throbber
Patent Owner’s Demonstratives
`
`IPR2015-01121, -23, -24, -25
`Umicore AG & CO. KG v. BASF Corporation
`(Oral Hearing – July 28, 2016)
`
`1
`
`

`
`Metal-Exchanged Zeolite Catalysts
`
`2
`
`

`
`Zeolite Overview
`
`• Crystalline framework materials that contain pores of a molecular size.
`• Framework types are cataloged by the IZA.
`
`Framework
`
`Materials
`chabazite (natural)
`SSZ‐13
`SSZ‐62
`
`Pore Size
`3.8 Angstroms
`
`Ring Structure
`8‐ring
`
`faujasite (natural)
`zeolite‐Y
`
`7.4 Angstroms
`
`12‐ring
`
`Ex. 2018, ¶¶56‐61
`
`3
`
`

`
`Zeolite SCR Catalysts: Pre-662 Patent
`
`“Indeed, several unresolved problems limit the outlook for 
`successful use of zeolites in automotive converters: (i) 
`hydrothermal stability, (ii) sensitivity to poisoning….A low 
`hydrothermal stability, in particular, is the more critical 
`weakness of copper‐containing zeolites.”
`
`Ex. 2012.005 (1995)
`
`1975
`
`1980
`
`1985
`
`1990
`
`1995
`
`2000
`
`2005
`
`2010
`
`2015
`
`4
`
`

`
`Zeolite SCR Catalysts: Pre-662 Patent
`
`“The catalyst was tested for durability in both wet and sulphur containing gases, but 
`even water had a negative long‐term effect on the catalyst and its applicability must 
`be regarded as rather low.  One can be quite pessimistic about the use of zeolites 
`for several reasons:
`(i) The catalyst types have been tested in the SCR reaction since the eighties 
`without a commercial breakthrough.
`(ii) Zeolites have been extensively tested in the so‐called HC‐SCR reaction with 
`insufficiently long‐term stability….
`
`Ex. 2026.006 (2004)
`
`1975
`
`1980
`
`1985
`
`1990
`
`1995
`
`2000
`
`2005
`
`2010
`
`2015
`
`5
`
`

`
`Zeolite SCR Catalysts: Pre-662 Patent
`
`“The aim of this study was to obtain knowledge 
`about the activity of zeolite‐based catalysts in 
`the NH3‐SCR reaction with excess of oxygen. 
`The limited hydrothermal stability of zeolites 
`may restrict their use.”
`
`Ex. 2021.002 (2004)
`
`1975
`
`1980
`
`1985
`
`1990
`
`1995
`
`2000
`
`2005
`
`2010
`
`2015
`
`6
`
`

`
`Zeolite SCR Catalysts: Pre-662 Patent
`
`“Consequently, achieving hydrothermal stability of the catalyst is a critical issue in 
`the commercial application of urea SCR technology to the exhaust stream from diesel 
`engines.” 
`
`“CuZSM5 has been reported as one of the most promising catalysts for the SCR of 
`NOx from light‐ and heavy‐ duty diesel engines with urea. However, the 
`hydrothermal stability of the catalyst is another critical issue to be resolved for the 
`commercial application of urea SCR technology to automotive engines. CuZSM5 after 
`hydrothermal aging under simulated flue gas stream at temperature above 600° C 
`with 10% water reveals significant catalyst deactivation. 
`
`Ex.2024.001, .010 (2006)
`
`1975
`
`1980
`
`1985
`
`1990
`
`1995
`
`2000
`
`2005
`
`2010
`
`2015
`
`7
`
`

`
`Zeolite SCR Catalysts: Pre-662 Patent
`
`“Although metal‐exchanged zeolites have proven to be very active SCR catalysts, using these 
`materials in exhaust after‐treatment systems on diesel vehicles is a difficult task. One of the 
`challenges for the practical application of SCR catalysts is their durability under hydrothermal 
`conditions. Fe‐ZSM‐5 catalysts, for instance, have been reported to be very stable even in the 
`presence of H2O, but at temperatures above 500° C deactivation is always observed.”
`
`“One of the major requirements for the practical application of zeolites in the SCR process is 
`their durability under hydrothermal conditions, which is not yet sufficient. There is no 
`guarantee that a zeolite‐based catalyst will be found that meets all of the diverse requirements 
`for future SCR systems on diesel vehicles. Research is now targeting catalysts that combine 
`both high activity at low temperatures and hydrothermal stability at high temperatures.”
`
`Ex. 2022.016, .029 (2008)
`
`1975
`
`1980
`
`1985
`
`1990
`
`1995
`
`2000
`
`2005
`
`2010
`
`2015
`
`8
`
`

`
`Zeolite SCR Catalysts: Post-662 Patent
`
`“Improvements in the thermal durability of Cu/zeolite based SCR formulations has 
`been highly desirable and pursued by many research institutes and catalyst 
`suppliers.”
`
`“In this work, a laboratory flow reactor was utilized to hydrothermally age and 
`evaluate the latest state‐of‐the‐art Cu/zeolite formulations.  Results confirm 
`remarkable high temperature stability up to 950 °C while maintaining stable low 
`temperature NOx activity.  A broad range of time‐at‐temperature hydrothermal aging 
`was carried out to clearly define the full durability range.  The aging time was varied 
`from 1  hour to 256 hours while aging temperature was varied from 670 °C to 1100 
`°C.” 
`Ex. 2002.001‐.002 (2008)
`
`1975
`
`1980
`
`1985
`
`1990
`
`1995
`
`2000
`
`2005
`
`2010
`
`2015
`
`9
`
`

`
`Zeolite SCR Catalysts: Post-662 Patent
`
`“In the very recent patent literature, Cu2+ ion‐exchanged SSZ‐13 (Cu‐SSZ‐13) has 
`been reported to exhibit NOx conversions of 90‐100% over a wide temperature 
`range in the NH3‐SCR process, and its activity exceeded 80% even after extensive 
`high‐temperature hydrothermal aging [9].  The SSZ‐13 has chabazite (CHA) 
`structure with a relatively small pore radius (~3.8 A) in an eight‐membered ring 
`[10].”
`
`“Our results confirm that the activity and selectivity of the Cu‐SSZ‐13 catalyst for 
`both NOx SCR with NH3 and NH3 oxidation are superior to those of both Cu‐beta 
`and Cu‐ZSM‐5.”
`Ex. 2014.001 (2010)
`
`1975
`
`1980
`
`1985
`
`1990
`
`1995
`
`2000
`
`2005
`
`2010
`
`2015
`
`10
`
`

`
`Non-CHA Framework Types: Pre-662 Patent
`
`Ex. 2029.001
`MFI
`
`Ex. 2031.001
`MFI
`
`Ex. 2030
`FAU (zeolite‐Y)
`MFI (ZSM‐5)
`
`Ex. 2025.001
`MOR (mordenite)
`
`Ex. 2022.027
`MFI, MOR, BEA, 
`FER
`
`Ex. 2032.001
`MFI
`
`Exs. 2023.001
`MFI
`
`Ex. 2021.002
`MFI, MOR, FAU
`FER (ferrierite)
`
`1975
`
`1980
`
`1985
`
`1990
`
`1995
`
`2000
`
`2005
`
`2010
`
`2015
`
`11
`
`

`
`CHA Framework Type: Pre-662 Patent
`
`MOR
`ERI
`NAT
`CHA
`FAU
`
`Ex. 1002 at 4:6‐12, 36‐38 
`
`1975
`
`1980
`
`1985
`
`1990
`
`1995
`
`2000
`
`2005
`
`2010
`
`2015
`
`12
`
`

`
`CHA Framework Type: Pre-662 Patent
`
`“…it appears that SO2 poisoning has both short term and long term effects. For 
`example, flowing a gas stream containing 2,000 parts per million by volume 
`("Vppm") SO2 through catalysts comprising copper‐promoted small to medium 
`pore zeolites such as…naturally occurring chabazite…resulted in 10 to 40 percent 
`reduction in SCR process activity.  Even at So2 levels as low as 130 Vppm SO2, 
`significant activity reduction for the SCR process was noted for such catalysts.”
`
`“A 60 percent reduction in SCR process activity is typical for Fe2O3 containing 
`natural chabazite.”
`
`“It has been found that zeolites which are highly resistant to sulfate poisoning 
`and provide good activity….are zeolites which have pores which exhibit a pore 
`diameter of at least about 7 Angstroms and are interconnected in three 
`dimensions.”
`
`Ex. 1010 at 4:62‐68, 5:23‐25 6:12‐20 
`
`1975
`
`1980
`
`1985
`
`1990
`
`1995
`
`2000
`
`2005
`
`2010
`
`2015
`
`13
`
`

`
`CHA Framework Type: Pre-662 Patent
`
`“Also provided by the present invention is an improved process for the 
`reduction of oxides of nitrogen contained in a gas stream in the 
`presence of oxygen wherein said process comprises contacting the gas 
`stream with a zeolite, the improvement comprising using as the zeolite 
`a zeolite having the CHA crystal structure, a mole ratio greater than 
`about 10 of silicon oxide to aluminum oxide and having a crystallite size 
`of 0.5 micron or less. The zeolite may contain a metal or metal ions 
`(such as cobalt, copper or mixtures thereof) capable of catalyzing the 
`reduction of the oxides of nitrogen, and may be conducted in the 
`presence of a stoichiometric excess of oxygen. In a preferred 
`embodiment, the gas stream is the exhaust stream of an internal 
`combustion engine.”
`
`Ex. 1004 at 1:54‐67
`
`1975
`
`1980
`
`1985
`
`1990
`
`1995
`
`2000
`
`2005
`
`2010
`
`2015
`
`14
`
`

`
`CHA Framework Type: Post-662 Patent
`
`Ex. 2002
`Cavataio, G., et al. “Enhanced Durability of a Cu/Zeolite 
`Based SCR Catalyst,” SAR Int. J. Fuels. Lubr., Vol. 1, Issue 1.
`
`Ex. 2014
`Kwak, J., et al., “Excellent Activity and Selectivity of Cu‐SSZ‐13 in the 
`Selective Catalytic Reduction of NOx with NH3,” Journal of Catalysis.
`
`Ex. 2020
`
`Gao F., et al., “Effects of Si/Al ratio on Cu/SSZ‐13 NH3‐SCR catalysts: 
`Implications for the active species and the roles of Bronsted acidity,” 
`Journal of Catalysis.
`
`2005
`
`2010
`
`2015
`
`15
`
`

`
`’662 and ’203 Patents
`
`16
`
`

`
`• Claim 1 (catalyst):
`– aluminosilicate CHA
`– SAR: 15-150
`– Cu/Al: 0.25-1
`– NH3-SCR of NOx
`• Dep. Claims 2-8:
`– SAR: 15-100, 25-40, 30
`– Cu/Al: 0.30-0.50, 0.40
`
`’662 Claims
`
`• Dep. Claims 12-14, 32, 39, 40
`– Catalyst deposited on substrate
`• Dep. Claims 15-20, 41-46
`– Substrate coated with CuCHA,
`or coated with Pt and CuCHA
`• Dep. Claims 21-24, 47-50
`– Catalyst disposed downstream
`of a diesel engine
`• Dep. Claims 33-38
`– Exhaust gas treatment system
`including catalyzed soot filter
`and diesel oxidation catalyst
`located upstream of the CuCHA
`catalyst
`
`17
`
`

`
`Properties of the Claimed CuCHA Catalyst
`
`Example 1 of ’662 Patent
`SAR = 30, Cu/Al = 0.30
`
`Example 2 of ’662 Patent
`SAR = 30, Cu/Al = 0.33
`
`18
`
`

`
`Criticality of Claimed Ranges: Cu/Al
`
`Ex. 2018 at ¶149
`
`19
`
`

`
`Criticality of Claimed Ranges: Cu/Al
`
`Ex. 2018 at ¶148
`
`20
`
`

`
`Criticality of Claimed Ranges: SAR
`
`Ex. 2018 at ¶150
`
`21
`
`

`
`Properties of Prior Art CuCHA
`
`Natural Chabazite
`SAR 6.3, Cu/Al 0.32
`
`Synthetic Chabazite
`SAR 4.5, Cu/Al 0.33
`
`Ex. 2011 at ¶¶11‐14
`
`22
`
`

`
`Properties of Prior Art Cu-Y, Cu-Beta, and Cu-ZSM
`
`“Our results confirm that the activity and selectivity 
`of the Cu‐SSZ‐13 catalyst for both NOx SCR with NH3
`and NH3 oxidation are superior to those of both Cu‐
`beta and Cu‐ZSM‐5.”
`
`Ex. 2014.001 (2010)
`
`Cu‐Y
`Cu‐Beta
`
`23
`
`

`
`Zones in view of Maeshima
`(’662 Claims 1-8, 30)
`(’203 Claims 1, 14, 15, 17-22, 26, 27)
`
`24
`
`

`
`Zones ’644: Small Crystal Size CHA Zeolite
`
`Ex.1004 at 1:5‐15
`
`25
`
`

`
`Zones ’644: General Disclosure Regarding Processes
`
`“converting lower alcohols and other oxygenated hydrocarbons”
`Ex.1004 at 1:46‐53, 5:17‐35, 7:4‐23
`
`“catalyzing the reduction of oxides of nitrogen, and may be conducted in the 
`presence of a stoichiometric excess of oxygen”
`Ex.1004 at 1:61‐65
`
`“as a catalyst to prepare dimethylamine”
`
`Ex.1004 at 5:36‐64
`
`“SSZ‐62 can also be used to separate gasses”
`
`Ex.1004 at 5:66‐6:2
`
`26
`
`

`
`Zones ’644: General Disclosure Regarding Processes
`
`“Also provided by the present invention is 
`an improved process for the reduction of 
`oxides of nitrogen contained in a gas 
`stream in the presence of oxygen wherein 
`said process comprises contacting the gas 
`stream with a zeolite, the improvement 
`comprising using as the zeolite a zeolite 
`having the CHA crystal structure, a mole 
`ratio greater than about 10 of silicon oxide 
`to aluminum oxide and having a crystallite 
`size of 0.5 micron or less. The zeolite may 
`contain a metal or metal ions (such as 
`cobalt, copper or mixtures thereof) capable 
`of catalyzing the reduction of the oxides of 
`nitrogen, and may be conducted in the 
`presence of a stoichiometric excess of 
`oxygen. In a preferred embodiment, the 
`gas stream is the exhaust stream of an 
`internal combustion engine.”
`
`Ex.1004 at 1:54‐67
`
`‐ Reduction of NO without reducing agents
`‐ Decomposition of NO in presence of oxygen
`‐ N2O decomposition
`‐ NH3‐SCR of NOx
`‐ HCR‐SCR of NOx
`
`Ex.2009 at ¶8
`Ex.2018 at ¶79
`Ex.2027 at 37:19‐38:22  
`
`27
`
`

`
`Zones ’644: No Disclosure of Using SSZ-62 for NH3-SCR of NOx
`
`Ex. 2006.026-.027
`
`28
`
`

`
`Zones ’644: No Disclosure of the Properties of
`SSZ-62 for the SCR of NOx
`
`Reduction of NOx
`
`Converting Methanol
`“The catalyst gives greater than 90% 
`selectivity for C2‐C4 olefins and does 
`not show methanol breakthrough for 
`greater than 15 hours. Prior art 
`catalysts with larger crystallite sizes 
`than SSZ‐62 (like SSZ‐13 with a 
`crystallite size of about 1.2 microns 
`and a silica/alumina mole ratio of 
`about 9 or 18) show breakthrough at 
`about 5 hours on stream under these 
`conditions. The smaller crystallite SSZ‐
`62 gives superior performance in this 
`application.”
`
`Ex.1004 at 7:16‐23
`
`Ex.1004
`
`29
`
`

`
`Zones ’644 Compared to Byrne
`
`Byrne
`“…copper‐promoted small to medium 
`pore zeolites such…naturally occurring 
`chabazite…resulted in 10 to 40 
`percent reduction in SCR process 
`activity.  Even at SO2 levels as low as 
`130 Vppm SO2, significant activity 
`reduction for the SCR process was 
`noted for such catalysts. On the other 
`hand, larger pore zeolites such as Y, L 
`and USY exhibited no short‐term SO2
`susceptibility….A 60 percent reduction 
`in SCR process activity is typical for 
`Fe2O3 containing natural chabazite.”
`
`Ex.1010 at 4:65‐5:26
`
`Zones ’644
`“…a zeolite having the CHA crystal 
`structure, a mole ratio greater than 
`about 10 of silicon oxide to aluminum 
`oxide and having a crystallite size of 0.5 
`micron or less. The zeolite may contain 
`a metal or metal ions (such as cobalt, 
`copper or mixtures thereof) capable of 
`catalyzing the reduction of the oxides 
`of nitrogen, and may be conducted in 
`the presence of a stoichiometric excess 
`of oxygen.”
`
`Ex.1004 at 1:61‐65
`
`30
`
`

`
`Maeshima: NH3-SCR of NOx in Stationary Source
`
`Ex.1002 at 2:9‐21
`
`31
`
`

`
`Maeshima: Temperature Limitations
`
`Ex.1002 at 3:23‐32
`
`32
`
`

`
`Maeshima: Zeolite Frameworks
`
`Ex.1002 at 4:6‐35
`
`33
`
`

`
`Maeshima: Use Low SAR, Large Pore Size Zeolite
`Frameworks
`
`Ex.1002 at 4:36‐43
`
`34
`
`

`
`Maeshima: Metal Ions
`
`Ex.1002 at 6:1‐7
`
`35
`
`

`
`Maeshima: Ion Exchange Ratio Not Critical
`
`Ex.1002 at 4:44‐50
`
`36
`
`

`
`Petitioner Assumes That CuCHA Is Used For
`NH3-SCR of NOx
`
`Ex. 1008, Lercher Decl. at ¶ 152
`
`37
`
`

`
`Petitioner Asserts That Increasing Cu/Al Ratio
`Predictably Enhances Zeolite Properties
`
`Ex. 1008, Lercher Decl. at ¶ 153
`
`38
`
`

`
`Petitioner’s Evidence of Predictability
`
`39
`
`

`
`Unpredictability of Increasing Amount of Copper
`
`40
`
`

`
`Unpredictability of Increasing Amount of Copper
`
`• Ex. 2012.005 (1995)
`– “A low hydrothermal stability, in particular, is the more critical
`weakness of copper-containing zeolites.”
`• Ex. 2002.001 (2008)
`– “Fe/zeolite formulations are known to exhibit superior hydrothermal
`stability over Cu/zeolite formulation”
`• Ex. 2022.026 (2008)
`– “Iron-exchange ZSM-5 has received much attention because of its
`promising activity and stability in the NH3-SCR process. The SCR
`activity of Fe-ZSM-5 has even shown to exceed that of the
`established commercial V2O5-WO3-TiO2 catalysts. Cu-containing
`zeolites are also very active, though they suffer from low
`hydrothermal stability and high NH3 oxidation activity.”
`
`41
`
`

`
`Petitioner Correlates The Metal Percentages in
`Zones and Maeshima
`
`Ex. 1008, Lercher Decl. at ¶ 157
`
`42
`
`

`
`Zones ’644: Metal Weight Unrelated to SCR of NOx
`
`Ex.1004 at 1:5‐15
`
`43
`
`

`
`Petitioner Asserts That Zones and Maeshima Are
`Directed To The Same Problem
`
`Ex. 1008, Lercher Decl. at ¶ 158
`
`44
`
`

`
`Petitioner Asserts That Improving Zeolite SCR
`Performance is Simple and Straightforward
`
`Ex. 1008, Lercher Decl. at ¶ 159
`
`45
`
`

`
`Zones ‘538: Metal-Exchanged High SAR, CHA Zeolite
`
`• Metal-exchanged high SAR synthetic CHA zeolite was
`known in the art two decades before Zones ’644
`
`“Usually, it is desirable to remove 
`the alkali metal cation by ion 
`exchange and replace it with 
`hydrogen, ammonium, or any 
`desired metal ion.”
`
`Ex.1016 at 5:41‐44
`
`“SSZ‐13 zeolites can have a 
`YO2:W2O3 mole ratio greater 
`than about 5:1.  As prepared, 
`the silica:alumina mole ratio 
`is typically in the range of 8:1 
`to about 50:1; higher mole 
`ratios can be obtained by 
`varying the relative ratios of 
`reactants.”
`
`Ex.1016 at 2:53‐58
`
`46
`
`

`
`Timeline Does Not Support Petitioner’s Assertion
`
`“The elapsed time between the prior art and the ’013 patent’s filing date evinces that the 
`’031 patent’s claimed invention was not obvious to try.  Indeed this considerable time lapse 
`suggests instead that the Board only traverses the obstacles to this inventive enterprise 
`with resort to hindsight.”
`
`Leo Pharm. Prods. v. Rea, 726 F.3d 1346, 1356‐1357 (Fed. Cir. 2013)
`
`Maeshima
`
`Zones ’538
`
`Publications describing the 
`problem limiting usefulness of 
`metal exchanged zeolites
`
`’662 Patent
`
`1975
`
`1980
`
`1985
`
`1990
`
`1995
`
`2000
`
`2005
`
`2010
`
`2015
`
`47
`
`

`
`Zones + Maeshima + Patchett 843
`(’662 Claims 12-24, 32-50)
`(’203 Claims 2-13, 16, 23-25, 28-31)
`
`48
`
`

`
`Petitioner Acknowledges The Zeolite
`Requirements Specified in Patchett ’843
`
`Ex. 1008, Lercher Decl. at ¶ 246
`
`49
`
`

`
`Petitioner Asserts That Patchett ’843 Would
`Direct POSITA to CHA Zeolite
`
`Ex. 1008, Lercher Decl. at ¶¶ 249‐250
`
`50
`
`

`
`Patchett ’843 Teaches Away from CHA Zeolites
`
`Ex.1005 at [0066]
`
`51
`
`

`
`Patchett ’843 Teaches Away from CHA Zeolites
`
`Ex.1005 at [0065]
`
`52
`
`

`
`Patchett ’843 Teaches Away from CHA Zeolites
`
`• Speronello (Ex. 1011 at 6:43-59)
`– “Specifically, an average pore size of about 7 Angstroms or
`more, e.g., about 7 to about 8 Angstroms is preferred for
`enhanced resistance to sulfur poisoning…[A] particularly
`suitable class of such sulfur-resistant zeolite materials is
`comprised of Beta zeolites, ultrastable Y (“USY”) zeolites, and
`ZSM-20 zeolites.”
`
`53
`
`

`
`Patchett ’843 Teaches Away from CHA Zeolites
`
`• Byrne (Ex. 1010 at 4:57-5:26, 6:12-32)
`– “For example, flowing a gas stream containing 2,000 parts per million by
`volume ("Vppm") SO2 through catalysts comprising copper-promoted small to
`medium pore zeolites such as ZSM-5, naturally occurring chabazite and
`clinoptilolite, resulted in 10 to 40 percent reduction in SCR process activity.
`Even at SO2 levels as low as 130 Vppm SO2, significant activity reduction for
`the SCR process was noted for such catalysts.….In the case of the small to
`medium pore zeolites, this competition absorption with NH3 and NO probably
`results in a physical blockage and/or diffusional restriction….A 60 percent
`reduction in SCR process activity is typical for Fe2 O3 containing natural
`chabazite.”
`– “It has been found that zeolites which are highly resistant to sulfate poisoning
`and provide good activity for both the SCR process ….are zeolites which
`have pores which exhibit a pore diameter of at least about 7 Angstroms and
`are interconnected in three dimensions….[S]pecific zeolites which meet
`these criteria are USY, Beta, and ZSM-20.”
`
`54
`
`

`
`Petitioner Disregards Relevant Parts of Prior Art
`
`“This type of reasoning—where relevant parts of the 
`reference are disregarded for the proposed 
`combination without sufficient explanation of why a 
`person of ordinary skill would do so—is precisely the 
`type of hindsight reasoning that must be rejected.”
`Oracle Corp., et al., v. Crossroads Systems, Inc., IPR2014‐01207, Paper 78 at 37 (Jan. 29, 2016)
`
`55
`
`

`
`Patchett ’514: Wall Flow Filter
`
`•
`•
`
`’662 claims 13, 18-20, 23, 24, 39, 44-46, 49, 50
`’203 claims 5-7, 24, 30
`
`Ex.1006 at [0011]
`
`56
`
`

`
`Zones ’644 and Maeshima: No Disclosure of
`Stability at High Temperatures
`
`Maeshima
`“As the reaction conditions, there may be 
`adopted a reaction temperature of about 
`200° to about 500° C, preferably about 
`250° to about 400° C, and a gas space 
`velocity of about 2,000 to about 100,000 
`V/H/V, preferably about 5,000 to about 
`30,000 V/H/V. Since the activity of the 
`ammonia reduction of nitrogen oxides is 
`lowered at higher or lower temperatures, 
`good results are obtained when a mixture 
`of the exhaust gas and ammonia is 
`contacted with the catalyst bed at a 
`temperature within the above‐mentioned 
`range.”
`Ex.1004 at 7:16‐23
`
`Zones ’644
`
`Ex.1004
`
`57
`
`

`
`Zones ’644 and Maeshima: No Disclosure of
`Stability at High Temperatures
`
`Maeshima
`As the reaction conditions, there may be 
`adopted a reaction temperature of about 
`200° to about 500° C., preferably about 
`250° to about 400° C…Since the activity of 
`the ammonia reduction of nitrogen oxides 
`is lowered at higher or lower temperatures, 
`good results are obtained when a mixture 
`of the exhaust gas and ammonia is 
`contacted with the catalyst bed at a 
`temperature within the above‐mentioned 
`range.
`
`Petitioner’s Expert on Zones
`Q: A slightly broader question: Does the 
`Zones patent specifically recognize the 
`problem of hydrothermal stability of a 
`zeolite for the SCR of NOX?
`[Form Objection]
`A: I do understand your question, but you're 
`asking whether Zones is referring to the 
`problem of hydrothermal stability with 
`respect to NOX removal.
`Q: Yes.
`A:  I do not see this in this document.
`
`Ex. 1002 at 3:23‐32
`
`Ex. 2027 at 48:5‐17
`
`58
`
`

`
`Maeshima + Breck
`(’662 Claims 1, 2, 5, 6, 30)
`(’203 Claims 1, 14, 15, 19, 20, 26, 27)
`
`59
`
`

`
`Breck: Dealumination of Zeolites
`
`Ex. 2018 at ¶93
`
`60
`
`

`
`Breck: Dealuminating Zeolites
`
`Ex. 2018 at ¶96
`
`61
`
`

`
`Breck: Aluminum Removal Inefficient for Chabazite
`
`Ex.1003 at 38:44‐48
`
`62
`
`

`
`Maeshima: Zeolite Frameworks
`
`Ex.1002 at 4:6‐35
`
`63
`
`

`
`Maeshima: Use Low SAR, Large Pore Size
`Zeolite Frameworks
`
`Ex.1002 at 4:36‐43
`
`64
`
`

`
`Petitioner Asserts That Dealumination Will Not
`Detrimentally Impact Zeolite Activity
`
`Ex. 1108, Lercher Decl. at ¶¶ 166‐167
`
`65
`
`

`
`Dr. Lercher Cross-Examination
`
`Q: Does de-aluminating the zeolite impact the activity or stability of
`the zeolite?
`A: It impacts both. As we have said before, the concentration of
`aluminum in the lattice determines how many ion exchange positions
`you have, or in the case of an acid material, how many protons you
`have. Therefore, the rates that you have are in the first
`approximation directly proportional to that concentration. In opposite,
`for gas phase reactions, the concentration of aluminum has an
`adverse effect on the hydrothermal stability of that zeolite in two
`ways: One is you remove a particular aluminum out of that lattice.
`That means when you treat it by steam, you just have less elements.
`On the other side, if you have -- like, you should see that lattice like a
`building. If you remove too many bricks, your whole building
`collapses, so structures of that zeolite collapse.
`Q: So, in a sense, de-illuminating the zeolite can decrease the
`activity but may improve the stability?
`A: Yes.
`
`Ex. 2027 at 94:23‐95:25
`
`66
`
`

`
`Dr. Tsapatsis Declaration
`
`Ex. 2018 at ¶122
`
`67
`
`

`
`Dr. Tsapatsis Declaration
`
`Ex. 2018 at ¶123
`
`68
`
`

`
`Maeshima: Starting SAR
`
`Ex.1002 at 4:36‐43
`
`69
`
`

`
`Breck: Increasing SAR of Chabazite is Not Efficient
`
`Ex.1003 at 38:1‐10
`
`Ex.1003 at 38:44‐48
`
`70
`
`

`
`Petitioner Asserts That Breck and Maeshima Are
`Directed To The Same Problem
`
`Ex. 1108, Lercher Decl. at ¶ 169
`
`71
`
`

`
`Petitioner Asserts That Increasing SAR
`Predictability Increases SCR Activity
`
`Ex. 1108, Lercher Decl. at ¶¶ 411‐421
`
`72
`
`

`
`Prior Art: Increasing SAR Can Decrease Activity
`
`Ex.2025.001
`
`Ex.2025.012
`
`73
`
`

`
`Prior Art: Increasing SAR Can Decrease Activity
`
`Ex.2023.004
`
`74
`
`

`
`Petitioner Asserts That Improving Zeolite SCR
`Performance is Simple and Straightforward
`
`Ex. 1108, Lercher Decl. at ¶ 170
`
`75
`
`

`
`Timeline Does Not Support Petitioner’s Assertion
`
`“The elapsed time between the prior art and the ’013 patent’s filing date evinces that the 
`’031 patent’s claimed invention was not obvious to try.  Indeed this considerable time lapse 
`suggests instead that the Board only traverses the obstacles to this inventive enterprise 
`with resort to hindsight.”
`
`Leo Pharm. Prods. v. Rea, 726 F.3d 1346, 1356‐1357 (Fed. Cir. 2013)
`
`Maeshima
`
`Breck
`
`Publications describing the 
`problem limiting usefulness of 
`metal exchanged zeolites
`
`’662 Patent
`
`1975
`
`1980
`
`1985
`
`1990
`
`1995
`
`2000
`
`2005
`
`2010
`
`2015
`
`76
`
`

`
`Dedecek + Breck
`(’662 Claims 1, 2, 5, 6, 30)
`(’203 Claims 1, 14, 15, 19, 20, 26, 27)
`
`77
`
`

`
`Dedecek: Study About Cu+ Ion Siting
`
`• Title: Siting of the Cu+ ions in dehydrated ion
`exchanged and natural chabasites: a Cu+
`photoluminescence study
`
`Ex.1007.001
`
`78
`
`

`
`Dedecek: ZSM-5 for SCR of NOx
`
`“Zeolites containing Cu ions attract attention owing to their high catalytic 
`activity in NO [1‐5] and N2O decomposition [6] and selective catalytic 
`reduction (SCR) of NO with ammonia [7‐9] and hydrocarbons [10‐12].”
`
`Ex.1007.001
`
`MFI framework
`[ZSM‐5]
`
`79
`
`Ex.2028, 2029, 2030
`
`

`
`Petitioner’s Expert Testimony Regarding Dedecek
`
`Q: Do you agree that there is no discussion, teaching or data in
`Dedecek regarding the use of copper chabazite in any one of those
`reactions?
`[Form Objection]
`A: Dedecek describes materials; he does not address reactions.
`Q: Okay.
`A: He links to those reactions through his introduction.
`Q: That’s the only place --
`A: That’s the only place.
`Q: -- in the first sentence of page 1?
`A: Yes.
`
`Ex.2027 at 79:12‐25
`
`80
`
`

`
`Petitioner Asserts That Dealumination Will Not
`Detrimentally Impact Zeolite Activity
`
`Ex. 1108, Lercher Decl. at ¶ 345
`
`81
`
`

`
`Dedecek: Starting SAR
`
`Ex. 1108 at ¶276
`
`82
`
`

`
`Petitioner Asserts That Dedecek Contemplates
`Higher SAR
`
`Ex. 1108, Lercher Decl. at ¶ 339
`
`83
`
`

`
`Petitioner Asserts That Breck and Maeshima Are
`Directed To The Same Problem
`
`Ex. 1108, Lercher Decl. at ¶ 347
`
`84
`
`

`
`Maeshima/Dedecek + Breck +
`Patchett ’843
`(’662 Claims 12-24, 32-50)
`(’203 Claims 2-13, 16, 23-25, 28-31)
`
`85
`
`

`
`Secondary Considerations
`
`86
`
`

`
`Commercial Success: Product Specification
`
`• BASF’s CuCHA Product (Ex. 2019)
`– SAR: 28-34 (target 31)
`– Cu/Al: 0.38-0.42
`– NH3-SCR of NOx in diesel engine
`– Sold on flow-through substrate or wall-flow filter
`• Claims Practiced (Ex. 2018 at ¶ 175-177)
`– 662 Claims: 1-8, 12-15, 18, 21, 23, 39, 40, 41, 44, 47, 50
`– 203 Claims: 1-3, 5, 6, 14-24, 26-30
`• Market Size and Share
`– Ex. 2034 (Schmidt Declaration)
`
`87
`
`

`
`Commercial Success: Market Size and Share
`
`- Estimated Global Diesel SCR Market (Ex. 2034):
`
`Total Global SCR Market b Units Sold Qn million)
`
`- CuCHA Estimate Market Share (Ex. 2034)
`
`— 2 (combined BASF and 662 licensee)
`
`

`
`
`
`
`
`CERTIFICATE OF SERVICE
`
`The undersigned hereby certifies that on July 25, 2016 the foregoing
`
`PATENT OWNER’S DEMONSTRATIVES FOR THE 2015-01121, 2015-01123,
`
`2015-01124 AND 2015-01125 was served via electronic mail, upon the following:
`
`Elizabeth Gardner
`Richard L. DeLucia
`K. Patrick Herman
`A. Anthony Pfeffer
`Orrick, Herrington & Sutcliffe LLP
`51 West 52nd Street
`New York, NY 10019-6142
`egardner@orrick.com
`rdelucia@orrick.com
`pherman@orrick.com
`apfeffer@orrick.com
`
`/s/ Timothy J. Andersen i
`Timothy J. Andersen
`Case Manager
`Weil, Gotshal & Manges LLP
`1300 Eye Street NW, Suite 900
`Washington, DC 20005
`T: 202-682-7075
`timothy.andersen@weil.com

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket