abexf
`Ki)-Qt
`
`Z’5:it.f<3»§i¥;:<:3;iiz:s:1
`Ciifizsatpifin 0f 21 ’P’mpagating flasma
`Absmrptian {Zhafanteristics Bf Hcatsni Gases
`Figattgrgs cf 1?fi:opagati.n_g Plasmas
`$3312.-~I}i1X1.Ensi0n.a} L:aser~S'u';3po1'1.ti:€3 ’CB1‘£fl3’H$1i0n Waves
`C3I.1e~Di.m.ensi0naI ’La.se:r~Suppcarted Detonzxtican Wave
`*One»13irj11.ans.ira’na} Laser~Suppin“te-d Radiation "Wave
`j:’i.‘ransi¥t'it3'r1 Regicms
`Radiai Ex;§arz.si:3‘n
`Thezfmal. Co;up1i.ng.
`523.3. Other Factors‘
`S’umn1a;fy
`References‘
`

`

`
`

`
`
`
`
`
`x
`
`’
`
`Canteniss
`
`3,3
`
`Intmduxetion to X—ray Diagnostics
`References
`fl
`9
`
`4 i;;;s’e'§r;S1:st.aine£1 P18511135
`Dennis R. Keefer
`
`‘
`
`4.1
`4.2
`4,3:
`4.4
`4.5
`
`I’ntr0z3.ucii0n
`Princigzicz; cf Qper2iti{2’n.
`Ar-u”z’1ytic,aI MQéie}.s
`Bxperimen.t:a1 Studies
`App1,i<;ati£3n.s of the LaS—€:r~SL:.s{a£ixl1ed Plasma»
`Rcferances
`.
`b_
`
`5
`
`i’nér~t.iz’:liy Confined. Fasimt
`Robert L. Mcflmry a_n_§..3nh::
`
`’S<)'u.res
`
`5.1
`5.2
`
`51,5
`
`5.5?
`5.8
`
`.
`
`V
`
`Isiistaricai Overview
`LasVer~*Fusi0n Szzaiing Laws
`Cor-anal Physics
`X~ray‘Gen€:’1"éitiG:i by L:ase'r~1?rad':3ced Plasmas
`1.as€:r—'Driven Abiatixiij
`i%Iydri:3:3y:za:x11:ic:Stabfiity»gfg&E:I§‘£i3*¢1y D1"7"i’Sii.€’:.I1_.:
`lz’°mc§.iaii,::sn U‘n’.iformi£yR&q_u§1:é:1§3.aI}.15
`Impiosiim Experiments
`Rflffiffifiéfifi
`
`‘
`
`-
`
`‘
`
`.
`
`b
`
`6 Laser-Bases!iS’;e.n1i<:un.:311;:£ar’filiariitziiixiil
`
`Iaseph ‘R. ’Wachte’r
`
`5.1 Aspects of Semicandtwtor Fabrication
`(3.2
`App1.i<:at.i0ns ef Lasers in-the Sem_ifc0nidu.ct0r I.ndu$t1'y
`6.3
`Research Areas T
`T
`_
`6.4 Outlook
`Refarences
`
`‘
`
`7 ; S-pectmchemical Anaiysis Using Laser ?1asma.Exéit.at:ia11
`L-eon J. Radziamski and David A. Cremers
`
`Review
`7.1
`-Methods. and Properties of Analysis Using Laser 1"-fiasmas
`7.2
`Analysis of Gases
`7.3
`7.4 Analysis of Bulk Liquids
`7.5 Analysix of.Particle.s
`7.6 Anaiysisbf Solids
`7.7 Advances in Instrunmxitzition
`
`133;.
`161
`
`169
`
`169
`1.'??.
`1182
`189
`19:6
`293
`
`2&7
`
`20?
`2.-:11
`21?
`224
`227
`239
`243
`251
`2&0
`
`269
`
`269
`276
`233
`290
`291
`
`295
`
`295
`296
`302
`306
`309
`313
`318
`
`

`
`X3
`
`321
`
`323
`
`32?
`
`327
`
`3.27
`
`331.3
`
`335
`
`341
`
`344
`
`345
`
`34’?
`
`347
`
`35!}
`
`353
`
`363
`
`365
`
`.369
`
`372 %
`376
`
`376
`
`385
`
`385
`
`386
`
`413
`
`§¥¥§€‘fl¥$
`
`'Pmgm::a.sis
`Referencas
`
`
`
`’un‘t}a'n2enia¥;fi:)f 2%u.1;1:2’1y$is of Sniitis b;y Las-e1?—i’t‘oduc»ed
`3.:-15:13:13
`
`fang W. Kim
`
`=C§ia:pt:e'r C!:rganiza'tion
`.I’:2:ri:1»:iueti0n
`’?ihe:m.m£:nalagy :’ai:' .1335: Heatring of Condense..d~Phase
`Targets.»
`
`’t%iy.a:.Spe-etrizaszapy
`lhiteiisi y Zxicasnrements and Bi'e.menia1..Ana3ysis
`.Sz2m.ma1ry
`Refe:r::.nc=es
`
`’
`
`Laser V-:«;ipu1'i.zaEtin11 far §.S 2t.’mp!_e Inirothxctian in Atolni-cimxd
`ems $pm.:.trasc;apy
`aseph 3.l’I.€d.§3G13,, 133:5: Mitchell, and Nic'ho1a.:~: Negjar
`
`.:£'3t2nv§:n.fi1:in,3i Stiiirl »San1;3'ie’Intr-oii‘ucti0n fax A't:3mic
`8pect,ras»eapy
`£;asa.r.13gi3Iai§‘i3n. raf’S:::fi’<':i Sampies
`'L:a.ser.A131a'tisn far =Smr11r;%3i?» Iixtriacinctica in Atcmie
`S';2ectr:3.s.m;>py
`iigizztixrzz Marits af ’f;.as-at Abiatian for Sample Intmduction
`in Atomic 8’p€:.:ftxcs<:opy
`-
`Laser »SQ1Z1T{}¥3.»S’f{}I‘ ’Mass Spectrometry
`Appiicatians of Laser ’M;icmp'r»o¥3e
`Appl.ieatiQ.ns of Laser De:s»or_pti0n and Postionizatien
`.=Con::1usia:n
`
`References
`
`
`
`Czxrreni New Applications of Laser Plasmas
`Allan A. Bauer, David W. Forsfund, Colin J. Mcléinstrie,
`Justin S; Wark, Philip J. Hargis, Jr., Roy A. Hamil, and Joseph
`M. Kindel
`
`10.1
`
`Introduction
`
`18.2 Applications of Lassr~P‘1asma~Ge.nerated Xqays and
`Particles
`10.3 Las::r~P1’asma Acceleratioxm of Particles
`
`

`
`xii
`
`_
`
`b
`
`.
`
`=£3;:m'tar:{s
`
`153.4
`
`Las¢::r—Pu}.svad Powésr Sxvitching
`Refierances
`
`Index‘
`
`%
`
`-
`
`‘V
`
`424
`432
`
`437
`
`
`
`

`
`
`
`
`
`Fiasmeae
`
`iiemis FL. ifieeiet
`Center for Laser.g1§pp§£3£3.‘¥3¥2?3=5
`ifiziversitgr .ef'Iffiérszze.-me‘ 2_S§)z2z3xf? I%zszitz:!e
`'3’i:Z§::}z:2:“:é:z, Teiarzessee
`
`4.1 INTROBHCTION
`
`
`Plasmas created by the .rac:i.i,3z§i£1Iie..fr£?:1‘£1;ft1s*3 -¢jr,=.=e£i.§a$.€1‘. Imams ’£’?~€‘é!‘€% "first »t'3'bv
`served. with the ativent‘ ef “Egiani ' I
`tzciheiéi, rainy’ lasers by Maker
`et ai. -(1963). TI1ese"pIa£m§s £92?’
`gas‘ brezakziown at
`
`..
`the .fo-case of a lens and were
`J fine tii::ration =91‘ £he"I’a.S6r
`.
`puise. Plasmas were aim @¥:;~:serve=s:1m.-arm onethe .st:.rfas:ées 0f mat-eriéils ix»
`r2adiate—d by ’h=ig1a+;1:0wer pulseszi or »:<::e:ntinu;:ms Iaeers anti '.t}.<";§ 13zf>iE3j§fig?3.t6iI1t:O
`-the inc.iden't "beam at .s’:.zh-se:ii:::
`1s3;;fper“
`_1;:veIz;‘x<;_£i§ies.
`flze. advent of
`
`:c.m;t:inuejns, high-pémver £2-arban
`‘£11,’:
`eeame.§ess;i'b§e tic sustain
`a plasma in a s'te»ady—state é:en£iitie;n..:2..»,*1r tee feeies of .a.1as:er"bea:n_, 3.13% the
`first. experimental abservatieix -Of‘ a “e.Qnt1'n13o1:3’*Qpti£:=a1 :i.is::ha::#;ge” was re-
`_parted by Generaitw. ex; .a1.. (37%). This eentinucms, }asee-sustained vpiasma
`(L8?) is mften referred to as 2: eeniixzumzs apticai eiisehayge ((20113) and it.
`has a number of zmiqne pmperties» £1.13: make it an "lixrtsaresiing ca:nd.ida*te far
`a variety of appiications.
`,
`The laser-su.stained plasma shares many eharaeteristics with ‘ether gas
`discharges, as expiained in detail by Raizer (19813) in his I:-omprehensive. re»
`view, but it is sustained through .at3s0rpt’ioI1 of ‘power from an optica1’beam
`by the p.r(3.cess.0f inverse brems’strah1ung.— Since the eptical frequency of the
`sxxsmining beam is greater than the plasma‘-frequency, t}1’ebeamis capable of
`propagating well into the interior ofthe. plasmawhere it is absorbed at high
`intensity near the focus. This is in contrast to plasmas sustained by high»
`efrequency electrical fields (n1ic.rowave and electrodeless discharges) that
`operate at frequencies below the plasma frequency and sustain the plasxna
`thmugh absorption within 21 thin "layer near theplasma surface. This funda-
`mentzxl difference in the power ab.sor_pti0n mechanism makes it possible to
`
`
`
`"i 89
`
`

`
`170
`
`V
`
`Keefer
`
`gcnc’;cz£e smgagclysstatcogllasznas, _h_a_vin:g .maxi2fnu*m temperatures of 1{¥,{}O0Ii or
`xnoroifx a small coining rgoar inc»-foexzs of a lens», far away from any co‘I1ifi>i3i.11g_
`str'nc£.m*c. A photo of.a.p'las1na. sustained. by ;a laser beam focused xvith a Ions
`is shown fin Fig.
`,- T»,
`{K} W Gaussian beam from :21. carbon dioxicic
`laser won in '
`bi’
`focal lmgth lens into 2 :atm nfi flowing an
`V "
`
`gen.
`4.. ( .).;s§io*;vs schen§,.aiicall.y how the: plasma forms within :l1c:fjo£;al'
`region,
`
`.
`
`e been ‘produced in a variety of
`' ‘boa t:ii,o,>':idc> lasers .op€-;rai;ing at
`
`'
`
`’
`
`
`
`{:3.‘§%3}, Wells "e1;a'1.. A{198'3).,,and..=CZrons»iand’
`-t the
`:::an be opeziateéd sn’f<:’£:'aS.S«
`dz“
`operaxei ca flowing
`J
`
`envisonmcnt have been ’caI,ied ‘5plasm:.énr-ons” in the Soviet literature, anfi
`the lasar--.snst.a’ined ;)§:. is often rcfermd to as an ‘*opti.cnl plasmatrong’-”
`
`
`
`
`
`’
`
`tho./sn.si:aini:ng boom, and
`of”t““e pin" ‘ma.
`cwida» range of ézondi-tion3»1;s~
`i.§:i§i§?£;.i‘€3
`..
`lions of 135%: gjowcr, flow, and optica1:configur;a~
`
`
`
`
`
`{*3
`
`
`
`
`’ pi.-
`potao:t.:aI -3'
`hogan and inn» power can. be. beamcci rem.o_tely, it has.
`Gp£':‘;.r[at’,: in par
`been p::opnscti .t}‘1.a1: the
`=co1;z‘ld be us-ed for high specificaimpnlsn. Space’
`propxilsioni. A nunib-or of papers: '22aw: -d.e‘a1"tw.ith this 8p‘p1i£:~ati0n_,. and it was
`the subjoct of 8. reviexv by Glufrib anilklrier (1984). Thompsor; et a1. (19%)
`described oxporimcnis in Whikh "laser energy was converted into. el.eotri»$a}'
`‘energy using a -laser~.susitained argonxp}as3:£1a. Crcmers at :11. (’l9_8_5) have
`suggested tho
`as a source for sp-octrocllexnical analysis and given .s1omo
`experimental rcsulas. Cross and Cremexfs (1986) have s11stai11od plasmas in
`the throat of a small n»o.zz'le to produce atomic oxygen having a directed
`‘velocity of’sovcm1—.k.1n/sec for the laboratory study of surface interactions at
`energies and particle fluxes similar‘ to those experienced by satellites in’ low
`garth orbit. Other applications are sugges-ted by analogy to other plasma
`devices including light sources, plasma‘ chemistry, and materials processing.
`The physical procossns that detcrminc the uniq_ue characteristics of the
`LSP will be. discussed in Sec. 4.2, and the the.ore'tical analyses that have been
`used to describe the»LSP will be addressed in Sec. 4.3. Exper.imental results
`obtained will be presentod in Sec. 4.4 and compared with the t’heoretical
`predictions. Sec. 4.5 will consider some possible applications.
`
`-
`
`

`
`La~3?er—$us1ain‘e-£1 Piasmas
`
`‘
`
`1?‘?
`
`(1?)
`
`(3) Phattigfaph of a plasma sustained by a 600 W carbon dioxide laser?
`Figure 4.1
`bgam focused vmh a 191mm fecal length lens. (I2) Schematic mprelsentatien sh0w~
`ing how the pkzsma forms within. the focal volume.
`'
`
`

`
`“£72
`
`Keefer‘
`
`4.2 FRIPICIPLES Q33" -{)1’ER!s.Ti{3N
`
`Plasmas that are c.:'e.ai=e~d 01* sustained by iasers can be g=enerated_i_n a variety
`uf forms, depending?-@n’tI1b 1:113:-aic:£»f;;;§s’£i::s cf the laser and optical ge£3me~
`
`try used ta genzrata the;
`' zg21«’§:n€jifg§I”pn§3é»d. iassrs can igxmcrata plasma
`breakdawn .dira£:tiy wi_t}é'i_1: 21 gas {1}.at,r&snIi$ ii} ;a transient axpanding gsiasma‘
`similar to .2111 expiasienq
`Imzgai ’§a§.fi.r intensities £11331} Iongsr puke iimes,
`.p}33mg5 may *:bg"gn»§{;‘a;g.aba»; .g.gj-W '_ .su1"fa§:»a3: nid than ;3r§paga:fi’.ifita the 5113»
`
`
`a:'aini_x:1g baaxzn at».super3ox:§’é Va}
`itiss as:
`~ r—s::s1£;iI;e£3 dets:3n.a3;i@;1 (LSD)
`wave or :snbsen,ic valocitias as”'ia},a§$é
`, aiizesd ébmbnstifin {LSO} xvave.
`
`These tramient piasmas have ‘beef: £3i${n}.s33d by Eaizer {I-980) and wi 11 net
`
`be treateéi here,» If :*;h_Ie: iiagsefiis’
`K 9312-.
`’
`’
`,
`-é_'r.a:£1,:1v.:i tfzté; £3}'f§?E§:i53}
`.}ge02i:t%try, flaw, a:14;i.’y‘mas:1rf¢:az:sa
`..ra§2,..»
`3» geaiiiyvéiazs I.;S.-P
`
`
`
`fie c<3n’tii:mt1usi3* 'm3intaix2.;eri.at’ ajwéaz‘
`11:33‘: ’thaj_ was of the ’bea.1n. The
`inifensity that is aXfE£i1a}3§§}iff{}fi1 a"¢t3x1t§tzuous;Iass’r -is insufficiem to cause
`braakdtnwn in tha gas, h1€¥‘£V€:%If::I‘, and an .auxiIim'_y‘ 3£m:rce musi be used. to ini-
`tiate thepiasma. A sketch {if 2*: sieady-s'£at‘r;.1a.se.r~=sus’tai'ne.d plasma is shown
`in Fig. 4.’i£(§). T116._p1as'ma:m.ay'ba»stz.s:ai::ied
`Ia azmfining c11’a;’:11b§rt%3
`ccmtérsl the ‘flow and. prrcssixre 01‘ in -apex}. air wt ~21 large, chamber where the
`t_1ow‘i_.S idem-rm-i.ned by th:=::rm.ai:I. buzayancyz.
`V
`,
`in 131311)}? ways, t11::1asar~s’u:siain;eti. gléisrna is si’zzxi_}.ar ta direct current or
`iawfzaqtzancy -eie<:;r:}s:I¢3;3*3
`anii £I1.i£i£i:3xv;im;g.di1§£11a:°gxi:s’t§§.at are {apex-
`ated in similar .gj;ase.s an
`at ;::ma;:e:s. Ifiitfiwever, this LS1’ will g€=n6.r‘~
`,
`any has .m£m~: ’c:{iiftj‘1_§3=’€¢:x%:f: 311.9%
`a°??,€‘e;fi§‘§§gh6Y:max§.15i1‘!;1m.téifipfiratfire th.a:1.n-t}mr
`»§:.£3ntin1.20u.s am s:{:§m*.caf; aixdi
`biz: :$u:~§'¥a:i11’€::é§ in 3 staady state well away from.
`containing boundaries. A .f3.z:n.d'an1ei£ii:a$ v:1iiffir’enCe:in'tha way in which en-
`-ergy is ahsorbeé by the plasma is 2‘:3$§:s9:3$i§3I.€:* £03: £12636-. 1}i?£3i.£}I}6» charactaristics
`-of the LSP.
`-
`
`4.2.1 Easic Physicai Frncesses
`
`In a £Ii1"B£‘:t current (dc) arc or in an in::¥uAct:§’ve}y cgauphzd p1asma‘(.ZCI’), en-
`ergy is 'ab.ss:>rbed thr0ug11 ohmic .heating produced by. the 10w~fr::quency or’
`direct currents flowing in the plasma. The eiecirical conductivity of an ideal
`plasma is. given by (Shka’mfsky at al., 1966)
`
`J
`
`neg
`== ---
`
`1/~—~iw
`
`in (z22+w3)
`
`4.1
`
`(
`
`)
`
`where it is this electron‘ density, 8 the electronic charge, m the electron mass,
`to the radian frequency of the applied electric 'fie1d,Au the effective collisicm
`frequency for electrons, andi thesquarc root of »»1. In the do arc (w 2 0),
`the currents are’ transmitted through the plasma bcztween electrodes and
`
`

`
`Lasebfiustalned Plasmas
`
`'
`
`-.
`
`A 173
`
`the size of the plasma is determined by the ‘size and spacing of the electrode
`and the c-anfi.ning bcmndaries.
`In the ICP, the curlrants are ir1ducsdli’ni»a
`the plasma fmm alternating»cu:1*entsfi<:swirxgin.a Sur1‘£3:undi.ng .so1enoifial
`c;c;~ii.. The are is sag;
`ixmgl xyibthin a container that determines the plasma
`dian1etei', 'wheI£:as fine Ian
`of the "plasma
`determined by tl:16length Qf
`H
`the sbiemid.
`'IT,1€:‘-.3333? apergtes at. frequencies will belflw the Vplasma frequemzy
`
`9
`
`-~--'-—--
`
`_»
`
`1.1}?
`
`=2
`
`W»
`
`4
`
`.
`
`7
`
`
`
`b
`< >
`~4.,2’
`
`w31e1'e..¢g i.s%’ti;t: yiérmittiviity af fi?ae»spaae:.. In this frequemzy range, the 636:6’-
`3:rQmag‘ne1ie.’fiélL:i flags illffii prajpagaie as :a wan: within the pilzwma, ml: is
`.a:;u%3n;i:ate§i. aj.s{"ar.1’: ¢va.ne$i:;enti'wave (Holt and Hask-all, 1965) aver dis-taznces
`cit‘ the arckr -af-ihta ;skfi;2’:'.1 iiepth ’
`’

`
`
`
`(4-3}
`
`is 1l_:h_e spa-ail: of Iiivght.» ’}fhu.s, thaplasma is su.s~tai.ne::il by azwgrgy-333*
`-where:
`serbed within a..small.}a;,:.é:r near its autar surface. that praduccs‘ a r‘at.hm‘:flalt
`temperature ’p=’rj{:5fi§3;fi
`.thep'lasm.a and limits the maximum tzmgaera.
`
`txxrsgas that ¢ai:Be¢btaines3.,
`V
`-
`The fr{§q";,1§§n(;y gf {E15, gptixzal fields .-(28 T}~Iz for the 1&6 gm car'b*c>n.. diam»
`ide lager) us:c£1.far‘iht:
`is greater than the plasma frequency, and the1's~
`fora’ fl1e»i'nGi’d’en't’ laser. imam nan -propagate well into the irnterim‘ before
`it is siibgnifissaniiy »ali:>’$-Qtbed 't}11~”£}’3:Igfh the _pr0c:ess Of .invarse ‘nremsstrah1u13,g
`(Shkatofsky at 211., 1966)‘ Sim:-e the f0cusi'ng of the law: beam praducsd
`by a lens or ‘mi.t.mr is e»ss.e'ntially presemed as the» "beam propagates jinta the
`plasma, very largeafielzfi. strengths may beproduced within the plasma near
`the beam focus. 1?; is fl38S:B large field strengths that lead tq p-eak tcinperay
`tures in the LSP that are genarally greater than those obtained with either‘
`dc arcs or tl.1eICP and make it possible to sustain a small Volume of plasmla
`[near the focus, Wei"! away from any confining walls.
`Inverse bramsst.2'ahlung~ is a process in which the plasma electrons ab~
`sorts photons from the laser beam during inelastic collisions with ions, new
`trals, and othsr elasztrons. The collisions betwew electrons and ions are
`"the _dominant process for the LSP and the absorption coefficient is given by
`(Shkamfsky et al., 1966)
`
`‘Y
`
`W 1rc'3n.S0G 1~—e'”“’”‘T
`(La) ”“;&:r
`(
`Fzw/kT
`
`>
`
`V
`(MI)
`
`

`
`am
`
`’
`
`,§<.e»efer
`
`where ii is Planckfs constam ciivided by 271', k B0i:am.a:§.:1’s c»£3n»3-£31113 81153;?
`"the. tem§m.r.aiure of§:hee1::c:rons. The facmr G is the Gaunt factor and the
`fiactor 3235 ‘isgiven by
`
`
`as M 16.n.+nZ2 9&3
`
`3
`
`‘
`
`1/2
`
`
`
`35:? _.
`
`I
`
`I
`
`(4.5)
`’
`
`
`
`
`
`£acmr¥.is. a.
`T when 2.’ is the ionic cha:rge and :24. the ion -dezxsixy. ‘Th:
`mecfiaazmjaii carractioxz to the -::.1as.si.c.ai theary,-_’ami a:z;iensi¥ve z:£*xhies
`
`
`11’-ewabeen given by Karzais and Latter (1961),. 13:3:
`'11;s1;x3.£. case xvi:
`(ha phstoin energy i:s’much1assthan aha
`"

`.
`g.
`
`
`bmzzketmzi term in
`(4.4) is zmarily .in<3e-psi: ..
`m=efii:eiant;'is essennaiiy »pr:3gmrti:ma2 -in the, ségnam :3? i
`size ca’? am-.*::,$‘1'+* wmf ggepand an sevciai
`_:g;;e;ao.n1et:y;, 1aser*pcs’wer«, and ai}sQrp.ti»0‘n cnefifieiant.
`sf. the-..1aser 'b::ain as it propagatas witmn the
`
`.
`
`Jar:
`
`«~+--~~aI
`
`%
`
`
`
`- where s is ‘the: distance alnng the Eocai ¢i_im<;zic::1 e:’f5_;3:*:::;3 agatigm.
`abagrgzy
`.
`:i;§ce;-» it
`ma-..s .
`tizankngth ifs: ix 3; .+*;iam.ii1’ant».§ength aegis f>c:N.}'.*:s‘.*..
`‘inf: £§'ist;anc’:je.-0335:: whigch th£3’p~{3wé£.,iS absc1x*bav:i fwm {?he’bai:am., Far 'tfiI1is‘r:§c23;a
`
`:59-n,»t"fi.¢ dimension Qftha fiigimampasaiizre ;’aTbsaib§.2z;‘
`2:2:
`n
`piiaatxza
`alcmg the: laser beam wfli he of the cider’ tai t}1:¢;»a¥3sar§:ztz»c:n ia_.:1gi33_.
`’iti':~:.ihe absorption 1em‘g.1:h that determines ‘tli1e91z=i:ngt}1§c2f
`’ ‘e.»;3}a2si21a.zz1::31:;g fize V
`Exam iixigs, :1. is the @1336; beam éiameter ;tha‘t. daie’:x:ii.aea piasma >dian:;g.-
`’I*£1e’;s1:zs::aa expixnds :9 ii}! ma begin eozre. .wh:¢re it
`gaze. is «*.~1?3$*Grb
`pawar, "then rapidiy c}s::z;re=a:ses in ’ten:peratur»e. m:tsi.:§rs the imam ti1rtm1_gTh
`thermai canciuction. and radiativs kiss .machan.isms..
`The pnsition‘ 9f the
`‘relative to the foca} paint is £:1‘i'tic.ai in ::ietermin~
`ing its structure andfiie range of para.mcters far which it ‘(-1313 be .maiI'itaine€I.
`when the plasma is initiated near thg beam foam, it pmpagatea intro. tha
`sustaining beam and seeks a stable. _position. The pasition c:fst.ai3iiitywiI1 be
`1ocated‘where the imam intensity is just stxjffisiant t11at.tha‘absai*be»ci power
`will baiance thalosses due to convection, thermal c<)n:3ucti{m, and the;rm.a1
`radiation. A _number of factors combine to determine this pcssition of sta-
`bilityjncluding the transverse pmfi1eTof’the incident beam, t.hefoca1.leng-th
`and aberrations of the focusing lens or mirror, the plasma bpressura, and the
`incident flow velocity (Keefer at 211., 1986; Walla at 211., 1987).
`The power per unit volume that is absorbedby the plasma is given by
`
`P := al
`
`V
`
`(4.7)
`
`

`
`La.ser~$usia’inet:: Plasmas‘
`
`3?5
`
`where I is the I0z:.aIim1_dia1_v.:e: cf tbs: laser beam. Smce I depends an -the
`transv-ersi: profile 0ft}’1e'incitiBn‘t beam a’s.’-weii as iha focai Zength and abe’r~
`rationis of the lens, these -charazzterisiics wiii .:infiLuen<:-a £i1e’I.t:2ca’3:i0n within
`the focal rsagiion at
`:’:hewn1inim1:;£n.su3t3i.ni:t;g i’n.tan.sity is Icicatzzd. F01‘
`exfdmpie, far a small f{12umb,er'i"n;$,. the.'i:1£€nsit3¥ éecreasea rapidly with im
`
`cmasing dist.a3:ixce fmztzn..1hia»’fz3cus*.’an€i»the piasma will ,s’tabi.1i.ze.:’:1c:ar the focus.
`‘Fm -a larger Tfinumber system.,ih3i':»_i.:3£$¥1S3iy’iifififfiitfifis168$ rapidiy and the
`plasma win ;stabi1i2e .ai.2r::p<3s§’tia:z £332»
`.
`war ml. .. fie fo;=eu‘§. I::“<3a=e:¥., for
`
`
`
`
`gxgsfiicieniiy fic:’rxg:=”fo.<,:.a?.1.1:::?;;g1£h,$-; :a:x;ci is
`11’
`p=awer3 §z1;as;:nas..}::ave ‘been ob«
`s:
`served to ;::ropaga,:a
`.
`.. R fiiiafg. :1ii§3£}) as “’I.a:s¢r«s;;ppqzted com-
`bustion wavefi’ .a,£. .s:x3:3s<3x‘:i.£::; “aicz
`Tha zimaiiexzi ;~r;;>.a.t.i,,2::.1 5
`,
`’Ia5tf0ns bemaeen. firm up 1:223? §?%:&::m:2;i'
`the gas, am! the fl0w:£.hr*cm:" '
`’
`the -tcmpe::’jatu;.-“e and fims:
`s,t«aij’_
`from the las-er beam. with the -pa
`
`” smatis »§;,§’1tE*..;1;t§;t§n:t:§§1:i53s:_3.L".;é3?!’t{1,:tt3'i.n£€.rx§~
`-
`,3. z_t.'£g.$a"-,-,.£.‘
`€:p’1‘s?3is.sIé1i*:i:=r:;f
`-wiigiin
`piasma,
`
`
`
`
`
`
`.
`
`gzi
`
`.x..a<,'3
`imh .
`
`. me .
`Mast mi xhaeariy exp. ..
`chamimm £51": in §2pi~;n»air, ’sI¥31ef$»t: »
`by the effects mi therma} buoy
`iifefi, i::2%‘giI¢3z1:.5,i3fi33£K.azer anti
`the fpr—’€é$?;t1¥?e and mat po*’s%r»'.
`’
`~ "
`vatieaiy of gas-es (Eisn-
`,.
`pres.sc.re w11.er:a»it»was ’pnsEsib}e':<3. ,
`
`Thfise. ~3x;:%erimn.nts.
`.
`eraiav et »ai., 1'9?2:; ’K<3z1¢;;‘v 4% at,» 1495
`f¥31P”§3£>3fih};aserAp6sver anti
`indicated] that iherf: were ’np;‘;:>’er anti ’i£:tx=¥£'-—E1‘
`.
`.
`pressure at which the LS? szmzsici be an:-ai:aineéi;.
`Generalov et 31.. (1972) suggested that the upyer iimit. fax: p-mare’: was a re-
`suit of forming’ the LS? .v¢:ith a horizontal beam. In this bgeemetry, thermal
`buoyancy ‘induces a flaw transxzers-e to the =0.;f:¥;::it;ai axis. Tim intiuced fimv
`<:.an*ies. the plasma up and mat of the beam-w31ve3::.h.igimr‘ Easier mpmver causas
`the plasma ta stabiiize‘ farther from the focus. They ware u‘nab1ayt0 estab-
`Iishan ’upp-en." pews: limit when the exper.iment was caperated with the: beam '
`pmpagating vverti.ca11y upward. Koziflv 62.31. (1974) deys¥c3 pe.d a radiative
`model fer the LS? and explained the upper power limit on the basis that
`the plasma must stabilize class: emimgfh to-the’f0ca1‘p0int_ that the geonueb
`V ric increase of laser bean -intensity geing. inta the ‘plasma was greater than
`the loss of intensity due to absorpfion. They speculated that the faihxre of
`Generaiov at al. (1972) to observe this limit in a vertical beam was riue to
`rapid extinction and reignition of the plasma.
`It is clear from the experiments of Generalov at al. (1972) that flow can
`have a large effect on the range of Apxfsssure and lasar power that will support
`
`
`
`’
`
`

`
`‘W6
`
`Keefer
`
`Fflastxnas gust-a.i.ned in the frat: jet issuing from 21 1102213 have
`a szabie
`been studied by Gerasinzenko at 31. (198.3) who I’t1E<’:1'.5UI'€d
`the discharge
`atzciqtanbgtzs for the existenzzn nf a szea€ijg~st=ate
`ants’ havn been zzoncixicted in czmfined -tubes
`mi'nat+a:s;‘t,.
`fibw? (’Wei}.e 6: 211.,
`1!; W35 I
`,:fo’unri ¥:h.a£:=i:n additinn. in bpnwer and prassnrn, both the flow and nptibcai ge-
`’ "
`"
`b
`'
`I””:diI’1fl3'.1€n'(:-3 on the <:haract1:ris£icsV of £113
`
`- «*3 inc intnnsi .3: is jns? s“z;:’fii’:cié
`nmns»s..at1nna?fyeéxtnpoxntmglie
`_
`-
`.

`_.
`.
`
`
`asma béc
`at inc ‘five? a$sc:§rb:;9:=c1"no::§ -‘t.
`’5_b_eam, gzvcn byfi
`4.?),"is balanced-’
`A
`in
`the: wnvectzsvn, cnncfuc-give,» .and radiation ’Ica:ss-es.
`.Smc»e:, in gemerai, "the
`t"
`_
`the 13:33:12,. the plasma. will a.cijust..§n 3529., 3; I
`'Qn3t.3£x'ra'£i:9n eif
`and. =z:-nér”
`
`
`

`
`._
`
`._
`
`Ia ;a3.i£>I1. in thc ’g§IaS‘r’n%a. n¢¢.nr$ bath.
`-
`ans, resniting in ling ’radiat,inn and absnr
`:13}. nfizn
`2; r.
`
`tinn, :>aI§fi:f»I.>:&&.t."fi:D’-tlnfi and: fffifififffifi transnzians that I‘-éfiifli in mnizin-uuzn ‘ta.
`”
`a:jbsn3fptinn.. Qve.
`{iIza.:2pt’_i<:aIéi_y thinpnrtion at‘ the s_p>3=ct1‘.nm-,thi
`
`nu xvii?
`has sizrnngiy ;1b_$i:fbeii by the piasnia er sn:‘rm;2ns;iing :::3t3’ie;r
`mgicms anti wii} simpiy esc;ap»c frnm the plasma. Other {Martians cf the spec~
`mam will bn stricngiy absarbed, 1‘es'uking in a trzmspnrt of energy within that:
`plasma. In the Gginiisaiiy thick1'i1n’iI:,_ this resu1‘ts;in a diffusive energy transf
`p-or: that is simiiar tn thermal cnnnuczion, but may be significantly larger.
`Dataiied ca1Acui.ati0:ns. of the LS? (Ieng and Keefer, 1986) indicate that this
`radiative tr.ansp01*: is a szionxinant factor in the determination cf the struc-
`ture and p0si.t.io.n of the LSP. In particular, it is the radiative transport that
`’ determinns the tnemperature gradient in the upstream .fmnt of thcplasma,
`thereby determining the positinn in the beam for which convection Iesses
`are balanced by -absorption.
`A
`The positinn of stability far the LSP also dapends on the plasma px'es~
`sure, The absorption coefiicientis a strong function of plasma density, as ‘
`seen from Eq. (4.4).. If the prnssure is i'nc:re:ased and the abs01'pti(3n <:Qeffi«
`cient increases, than the plasma can absorb more power from the beam and
`will move away from the focus to a lower intensity region in the beam. At the
`
`

`
`
`
`§;=a»s.er~<S'usta’¥ne»d Ptasmas
`
`1 3??
`
`5211114‘: 'tin1e,, ihc'pia:m1a:1ength aiong the .beam »c1ccr-eases beziaus-e {if the de:~
`:;1f£:as’e in absargatinzx }s:}gti1., 13111 the d.imnet=e.r i.n<:re:ases ta fit} the _Im"»gar :¢:.m;s’s
`$e<;ti<}.n sf zhva beam, Thus, far the s.ama1ase.r b-3-am ma-é.itica::, a .’higher-
`
`px‘essur»e:
`wii} stziiiiiiiize
`a, Quint farther away fmm the ma: gixaint arzci
`have 3 :’s'm'a}1a:r.»}angth~'1o~d1ame1e’r ratio ’th.a.rz 3 I-mvm*aprassu.rc
`.
`Incidazzi iasezf p{)we3:, as wail as tihc f/munher and ab:srra¥i£3n.s cf the fa
`£:_.:uSi1}g 9133363,,» will also _i’;_*:.fiu.enc»e the §:%£38i.£§£3’r2. at xvzhich the
`$t:ab.i§ize;s
`3316 .2I::.sa‘n’3., Fmm {me 'f0mg::}i’3:1g <3ii5<:us.si£3i}., it is cigar {hat as the?)-e.a.:r1
`puxvar .is1nc:’f<’:.,a.:;’e£1, the piasma will mauve up t11ehean1 away ifrbm the fixzai
`gtsrslizztg. T1215 distsance 1.hatit'mi3ves.'is nistsrmineé by ‘the .f!n.um'b=e£ (ratiiz mi
`., fig
`._
`.
`‘
`,
`
`
`'
`
`83%
`atzit cizifiasma 'p=0-aition (Kmfmf et :aL, 1986.}. In partgicluiéir, Wfh:!Ei1‘i
`2:11:33": E3e=a'm fmm a22.n.nst;.ai2ie1a¢ser <3:3i:.§}}at£)f:fi}£ii1$=€§ii 133:3 sghericai Ivans,
`it. réithices an am’nn’iar’pmfQc,us region. befbre reachirzg»’€h€
`
`, fif:¢£:ilp{§int',
`
`_ the
`» s::'1*3s;é:rvat:iA£).:1.s :E§is€:11.$se:.1 abave, it is £‘3.£i31“ that’ £heb:;:$£>sii.i£:i1x sf
`1 m; .131.
`{ha piasma relaiive in -the focai paint has a: pmftmnd effzézéi 133:: ‘:i§1£3’}§1§1;8II1a
`eristics:. Atthe zzpjpar iimits gf ».at3§:«.i¥i2y gfitsr bath }.ass;':r-*pa:;wer'ian~:1»
`.;;;%1..::xra::i:
`a}f§§’=i%€£r's ;hat the pi.eizsma hecizmes ?L1xrist;a"b'}.e ssxhan ii: graves, 1:c:»:::
`
`
`pm
`far‘ffeTm fi.1é: £063}. peirzt. This may 1236 due, to £116 afai-:1, as prQpQs6di.3yf’Kt§25i£3v
`at Vail. s(3§9?££}, ihmas ‘iihepiasma .mavas sufiicifently ’f.ar’awa5r
`113.,
`iha V1”..-iiite (sf in.c’mase of the beam .ime:1siiy in ihza fiiiraciiiqh. af‘ egzyopagiaticign
`’ aims smazisr. S’irzc.e tam tampareitura s::%:£ '=t}1:€f
`;2§.a;s.m,a .m3.3,st 5 ”
`a1a§,a;i,a {he
`
`
`i1eam>prppiag,ate-s into the npst:’eam edge Qfitixietpj-’Iasmai_ .:ifiien§i§§?‘i0f~£_I1e
`baaxn ’.n:'msi: 3515:: increase. At same paint, ii1e;dms’ra.as’e. -of f}1t’3 hli‘sE3.II1 in;wns.iiy
`due-ti: »a.i}si3rpti0n is greater than the incrieeases due: in f0c%::.s§:1g, SC! the piasnza
`Eséeomeéa unstable and extingui-s'hcs. Recent <:.a1cn}atit3ns by Sféng. gm :1, Keefm:
`(198’?a’},i1mv§:ve:r, iniiicatez that there may ex.ist1.oca! 're:gi»:s.;1s. =withi2: t}:1e’LS-EP
`»vhera.t}1e’b-mm .in1;ens:ity c}m;rAe.as-es ‘as it penetraisas the plasma.
`. Accmsidarabie degree of ecmtrol of the structurs am: position Bf ihe:’LS?
`can be gained through both optical geometry and flow, in Vaddiiian tc) Iasar
`p-zxwcr zmrzi. ’prcssure. Utilization of these aciditicmal parameters nmake-.5 it
`possible: to successfuliy op»c:ra'£e the LSP ever a wider range Of exptzriniemtal
`ccnesiiiiims, enabling 21 wider range of potantial appiications.
`
`13.2.2
`
`?1asn1a Characteristics
`
`Laser~sustaim=:d plasmas have been operated in 21 variety of molecular and
`rare gases at pressures from 1 to more than 200 atm. The resulting plasmas
`have characteristics that are similar to are plasmas operated at similar p1‘f3.S-
`
`

`
`‘W8
`
`'
`
`-Keefer
`
`sures, but the peak tenaporaturcs in the LS? am usually somewhat higher
`than "those for the comparable am. Ratiianon from the plasxna can be 3 Sig-»~
`nificant fractio’n of the total power ,inpI12, a:n.~:.i .r21r3.iaiion '.tI’anspor‘!: plays a-
`major role in n‘etenn;inin_ ’*’§;l1e structure of the plasma. Continuum -absorp—
`tion processes are ofpaitifizfilar,1’3n“:po1*tanco in these plasmas since thopower
`to sustain the plasma is aiasorbnil -throngh, those. mo-chanisms,
`The» .con.tin1mm ansornzion pxnaess=inyn1ves both bo'on.d~fsrne trans.itio_n.s
`(p}1»oto’ioni;zation) and fi'.oo~.f£‘on transitions (invnrao l:n‘nmsst.fahlnng) in
`’which photonjs are absorbnd. from tl1o»l.a.sorlf3eam. This .free—-iron; transitions
`involve nlectron colfisions with Zions, ’otl3er éeloctrons, and Inoutral particles"
`(ShIl;aIi3f$l£y $1 .31.,
`3;’S*i5?6};;; £3r.i:e:2n, ’19fi.4}..
`:éiomi'nan:t absorption process
`
`for than is fi3."1fDiIi_g}i ;:n'lllfa_ion.§ ihoiwnen
`.
`..
`.113 3-nciions, and the a_b3o:p~
`-don cooificient for ibis procosa: is» given by
`For the usual Case in
`the 'LSP.‘, kw «ea: 3:? and {lie absnrpiion in app1‘oximatoly'nrngsortional to the
`sq’na’r=:: of tin: la$.er- xvavolnngtjlgl
`to
`Strong.-xvavelnngill cinpencienco,
`all of .t.h6. rwnrteé. e7i_Pe:i.n:nn'tn1 :%iz:s'nil.£:s.for’1n.e LS,P”hav'e» been obtained us«
`ing tho 1-9.6 gm w.avol::ngth carbon ciiflxiado laser; Sim: the length scale
`for the plasnza is of the order of the absorption .lenj'gtIh;, tho length of -the
`bplasma and .1113 power mqnlrod to ’s*us'to1“:n it iwonld be nxpezztccl éo increase
`dr.a:nun.icany fnr'shnrtfer an-’veln:ngth_ lasers £;‘ur:rentIy, -thé. only other lasers:
`flizit are ’fil<;t=:ly eanciidatns to sustain nnzmn-anus gzlzxsnxasv-aria» the hyfirognn
`or :ien.‘£eri‘um.fiuo.rid.e ah::zrxical¥ase1ts,ti1’at opnrato at waval.eng:Lhs of 3’ -to
`4 ;.&m..
`l
`'
`'
`.
`Tlznrnzal radiationyis iniilie of this :n2ns..tI.i:n§or’tan’1 c'ha;~;acterisiics of the
`LSF. Thermal -md_.i.a1:io1n l'o3t.ffo1i1.‘£li¢’;3Ia§§'ii13 can ai:co‘nnt for nearly all
`the ;;=ow::1' absoribed by tine ';'3la,s.;na whnn tlzo flow through the plasma is
`small anti. will account for :a s.ign.ifioant f:aoiio'n of absorbed pews: even
`when the convective. losses are large. The thermal :rad.iation. consists of
`continumn radiation resulting from _rec0x1il3ination (free-bound transitions)
`and bramsstrahln’ng (iron-fr-an tr-anlsitionfl) as wall as lino radiation (bo1..1nci-
`bound transitions). Calculaxinn of this racfiatiozi is straightforwar-d, al~
`though rather tctiioos, when the plasma is in local thermodynamic equi~
`librimm (LTE) (Grimm, 1964).
`‘Local tlzernloclynamic equilibriutm is as-~
`tablished when the electron collisional rate. procosses dominate the pro-
`cesses of radiative decay and recombinafion. When LTE is e~st.ab.lishod
`in the plasma, the density -in specific quantum states is the same as a sys~
`tom in complete thermal -equilibrium having the same total density, tam»
`perature, ancl chomicalv.c_omp~o3ition.
`It should be emphasized that this
`does not imply that the radiation is similar to a blackbody at the plasma
`temperature. In general, the spectrum of the radiation from the plasma
`will have a complex structura consisting of the superposition of relatively
`narrow spectral lines and a continuum having a complex. spectral struc-
`ture.
`‘
`
`

`
`s.ss
`S55
`
`§ ,
`
`Laser~8ustairie-ti Piasmas
`
`"179
`
`
`
`.
`
`_
`
`The sbscrptifiszn: c-ociii cient in this plasma‘ depends on the waveicngtli, and
`far thc u'i:r.svi.t31ci."portiQn cf the spccuum bslciw the wavelength iii thc rcso»
`nanceiimss ('£}.‘ai1.Siti
`:13 in 'ivii1g the grmimi state), the r.ac:iia2_ie.n is stmrzgiy
`
`abscirhxcd by tiiii pia ’
`_
`the cca1cr.su.:muxicii.ng gas. This rcsniis in a
`szrazijg raciiativss 'ira,:is{3Qrt”'mecha’nis’m that is imgiartszii in :ietcm1.i.iiin_g the:
`st:mc.:ii:i::'e ifithe pias’ma.. Qitsn, 'rz;d;iative tr-anspcri. for stIQng1y.ai3££3ri}in_g
`gases is :zn€i<ia:iic::i as :21 -ziiffusivc ensrgy trans-port simiiar to thc.nna1..candue~
`izion.
`£i1¢’.s£m:iIgiy itinizecixjsgicns -a:f"the piasma, the r.adiativc ir;anspcrt_.:is.
`many iimcs iarger tiiraiz the ’i=i:_tr.insie ihsrmsii ccnciucticn and is flit? dc?-i1i=i2a3::’t
`}2;sat~trans£c:r
`Thiis -is cspccisiiy iii:-V3 in the ugsirsam tcgisii cf
`~X¥h{i}‘ii:
`’e*t;e~;:1:p:»3;rii£=2ir[a graiiient is ilaidgc, zmd .ra£i.ia£it:).x_1 tfansfifiift
`fisiiit
`izozisisf
`i*2z:5»’1g3ssasis cf»-the insiident "flaw.
`titéiaiigsrssssssisrigth regiicm s'i3mr.c the rcssnsncc transii;i;:>n.s, fi%is..ab~
`,,
`scsrptiizm of'ii1e.,razii.at’infi by tiic piasma anti t'he surrmznciifng gas is much.
`smafilerr. "I113 =ai2scr;:'iii3n 1.ezzg1;i2. for this is-diatidn is Qfitiszi large -xsiizriz
`éi
`
`{scams <:i1<a'rac:s'risi:it;:e::ii.msn;sia;ix1s of the splasma, and 'fI711}fih»f3f’ii1fl,f3§?t1fEi..1{§2i
`es; 963.
`tsgiczi .Q:f:t;i1e.:spcctru’i:2, {he piasma may be cnnsicisrcci cap
`/ziciaiiy thingaIitiif'ti;ezpias:1121.is in L'.i‘}?., than the €:.sc:aping:;’:a3;iiatiOn eanfbc
`’us's-xi is characterize the tempcraturc within the LS? {£{e=e:£ss at 31,, 1?§86;
`
`987).
`
`
`sass §’??i‘§f1:_iI.‘1
`iii-E: piasz‘-as is far fmm sniicrm, as
`
`1:}:Ii3;:;=d
`is} i3'*::£.’si'i1 {he cxp*e'rime:ntai tempe3:aiures~.shz3wiz_
`in Figs. 43-2, 4.4, and 4:;Z(}..is =:icss,rii:s~:.<;i
`Ci-etaii in »Sec.. 4.4.2). Ti1:is.’§igu.se
`shciws "an. is:ciiis:m:»pic:t cf ziie» ts:i:::§:«s:rst::sms ’fi3¢£1$i3’i‘cd is .an.LS?sz:sa:a jéti
`in 2,5 aim bi =’ gun. ‘by .3 mtiscn ’c1iv;3x-ids Iasier »c§;er*a£’ing at a wiaveieizgfix
`i’i3..i6 gm. ’.1?i1e’,;5iass:ia ‘iezigifh. ass diameter, as cistcrminsti by tag ::s;.5ssK
`"is-otiiasrm, are 311 aiiii émtn, rfispcctivcly. biota the stung i:~em’peratxsre:: gm<ii-
`ants that cxisiin ti1e'upsirs:am p-anion of the pl-aszna and in the :r=a(iia1. £iir2sc~
`tion m

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket