throbber
Cramming More Components onto
`Integrated Circuits
`
`GORDON E. MOORE, LIFE FELLOW, IEEE
`
`With unit cost falling as the number of components per circuit
`rises, by 1975 economics may dictate squeezing as many as 65 000
`components on a single silicon chip.
`The future of integrated electronics is the future of
`electronics itself. The advantages of integration will bring
`about a proliferation of electronics, pushing this science
`into many new areas.
`Integrated circuits will lead to such wonders as home
`computers—or at least terminals connected to a central
`computer—automatic controls for automobiles, and per-
`sonal portable communications equipment. The electronic
`wristwatch needs only a display to be feasible today.
`But the biggest potential lies in the production of large
`systems. In telephone communications, integrated circuits
`in digital filters will separate channels on multiplex equip-
`ment. Integrated circuits will also switch telephone circuits
`and perform data processing.
`Computers will be more powerful, and will be organized
`in completely different ways. For example, memories built
`of integrated electronics may be distributed throughout
`the machine instead of being concentrated in a central
`unit. In addition, the improved reliability made possible
`by integrated circuits will allow the construction of larger
`processing units. Machines similar to those in existence
`today will be built at lower costs and with faster turn-
`around.
`
`I. PRESENT AND FUTURE
`By integrated electronics, I mean all the various tech-
`nologies which are referred to as microelectronics today
`as well as any additional ones that result in electronics
`functions supplied to the user as irreducible units. These
`technologies were first investigated in the late 1950’s. The
`object was to miniaturize electronics equipment to include
`increasingly complex electronic functions in limited space
`with minimum weight. Several approaches evolved, includ-
`ing microassembly techniques for individual components,
`thin-film structures, and semiconductor integrated circuits.
`
`Reprinted from Gordon E. Moore, “Cramming More Components onto
`Integrated Circuits,” Electronics, pp. 114–117, April 19, 1965.
`Publisher Item Identifier S 0018-9219(98)00753-1.
`
`Each approach evolved rapidly and converged so that
`each borrowed techniques from another. Many researchers
`believe the way of the future to be a combination of the
`various approaches.
`The advocates of semiconductor integrated circuitry are
`already using the improved characteristics of thin-film
`resistors by applying such films directly to an active semi-
`conductor substrate. Those advocating a technology based
`upon films are developing sophisticated techniques for the
`attachment of active semiconductor devices to the passive
`film arrays.
`Both approaches have worked well and are being used
`in equipment today.
`
`II. THE ESTABLISHMENT
`Integrated electronics is established today. Its techniques
`are almost mandatory for new military systems, since the
`reliability, size, and weight required by some of them is
`achievable only with integration. Such programs as Apollo,
`for manned moon flight, have demonstrated the reliability
`of integrated electronics by showing that complete circuit
`functions are as free from failure as the best individual
`transistors.
`Most companies in the commercial computer field have
`machines in design or in early production employing inte-
`grated electronics. These machines cost less and perform
`better than those which use “conventional” electronics.
`Instruments of various sorts, especially the rapidly in-
`creasing numbers employing digital techniques, are starting
`to use integration because it cuts costs of both manufacture
`and design.
`The use of linear integrated circuitry is still restricted
`primarily to the military. Such integrated functions are ex-
`pensive and not available in the variety required to satisfy a
`major fraction of linear electronics. But the first applications
`are beginning to appear in commercial electronics, partic-
`ularly in equipment which needs low-frequency amplifiers
`of small size.
`
`III. RELIABILITY COUNTS
`In almost every case, integrated electronics has demon-
`strated high reliability. Even at the present level of pro-
`
`82
`
`PROCEEDINGS OF THE IEEE, VOL. 86, NO. 1, JANUARY 1998
`
`Raytheon2023-0001
`
`Sony Corp. v. Raytheon Co.
`IPR2015-01201
`
`

`
`duction—low compared to that of discrete components—it
`offers reduced systems cost, and in many systems improved
`performance has been realized.
`Integrated electronics will make electronic techniques
`more generally available throughout all of society, perform-
`ing many functions that presently are done inadequately by
`other techniques or not done at all. The principal advantages
`will be lower costs and greatly simplified design—payoffs
`from a ready supply of low-cost functional packages.
`For most applications, semiconductor integrated circuits
`will predominate. Semiconductor devices are the only rea-
`sonable candidates presently in existence for the active
`elements of integrated circuits. Passive semiconductor el-
`ements look attractive too, because of their potential for
`low cost and high reliability, but they can be used only if
`precision is not a prime requisite.
`Silicon is likely to remain the basic material, although
`others will be of use in specific applications. For example,
`gallium arsenide will be important in integrated microwave
`functions. But silicon will predominate at lower frequencies
`because of the technology which has already evolved
`around it and its oxide, and because it is an abundant and
`relatively inexpensive starting material.
`
`IV. COSTS AND CURVES
`Reduced cost is one of the big attractions of integrated
`electronics, and the cost advantage continues to increase
`as the technology evolves toward the production of larger
`and larger circuit functions on a single semiconductor
`substrate. For simple circuits, the cost per component is
`nearly inversely proportional to the number of components,
`the result of the equivalent piece of semiconductor in
`the equivalent package containing more components. But
`as components are added, decreased yields more than
`compensate for the increased complexity, tending to raise
`the cost per component. Thus there is a minimum cost
`at any given time in the evolution of the technology. At
`present, it is reached when 50 components are used per
`circuit. But the minimum is rising rapidly while the entire
`cost curve is falling (see graph). If we look ahead five
`years, a plot of costs suggests that the minimum cost per
`component might be expected in circuits with about 1000
`components per circuit (providing such circuit functions
`can be produced in moderate quantities). In 1970,
`the
`manufacturing cost per component can be expected to be
`only a tenth of the present cost.
`The complexity for minimum component costs has in-
`creased at a rate of roughly a factor of two per year
`(see graph). Certainly over the short term this rate can be
`expected to continue, if not to increase. Over the longer
`term, the rate of increase is a bit more uncertain, although
`there is no reason to believe it will not remain nearly
`constant for at least ten years. That means by 1975, the
`number of components per integrated circuit for minimum
`cost will be 65 000.
`I believe that such a large circuit can be built on a single
`wafer.
`
`Fig. 1.
`
`V. TWO-MIL SQUARES
`
`With the dimensional tolerances already being employed
`in integrated circuits, isolated high-performance transistors
`can be built on centers two-thousandths of an inch apart.
`Such a two-mil square can also contain several kilohms
`of resistance or a few diodes. This allows at least 500
`components per linear inch or a quarter million per square
`inch. Thus, 65 000 components need occupy only about
`one-fourth a square inch.
`On the silicon wafer currently used, usually an inch or
`more in diameter, there is ample room for such a structure if
`the components can be closely packed with no space wasted
`for interconnection patterns. This is realistic, since efforts to
`achieve a level of complexity above the presently available
`integrated circuits are already under way using multilayer
`metallization patterns separated by dielectric films. Such a
`density of components can be achieved by present optical
`techniques and does not require the more exotic techniques,
`such as electron beam operations, which are being studied
`to make even smaller structures.
`
`VI.
`
`INCREASING THE YIELD
`
`There is no fundamental obstacle to achieving device
`yields of 100%. At present, packaging costs so far exceed
`the cost of the semiconductor structure itself that there is no
`incentive to improve yields, but they can be raised as high
`as is economically justified. No barrier exists comparable
`to the thermodynamic equilibrium considerations that often
`limit yields in chemical reactions; it is not even necessary
`to do any fundamental research or to replace present
`processes. Only the engineering effort is needed.
`In the early days of integrated circuitry, when yields were
`extremely low, there was such incentive. Today ordinary
`integrated circuits are made with yields comparable with
`those obtained for individual semiconductor devices. The
`same pattern will make larger arrays economical, if other
`considerations make such arrays desirable.
`
`MOORE: CRAMMING COMPONENTS ONTO INTEGRATED CIRCUITS
`
`83
`
`Raytheon2023-0002
`
`
`
`

`
`Fig. 2.
`
`Fig. 3.
`
`VII. HEAT PROBLEM
`Will it be possible to remove the heat generated by tens
`of thousands of components in a single silicon chip?
`If we could shrink the volume of a standard high-
`speed digital computer to that required for the components
`themselves, we would expect
`it
`to glow brightly with
`present power dissipation. But it won’t happen with in-
`tegrated circuits. Since integrated electronic structures are
`two dimensional, they have a surface available for cooling
`close to each center of heat generation. In addition, power is
`needed primarily to drive the various lines and capacitances
`associated with the system. As long as a function is confined
`to a small area on a wafer, the amount of capacitance
`which must be driven is distinctly limited. In fact, shrinking
`dimensions on an integrated structure makes it possible to
`operate the structure at higher speed for the same power
`per unit area.
`
`VIII. DAY OF RECKONING
`Clearly, we will be able to build such component-
`crammed equipment. Next, we ask under what circum-
`stances we should do it. The total cost of making a
`particular system function must be minimized. To do so,
`we could amortize the engineering over several identical
`items, or evolve flexible techniques for the engineering of
`large functions so that no disproportionate expense need
`be borne by a particular array. Perhaps newly devised
`design automation procedures could translate from logic
`
`diagram to technological realization without any special
`engineering.
`to build large
`It may prove to be more economical
`systems out of smaller functions, which are separately pack-
`aged and interconnected. The availability of large functions,
`combined with functional design and construction, should
`allow the manufacturer of large systems to design and
`construct a considerable variety of equipment both rapidly
`and economically.
`
`IX. LINEAR CIRCUITRY
`Integration will not change linear systems as radically as
`digital systems. Still, a considerable degree of integration
`will be achieved with linear circuits. The lack of large-
`value capacitors and inductors is the greatest fundamental
`limitation to integrated electronics in the linear area.
`By their very nature, such elements require the storage
`of energy in a volume. For high
`it is necessary that the
`volume be large. The incompatibility of large volume and
`integrated electronics is obvious from the terms themselves.
`Certain resonance phenomena, such as those in piezoelec-
`tric crystals, can be expected to have some applications for
`tuning functions, but inductors and capacitors will be with
`us for some time.
`The integrated RF amplifier of the future might well con-
`sist of integrated stages of gain, giving high performance
`at minimum cost, interspersed with relatively large tuning
`elements.
`Other linear functions will be changed considerably. The
`matching and tracking of similar components in integrated
`structures will allow the design of differential amplifiers of
`greatly improved performance. The use of thermal feedback
`effects to stabilize integrated structures to a small fraction
`of a degree will allow the construction of oscillators with
`crystal stability.
`Even in the microwave area, structures included in the
`definition of integrated electronics will become increasingly
`important. The ability to make and assemble components
`small compared with the wavelengths involved will allow
`the use of lumped parameter design, at least at the lower
`frequencies. It is difficult to predict at the present time
`just how extensive the invasion of the microwave area by
`integrated electronics will be. The successful realization of
`such items as phased-array antennas, for example, using a
`multiplicity of integrated microwave power sources, could
`completely revolutionize radar.
`
`84
`
`PROCEEDINGS OF THE IEEE, VOL. 86, NO. 1, JANUARY 1998
`
`Raytheon2023-0003
`
`
`
`

`
`G. E. Moore is one of the new breed of elec-
`tronic engineers, schooled in the physical sci-
`ences rather than in electronics. He earned a B.S.
`degree in chemistry from the University of Cal-
`ifornia and a Ph.D. degree in physical chemistry
`from the California Institute of Technology. He
`was one of the founders of Fairchild Semicon-
`ductor and has been Director of the research and
`development laboratories since 1959.
`
`MOORE: CRAMMING COMPONENTS ONTO INTEGRATED CIRCUITS
`
`85
`
`Raytheon2023-0004

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket