throbber
Progress in Medicinal Cheniistry - Val. 40.
`Series Editors: F.D. King and A.W. Oxford
`Guest Editors: A.B. Reitz and S.L. Dax
`( ' 2002 Elsevier Science B.V. All rights reserved
`
`1 The Discovery and Development
`of Atorvastatin, a Potent Novel
`Hypolipidemic Agent
`
`BRUCE D. ROTH*
`
`Department qf Chemistry, Pfizer- Global Research and Development,
`Ann Arbor Laboratories, 2800 Plymouth Road, Ann Arbor,
`MI 481 70, U.S.A.
`
`ABSTRACT
`
`The search for potent and efficacious inhibitors of the enzyme HMC-CoA re-
`ductase (HMGRI) was the focus of considerable research in the 1980s. Building
`on the discovery of the fungal metabolite-derived inhibitors, mevastatin, lo-
`vastatin, pravastatin and simvastatin, a number of totally synthetic inhibitors
`were discovered and developed. This manuscript describes the discovery and
`development of one of those synthetic inhibitors, atovastatin calcium, currently
`marketed in the United States as LIPITOR". This inhibitor was designed based
`in part on molecular modeling comparisons of the structures of the fungal
`metabolites and other synthetically derived inhibitors. In addition to develop-
`ment of the structure-activity relationships which led to atorvastatin calcium,
`another critical aspect of the development of this area was the parallel im-
`provement in the chemistry required to prepare compounds of the increased
`synthetic complexity needed to potently inhibit this enzyme. Ultimately, the
`development of several chiral syntheses of enantiomerically pure atorvastatin
`calcium was accomplished through a collaborative effort between discovery
`and development. The impact of the progress of the required chemistry as well
`as external factors on internal decision-making with regards to the development
`of atorvastatin calcium will be discussed.
`
`*Tel (734) 622-7737; Fax (734) 622-3107
`
`1
`
`NCI Exhibit 2023
`Page 1 of 22
`
`

`
`2
`
`DISCOVERY AND DEVELOPMENT
`
`The biosynthesis of cholesterol from acetyl-CoA involves a process of more
`than 20 biosynthetic steps (Figure 1.1) [I]. This tightly controlled pathway is
`regulated by the levels of low-density lipoprotein (LDL)-receptors on liver cells
`as the means of ensuring whole-body cholesterol homeostasis [2]. It has been
`known since the late 1950’s and early 1960’s that inhibition of cholesterol
`biosynthesis was an effective means of lowering plasma cholesterol in both
`animals [3] and man [4]. What was unclear was whether it could be done
`safely. In fact there were many doubts based on the experience with the tri-
`paranol (MER-23, I, Figure 1.2) which caused cataracts in humans [5]. Despite
`this setback, the criteria for a safe and effective inhibitor of cholesterol bio-
`
`Acetyl CoA
`
`t
`
`HMO-COA
`
`Mevalonate
`
`lsopentenyl A Dimethallyl
`
`, I
`
`lsopentenyl
`Adenine
`(tRNA)
`
`t
`Farnesyl - proteins
`Pyrophosphate - Pyrophosphate
`
`ma pmtsln
`famesyrtmnsfererr
`
`famesylatd
`
`cis-prenyi
`trans fomae
`
`t
`t
`
`Ubiquinone
`
`Squalene
`
`+
`
`Cholesterol
`
`t
`
`Dolichol
`
`Figure
`
`I 1. The Cholesterol hio.synihelic pathway,
`
`NCI Exhibit 2023
`Page 2 of 22
`
`

`
`BRUCE D. ROTH
`
`3
`
`Figure 1.2. Tripurunol (MER-29).
`
`synthesis were clearly articulated by Curran and Azamoff in 1957 [6]. Their
`postulate was that safe inhibition could be achieved by blocking the pathway
`after the formation of acetoacetate, but prior to the formation of squalene.
`When in-depth mechanistic studies were performed with triparanol, not sur-
`prisingly, it was discovered that it broke this rule by inhibiting the pathway at
`the pentultimate step in the biosynthetic pathway, as evidenced by the accu-
`mulation of desmosterol in the plasma and tissues of patients treated with this
`drug [7]. Further studies demonstrated that it was also desmosterol which ac-
`cumulated in the lens of patients [8], emphasizing the potential dangers of
`inhibiting steps late in the biosynthetic pathway and causing medical concerns
`that would follow this area of research for decades. In fact, as recently as 1992,
`there were calls for a moratorium on the use of cholesterol-lowering drugs in
`primary prevention of myocardial infarction (MI) due to the lack of data from
`long-term clinical trials demonstrating a reduction not just in cardiovascular
`mortality, but in total mortality as well [9]. This concern was not completely
`alleviated until the results of the Scandinavian Simvastatin Survival Study were
`published in 1994 demonstrating reductions in total mortality with long-term
`statin treatment [lo].
`Despite the findings with triparanol, the search for cholesterol biosynthesis
`inhibitors continued unabated heled by the hope that inhibition pre-squalene
`would avoid the formation of non-metabolizable sterol intermediates, such as
`desmosterol, and result in a safe and effect treatment for hypercholester-
`olemia [I 1).
`The enzyme which became the focus of attention in the search for cholesterol
`biosynthesis inhibitors was 3-hydroxy-3-methylglutaryl-coenzyme A reductase
`(HMGR, EC 1.1.1.34),
`the rate-limiting and first committed step in the bio-
`synthetic pathway. This membrane-bound, endoplasmic reticulum localized
`enzyme catalyzes the two-step conversion of (S)-3-hydroxy-3-methylglutaryl-
`coenzyme A to 3-(R)-mevalonic acid through a putative hemi-thioacetal
`(Figure 1.3) [12]. Given that this hemi-thioacetal most likely represents a
`
`NCI Exhibit 2023
`Page 3 of 22
`
`

`
`4
`
`DISCOVERY A N D DEVELOPMENT
`
`transition-state intermediate, it should not have been surprising when screening
`of fermentation beers resulted in the isolation of compounds that closely mi-
`micked this structure.
`The first fermentation product identified was isolated almost simultaneously
`by two separate laboratories and given the name compactin (later changed to
`mevastatin) by the Beecham group, who isolated it as an antifungal from strains
`of the microorganism Penicillium brevicompactum and determined its mole-
`cular structure by x-ray crystallography (2, Figure 1.4) [ 131. The second group,
`from the Fermentation Research Laboratories at Sankyo, isolated the identical
`compound from cultures of Penicillium citrinum, but discovered it was a potent
`and competitive inhibitor of rat liver HMGR in vitro and sterol synthesis in
`vivo and gave it the code number ML-236B [14]. Further studies with ML-
`2368 demonstrated that it decreased serum total and LDL-cholesterol in dogs
`[ 151, monkeys [ 161, and human patients with heterozygous familial hyper-
`cholesterolemia [ 171. Shortly after the discovery of compactin, a second fungal
`metabolite (3), differing from compactin by a single methyl group was isolated
`from cultures of Aspergillus terreuS by workers at Merck [18] (and named
`mevinolin) and from Monascus ruber by the Sankyo group (and named
`Monacolin K) [19]. This compound was found to inhibit rat liver HMGR twice
`as potently as compactin (Ki of 0.6 nM vs 1.4 nM) [ 181 and was later renamed
`lovastatin. Ultimately, 3 would be the first HMGR inhibitor (HMGRI) approved
`by the U.S. Food and Drug Administration for the treatment of hypercholes-
`terolemia and would be marketed by Merck Sharpe and Dohme under the trade
`name Mevacot" . Two other potent fungal metabolite HMGRIs would ulti-
`mately become marketed drugs, pravastatin (4), produced by microbial hy-
`droxylation of compactin [20] and simvastatin (5) produced by synthetic
`modification of lovastatin [21]. Although all of these compounds were potent
`HMGR inhibitors and effective cholesterol-lowering agents, in the early 1980's
`concern over the viability of these compounds was created by the termination
`of the development of compactin in 1980 due to safety concerns created by
`results from preclinical toxicology experiments [22]. This apparently also led to
`a temporary suspension of the development of lovastatin. Thus, even though the
`fungal metabolites as a class would ultimately prove extremely safe and ef-
`fective in clinical trials, in the early 1980's there was at least a perceived need
`
`NCI Exhibit 2023
`Page 4 of 22
`
`

`
`BRUCE D. ROTH
`
`5
`
`HorYo
`
`2, compactin (mevastatin)
`
`3, lovastatin (MEVACORB)
`
`C02Na
`
`4, simvastatin (ZOCORS)
`
`5, pravastatin (PRAVACOLB)
`
`Figure I . 4. Fimgui mrtubolite inhibitors of'HMGR.
`
`for structurally novel HMGR inhibitors such that any non-mechanism related
`toxicity would be avoided.
`The first indication that the complex hexahydronaphthalene portion of the
`fungal metabolites could be replaced with a simpler ring system without loss of
`biological activity appeared in a patent application [23], then in publication
`form, from the Merck, Sharpe and Dohme Research Labs [24]. In this dis-
`closure, it was revealed that ortho-biphenyl containing 3,5-dihydroxy-6-hep-
`tenoic acids and their lactones, such as 6 (Figure 1.5), were equipotent to the
`fungal metabolites at inhibiting HMGR in vitro. This disclosure led us to de-
`velop the hypothesis that the key requirements for potent inhibition of HMGR
`were a mevalonolactone/3,5-dihydroxy-heptanoic or -6-heptenoic acid moiety
`and a large lipophilic group held in the correct spatial relationship by a spacer
`or template group [25]. If this were true, then virtually any ring system which
`fulfilled this requirement would lead to a series of potent inhibitors. This hy-
`pothesis was apparently shared by other laboratories and a large number of
`
`NCI Exhibit 2023
`Page 5 of 22
`
`

`
`6
`
`DISCOVERY AND DEVELOPMENT
`
`HoY-Jo
`
`Hoyro
`
`6
`
`Pyrrole Template
`
`Figure 1.5. HMGR inhibitor tetnplates.
`
`diverse series of inhibitors were discovered and developed based on this
`model [26].
`We selected the 1H-pyrrole ring system as our starting template to test this
`hypothesis, primarily because these could readily be prepared from 1,4-dike-
`tones through the classical Paal-Knorr condensation [27] (see retrosynthesis in
`Scheme I. I) and these 1,4-diketones, in turn, were potentially available pos-
`sessing a wide variety of I - and 4-substituents employing the thiazolium salt
`chemistry developed by Stetter [28].
`In practice, this scheme proved highly effective and a large number of I ,2,5-
`trisubstituted pyrroles were prepared using several omega-aminopropionitriles
`as the amine component to introduce a latent aldehyde. Unveiling of these
`latent aldehydes by DIBAL reduction followed by condensation with the dia-
`nion of methyl or ethyl acetoacetate employing the procedure of Weiler [29]
`introduced the remaining carbons needed in the targeted compounds. Un-
`fortunately, though expedient, this chemistry introduced the 5-hydroxyl as a
`racemic mixture, a problem that would need to be corrected later. Despite this
`less than optimal solution to the stereochemical requirements at C-5, we were
`able to control the relative configurations of the 3- and 5-hydroxyls by appli-
`cation of the predominantly syn-selective reduction of P-hydroxy ketones de-
`veloped by Narasaka and Pai [30]. In general, this protocol afforded
`approximately a 10: 1 ratio of syn/anti diasteromers. Lactonization by reflux in
`toluene produced the corresponding lactones from which the cis-diastereomer
`could be removed by recrystallization. The pure trans-diasteromers were then
`ring-opened by base hydrolysis to provide the biologically active dihydroxy-
`acids. This general synthesis is illustrated by the synthesis of the 2-(4-fluoro-
`phenyl)-5isopropyl analog (12) shown in Scheme 1.2.
`The initial question addressed was determination of the optimal spacing
`between the mevalonolactone and the pyrrole ring. This was rapidly narrowed
`
`NCI Exhibit 2023
`Page 6 of 22
`
`

`
`BRUCE D. ROTH
`
`H O T c o z R
`
`Pyrrole Template
`
`CHO
`
`R'i
`
`'Rp
`
`Scheme 1.1.
`
`Pvrrole inhibitor re frosynthesis.
`
`to a two-atom linker through the synthesis of a small group of analogs
`(Table 1.1).
`With this established, we next prepared a series of approximately thirty 2,5-
`disubstituted analogs possessing a range of substituted aromatic, cyclic, bran-
`ched and straight-chain aliphatic groups to define the optimal substituents at the
`2- and 5-positions. The conclusion from this exercise was that the distance
`across the pyrrole ring from the tip of the 2-substituent to the tip of the 5-
`substituent could be no longer than 10 angstroms with the size of the 2-sub-
`stituent being no more than 5.9 angstroms and the 5-substituent being no more
`than 3.3 angstroms. Further refinement of this analysis revealed that best
`potency was contained in compound 12 possessing a 4-fluorophenyl in the
`2-position and an isopropyl in the 5-position of the pyrrole ring [25].Un-
`fortunately, this compound still possessed only one-tenth of the inhibitory
`potency of mevastatin (Table 1.2). Taking into account the likely scenario that
`all of the biological activity was contained in one stereoisomer, we were still
`considerably short of the target potency and had come to the limit of what could
`be accomplished using the current synthetic route. In these circumstances, the
`options are to find alternate series or to attempt to ascertain the source of the
`deficiency. To this end, a simple molecular modeling exercise was undertaken
`to compare the differences between our best compound and those reported by
`
`NCI Exhibit 2023
`Page 7 of 22
`
`

`
`8
`
`DISCOVERY AND DEVELOPMENT
`
`“o\ CHO ++
`
`Ei3N
`
`Fq&
`
`HO
`
`58%
`
`1) H$I-CN
`HOAc, reflux. 73%
`2) DiBAL, 92%
`
`1
`NaH, n-BuLi, THF, -78’ -
`
`CH3COCH&O,CH,
`
`64%
`
`1) Bu3B, NaBH4,
`THF, -78’
`2) NaOH, H202
`
`PhCH3, reflux
`
`52% as a 97:3
`misture of
`transcis
`diastereorners
`
`Scheme 1.2. Synthesis of 1,2.5-irisubstiiuied pyrrole inhibitors.
`
`Merck. The simple overlay of these molecules (see Figure 1.6) revealed the
`presence of a methyl group in the Merck compound in a region of space not
`occupied by our inhibitors.
`To determine the importance of occupying this space, bromine and chlorines
`were introduced into the 3- and 4-positions of our most potent analog (12)
`employing the synthetic route described in Scheme 1.3 [31]. After testing the
`ability of these compounds to inhibit rat-liver HMGR, we were gratified to find
`that both compounds possessed inhibitory potencies comparable to the fungal
`metabolites (Tabfe 1.3).
`Although initially we were excited by this finding, the 3,4-dibromo
`analog 19 was taken into early preclinical development and rapidly found to
`display considerable toxicity [32]. As it turned out, much of the toxicology
`had been observed by others and was found to be specific to rodents or was
`derived from exaggerated pharmacology at high dosage levels and was most
`
`NCI Exhibit 2023
`Page 8 of 22
`
`

`
`BRUCE D. ROTH
`
`9
`
`Table I , I . OPTIMIZATION OF THE LINKER GROUP
`
`" O D 0
`
`X
`
`20
`
`24
`
`>I00
`
`53
`0.5
`
`I
`
`8
`
`9
`
`10
`I f
`
`'' Inhibition otI"C]-acetate conversion to cholesterol employing crude rat liver homogenate (ref. 24).
`
`Table 1.2. VARIATION AT THE PYRROLE 5-POSITION
`
`I I
`12
`13
`14
`15
`16
`17
`
`0.57
`0.40
`1.6
`20
`2.2
`17
`>I00
`
`"Inhibition of [I4C]-acetate conversion to cholesterol using a crude rat liver homoyenate. Mevastatin
`lCsr,= 0.026 pM (ref. 24).
`
`NCI Exhibit 2023
`Page 9 of 22
`
`

`
`DISCOVERY AND DEVELOPMENT
`
`CH3
`
`Figirre 1.6 Overluy of HMGR inhihitor teniplutrs
`
`severe with very bioavailable inhibitors which achieved high plasma and
`tissue concentrations [33,34]. Once again, we were faced with a decision
`point in the pyrrole series. Since we did not know whether the toxicity
`observed was related to the mechanism of action, the pyrrole series or the
`presence of the bromines in the 3- and 4-positions, rather than abandoning
`
`TBDMSO
`
`t-BuMepSiC1
`imidazole, DMF
`
`100%
`
`H
`
`H
`
`
`
`12
`
`
`
`NBS or NCS
`DMF. 0'
`100%
`
`H
`
`H
`
`I
`
`TBDMSO
`
`HOAc, THF
`
`35%
`
`x
`
`x
`
`
`
`x
`
`x
`
`
`
`Scheme 1 3. Sjw/hesis oj the 3,4-dihu/osuh.slituted unulogs
`
`NCI Exhibit 2023
`Page 10 of 22
`
`

`
`BRUCE D. ROTH
`
`Table 1.3. EFFECT OF HALOGEN SUBSTITUTION, AT THE PYRROLE
`3- AND 4-POSITIONS
`
`12
`18
`19
`2 (mevastatin)
`
`H
`CI
`Br
`
`0.23
`0 . 0 2 ~
`0.028
`0.030
`
`"Inhibition of the conversion of D, L-[ "C]-HMG-CoA to inevalonic acid using partially purified rat
`liver HMGR (ref. 30).
`
`the pyrrole series, a two-pronged approach was taken of both looking for
`alternative series [35,36] and synthesizing 3,4-non-halogen-substituted
`pyrroles in the hope that these compounds would retain activity, but lack
`toxicity. Unfortunately, the requirement for a penta-substituted pyrrole also
`required the development of an entirely new synthetic route to effectively
`develop the SAR at the 3- and 4-positions, since the existing route was
`limited only to those substituents that could be introduced by electrophilic
`substitution. A possible solution was presented through the 3 + 2 cycload-
`dition of azlactones and acetylenes pioneered by Huisgen [37]. This
`chemistry proved to be a very versatile means of preparing pentasubstituted
`pyrroles from a-amidoacids and acetylenes containing at least one electron
`withdrawing group (esters, nitriles, carboxamamides) [3 11. Although yields
`were best with acetylenes containing two electron withdrawing groups (e.g.,
`dimethylacetylene dicarboxylate), acceptable yields could be obtained with
`those possessing only one electron withdrawing group (4MO%). As
`significant, in the case of the unsymmetrical phenylacetylenes, considerable
`regiocontrol over the orientation of the 3- and 4-substituents could be
`achieved by adjustment of the substituents derived from the amide and
`amino acid precursors (Scheme 1.4). Using this methodology, followed by
`application of the Weiler dianion chemistry and stereoselective reduction
`used previously, a series of compounds were made with the already opti-
`mized 2-(4-fluorophenyl) and 5-isopropyl substitution and a variety of
`phenyl, substituted phenyl, ester, amide and nitriles at the 3- and 4-positions
`(Table 1.4).
`
`NCI Exhibit 2023
`Page 11 of 22
`
`

`
`12
`
`DISCOVERY AND DEVELOPMENT
`
`*
`
`HOOC 0
`
`Ac,O, reflux
`
`n
`O Y O
`
`n
`O Y O
`
`*
`
`Ac,O, reflux
`
`Schenic. 1.4 Rrgiocnntrnl in 3 + 2 cvclouddilion tnetlrulrd /yrrole synthesis.
`
`Table 1.4. SUMMARY OF 2-(4-FLUOROPHENYL)-5-ISOPROPYL-3,4-D1SUBSTlTUTED
`PY RROLES
`
`20
`21
`22
`23
`24
`24
`( + ) - 24
`(-)- 24
`2( mevastatin)
`
`C02Me
`C02Et
`Ph
`C02Et
`Ph
`Ph
`Ph
`Ph
`
`C02Me
`COzEt
`C02Et
`Ph
`C02CHZPh
`CONHPh
`CONHPh
`CONHPh
`
`0.18
`0.35
`0.17
`0.050
`0.040
`0.025
`0.007h
`0.44'
`0.030
`
`Inhibition of conversion of D,L -[I4C]-HMG-CoA to mevalonic acid using partially purified rat
`crude liver HMGR (ref. 30).
`Contaminated with 3% of (-)-24.
`"Contaminated with 3Yu of ( + )-24.
`
`NCI Exhibit 2023
`Page 12 of 22
`
`

`
`BRUCE D. ROTH
`
`13
`
`1,2,3,5-Tetrasubstituted analogs were available by application of the Stetter
`chemistry
`to substituted cinnamoylesters
`followed by decarboxylation
`(Scheme 1.5).
`Due to the difficulty in synthesis, a total of only 20 analogs were prepared,
`with best activity found in the 3-pheny1, 4-carboxamidophenyl analog (24).
`Separation of the two enantiomers of 24 by synthesis and separation of the
`diastereomeric R-a-methylbenzylamides followed by hydrolysis demonstrated
`that, as expected, all of the biological activity resided in one stereoisomer,
`(+)-24. This isomer was later confirmed to be the R,R-stereoisomer by total
`synthesis [3 I] and x-ray crystallography and found to possess inhibitory po-
`tency approaching that of simvastatin in vitro. Scale-up of this analog and
`preliminary testing in vivo in both casein-fed rabbit and cholestyramine-primed
`dog models of hypercholesterolemia demonstrated that ( + )-24 possessed po-
`tency and efficacy in vivo comparable to that found with lovastatin (un-
`published data). In subsequent studies done under more carehlly controlled
`conditions with larger groups of animals, it was determined that atorvastatin
`was actually more potent and efficacious than lovastatin at lowering LDL-
`cholesterol in rabbits [38] and guinea pigs [39] and triglycerides in rats [39].
`Having identified a potent and efficacious HMGR inhibitor, we were now
`faced with a critical decision, that of whether to develop our compound as the
`racemate or the pure stereoisomer. In fact, Sandoz when faced with this de-
`
`F
`
`n
`
`+
`
`
`
`Et3N
`
`/
`
`CHO
`
`0
`
`f i
`
`HO
`
`C02Me
`
`CH30H
`
`1 NaoH
`EiO - p-TSA. toluene
`
`EtoYoEt
`
`d
`
`25
`
`reflux. 71%
`
`30%
`
`Schrnie 1.5. Svntlie.vis of l,2.33 5-tetru substituted pyrro1e.s.
`
`NCI Exhibit 2023
`Page 13 of 22
`
`

`
`14
`
`DISCOVERY AND DEVELOPMENT
`
`cision in the development of fluvastatin chose to develop it as the racemate
`[26]. We chose to develop atorvastatin as the pure stereoisomer, for several
`reasons: 1) to avoid the unnecessary burden to the patient of having to meta-
`bolize 50% of possibly inert material (the wrong enantiomer) and 2) the desire
`to avoid having an obvious disadvantage (potency) in a compound entering the
`marketplace potentially 10 years after the fungal metabolite-derived inhibitors.
`Having made this decision, we formed two teams of chemists working in
`parallel towards a chiral synthesis, one in Discovery Chemistry in Ann Arbor
`and a second in Chemical Development in Holland, Michigan. The first chal-
`lenge was actually not the chiral synthesis, but scaling the achiral parts of the
`existing process that would be needed for the ultimate chiral synthesis. One of
`the initial problems was scaling the 3 + 2 cycloaddition reaction used pre-
`viously, in that, excess phenylamidocarbonyl phenylacetylene was required to
`achieve good yields, but this proved very difficult to separate from the product
`on large scale. Conceptually, the solution could be derived from the Paal-Knorr
`cyclization, if an appropriate amine would cyclodehydrate with the properly
`substituted 1,Cdiketone. This route would also open up the possibility of a
`convergent synthesis employing a fully elaborated side-chain ( Scheme I . 6).
`We therefore set about the preparation of the requisite I ,4-diketone using the
`Stetter methodology. However, we were disappointed to find that we were
`unable to achieve the desired cyclodehydration under a variety of conditions
`(Scheme 1.0. Fortunately, the Holland group had better success with this
`transformation (vide infra).
`Because of our inability to affect the Paal-Knorr condensation with the fully
`substituted diketone, as an alternative, we examined the synthesis of the tetra-
`substituted pyrrole 25 (Scheme 1.7) based on the assumption that the carbox-
`amide could be introduced later in the sequence. In the event, Paal-Knorr
`cyclization of the less highly substituted diketone proceeded smoothly to
`produce 25 in modest yield (Scheme I . I I ) . Subsequent introduction of the
`N-phenyl carboxamide proceeded smoothly by bromination with N-bromo-
`succinimide, followed by lithium halogen exchange and reaction of the re-
`sultant heteroaryl lithium with phenyl isocyanate. Hydrolysis then afforded the
`aldehyde 26 prepared previously employing the 3 + 2 cycloaddition protocol
`[3 I]. All of these transformations were scalable and proceeded in acceptable
`yield. Our strategy in Ann Arbor for introducing the 5-R-hydroxyl involved
`application of the diastereoselective aldol condensation of Braun [40] to al-
`dehyde 26 (Scheme I. 13). Thus, condensation of 26 with the magnesium dia-
`nion of S-( + )-2-acetoxy- l, l ,2-triphenylethanol afforded a 96:4 ratio of the S,R
`and S,S-diastereomers in 60% yield. This ratio could be improved to 98:2 with
`one recrystallization [3 11. Ester exchange with sodium methoxide followed by
`reaction with excess lithio-t-butylacetate afforded the R-6-hydroxy-P-ketoester
`made previously as the racemate. Reduction with Bu3B-NaBH4 as before the
`
`NCI Exhibit 2023
`Page 14 of 22
`
`

`
`BRUCE D. ROTH
`
`15
`
`a) Retrosynthesis -
`
`F%
`
`0 CONHPh
`
`+
`
`(+)-24
`
`a) Model system
`
`"0- +
`
`CHO
`
`CONHPh
`
`Et3N
`
`*
`
`0
`
`HO
`
`H~N-'~
`
`H2N
`
`CONHPh
`58%
`
`NO
`REACTION!
`
`f
`
`Scheme 1.6. Optinid retros-vnthesis vf (+ 1-24 and,failed model .mdl,.
`
`R S N , CH(0Et)Z
`
`afforded the syn-P,&dihydroxyester which after hydrolysis, acidification and
`lactonization afforded crude lactone ( + )-24. Fortuitously, the d,I-pair crys-
`tallized out of ethyl acetate-hexanes and 100% enatiomerically pure (+)-24
`could be isolated from the mother liquors.
`
`NCI Exhibit 2023
`Page 15 of 22
`
`

`
`16
`
`DISCOVERY AND DEVELOPMENT
`
`1) NBS. DMF, 0’. 100%
`2) n-BuLi. THF, PhNCO. 69%
`3) H30*, 86%
`
`*
`
`CJ
`
`25
`
`a ‘CoNHPh
`
`26
`
`1) J o J P h
`
`Ph
`
`Ph
`PLDA, MgBr2, -78’
`60%, 9 7 % ~
`
`2) NaOCH3
`
`Ph
`
`OLi
`
`2) Et3B, NaBH4
`
`(+)-24, >99%ee
`
`Although this route was successful in producing gram quantities of en-
`atiomerically pure ( + )-24, because of the linear nature of this route, the
`number of low-temperature reactions involved and the relatively low yields in
`some of the final steps such as the final purification, its potential for scale-up to
`provide the kilogram quantities needed for further development was low. Thus,
`for the synthesis to be economically viable, the Holland group was forced to
`develop an entirely different approach [41,42]. A critical component of this
`effort was an extensive investigation of the Paal-Knorr conducted by Alan
`Millar in Chemical Development which finally resulted in a successful cyclo-
`dehydration in the model system when a full equivalent of pivalic acid was
`used as catalyst (Scheme 1.8). This afforded pentasubstitued pyrrole 27 in 43%
`yield and demonstrated that a totally convergent synthesis was possible. This
`now became the ultimate goal.
`
`NCI Exhibit 2023
`Page 16 of 22
`
`

`
`BRUCE D. ROTH
`
`17
`
`______)
`1 equiv. pivalic acid
`THF. reflux, 43%
`
`CONHPh
`
`To this end, several routes passing through the known (S)-methyl-4-bromo-
`3-hydroxybutyrate 28, an intermediate used in prior syntheses of HMGRIs [43],
`were developed [41]. This key intermediate was derived most efficiently from
`isoascorbic acid as has been reported previously 143451, such that it was
`produced as a single stereoisomer (Scheme 1.9). Protection of 28 as the t-butyl-
`dimethylsilylether [43], followed by conversion to the nitrile provided an ad-
`vanced intermediate (29) that could be taken in several directions.
`Thus, 29 could be hydrolyzed to the acid and chain extended by activation
`with N,N-carbonyldiimidazole followed by reaction with the magnesium salt of
`potassium t-butyl malonate [46]. Acidification followed by deprotection with
`buffered fluoride afforded the 6-hydroxy-j3-ketoester 30 which was converted to
`the syn-l,3-diol employing NaBH4 and Et,BOMe, a slight modification of
`the original procedure [47]. Protection of the diol as the acetonide produced the
`nicely crystalline nitrile 31 in 65% yield and with diastereoselectivity in the
`range of 100: 1. One recrystallization improved this ratio to >350: 1. Reduction
`of the nitrile with molybdenum-doped Raney-Nickel catalyst then afforded the
`desired side-chain (32) with outstanding enantiomeric excess
`(>99.5)
`(Scheme I.IO) [41].
`An alternate, shorter route involved reaction of the alcohol derived from 29
`with 3 4 equivalents of lithium tert-butyl acetate to afford an excellent 7540%
`yield of hydroxyketone 30 without the need for prior protection of the alcohol
`and with no detectable reaction with the nitrile (Scheme I. I I ) . Although these
`routes still involved a low-temperature reduction, both could still be scaled to
`kilogram quantities [41].
`Cyclization of the fully functionalized, stereochemically pure side-chain 32
`with the filly substituted diketone under carefully defined conditions ( 1 eq.
`pivalic acid, I :4: 1 toluene-heptane-THF, Scheme 1.12) then afforded a 75%
`yield of pyrrole 33. Deprotection and formation of the hemi-calcium salt
`produced stereochemically pure atorvastatin calcium in a convergent, com-
`mercially viable manner which accomplished the original vision for the
`
`NCI Exhibit 2023
`Page 17 of 22
`
`

`
`18
`
`DISCOVERY AND DEVELOPMENT
`
`”%
`
`0 -
`OH
`
`HO
`
`lsoascorbic acid
`
`H202, CaC03
`
`KZc03
`
`OH
`HO&CO2K
`R :
`OH
`
`I
`J
`
`HBr, HOAc
`CHsOH
`
`1) t-BuMezSiCl
`imidazole, 4-DMAP
`
`2) NaCN, DMSO
`
`OTBDMS
`NC,),,CO~CH,
`
`R
`
`29
`
`Scheme I . 9. Svnthesis of (S)-methyl-4-bron~o-3-hv~rorvb~~~are
`28.
`
`synthesis developed in discovery chemistry, but was reduced to practice in
`chemical development.
`Although one might have expected that the decision to take atorvastatin
`calcium into clinical development would be straight-forward, it was not. By the
`time we completed the preclinical studies needed to file an Investigational New
`Drug Application (IND) with the Food and Drug Administration (FDA) in late
`1989, Mevacot‘”’, ZOCOT”, and PravacoI“ had all been approved for marketing
`by the FDA. Thus, we were faced with the expectation of coming into the
`marketplace nearly a decade after at least three HMGRIs and possibly more
`(LescoP was approved several years later by the FDA). Fortunately, by this
`time, evidence from preclinical efficacy studies was beginning to emerge
`suggesting that atorvastatin calcium may be more potent and efficacious than
`the fungal metabolite derived inhibitors at lowering total and LDL-cholesterol,
`at least in some animal models [38,39]. Encouraged by this positive data and
`
`NCI Exhibit 2023
`Page 18 of 22
`
`

`
`BRUCE D. ROTH
`
`19
`
`OTBDMS
`
`1) NaOH
`
`NC+2CH3
`
`29
`
`2) CDI, Mg(O&CHzCO@U),
`3) Bu~NF, HOAC, THF
`
`* NC&COzCH3
`
`OH 0
`
`R
`
`30
`
`1) NaBH,. Et,BOMe
`CHsOH. -90'
`2) (CH3)2C(OCH3)2
`CH~SOJH
`
`HZN
`
`0x0
`
`32
`
`H P , Ra-Ni,
`CH30H, 50 PSI
`95%
`
`O X 0
`
`NC*2CH3
`
`31, 65%
`
`Sclierne 1.10. C'kirtrl side-chrrin .synthe.~is.
`
`now having a scaleable process for synthesis of enantiomerically pure drug
`substance, the decision was taken by Dr. Ronnie Cresswell, then President of
`Parke-Davis Research, to move atorvastatin calcium into clinical trials in the
`hope that an improved efficacy profile would be observed in man over the then
`marketed drugs. To the delight of all those involved in the discovery and de-
`velopment of atorvastatin calcium, the merits of the drug were rapidly de-
`monstrated in the phase 1 clinical trials in healthy volunteers where reductions
`in LDL-C approaching 60% were observed at the high dose of 80 mg/day
`(Tuhk 1.5) [48]. This data provided the impetus for further development, since
`this level of efficacy was not achievable with other HMGRIs at approved doses
`or, in fact, with any other cholesterol-lowering drug. Since that original study in
`healthy volunteers, the outstanding potency and efficacy at lowering total
`cholesterol, LDL-cholesterol [49] and triglycerides [50] of atorvastatin cal-
`cium, now marketed in the United States as Lipitor", has been reproduced and
`confined in numerous clinical studies and in many thousands of patients
`[51,52]. Today it has brought benefit to inillions of patients and is one of the
`most widely prescribed pharmaceuticals in the world.
`
`OH
`
`NC&CO,CH~ R
`
`1) 3 equiv. LiCHpCOpt-Bu
`
`> NcJ,,J.,,co~cH~
`
`75%
`
`OH 0
`R
`
`30
`
`Sc,lienie 1.11. .4lte,nute rliisul de-chain sJwhesis.
`
`NCI Exhibit 2023
`Page 19 of 22
`
`

`
`20
`
`DISCOVERY AND DEVELOPMENT
`
`F%
`
`0 ‘ONHPh
`
`1 equiv. pivalic acid
`
`+
`X
`0 0
`
`*
`
`1:4:1 toluene-heptane-THF
`reflux, 75%
`
`H2N
`
`32
`
`33
`
`Scheme I . 12.
`
`Convergent. chirut synthe.fi.7 of atorvustution culcium
`
`Atorvastatin calcium
`
`Table I .5. MULTIPLE-DOSE TOLERANCE AND PHARMACOLOGIC EFFECT OF
`ATORVASTATIN CALCIUM IN HEALTHY VOLUNTEERS (REF. 48)
`
`Dose
`( m d 4
`
`Placebo
`10
`20
`40
`80
`
`% change (mg/dL),
`Total Cholesterol
`
`%t change (mgJdL)
`LDL-Cholesterol
`
`% change (mgJdL)
`Triglvcericles
`
`-3
`-22
`-30
`-36
`-45
`
`-3
`-3 1
`-39
`-47
`-58
`
`-3
`-12
`-30
`0
`-22
`
`NCI Exhibit 2023
`Page 20 of 22
`
`

`
`BRUCE D. ROTH
`
`REFERENCES
`
`21
`
`Bloch. K. Science 1965, l50(692), IP-28.
`Goldstein, J. L., Brown, M. S . J. Lipid Re.$. 1984, 25. 145M1
`Blohm, T. R., MacKenzie. R. D. Arch. Biochem. BiophjJs. 1959, XS. 245.
`Avigan, J.. Steinberg, D., Vroman, H. E., Thompson, M. J., Mosettig, E. J. B i d . Chein. 1960,
`235, 3123-3126.
`Laughlin, R. C., Carey, T. F. J. Anrer. Mecl. Assoc. 1962, 1 8 / , 339340.
`Curran, G. L., AzamoK D. L. Arch. Internu1 Med. 1958, 101. 68S689.
`Steinberg, D., Avigan. J. J. Biol. Chem. 1960, 23s. 3127-3129.
`Avigan. J., Steinberg, D.. Thompson, M. J., Mossettig, E. Biochem. Biophj~.~. Rrs. Conimun.
`1960, 2, 63-65,
`Davey-Smith, G.. Pekkanen, J. BMJ 1992, 304, 431434.
`Scandinavian Simvastatin Survival Study Group. Lancet 1994, 344, 1383-1 389.
`Boots, M. R., Boots, S. G., Noble, C. M., Guyer, K. E. J. Pharm. Sci, 1973, 62. 952.
`Rogers, D. kl., Panini, S. R., Rudney. H. . ~ - H ? . ~ r / ~ . ~ ~ - 3 - r n e t h ~ ~ l g l i f ~ u r ~ ~ /
`CfJW<LJM A Relrcruse:
`Sabin

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket