throbber
Aromatic Substituent Constants
`
`JournaI of Medicinai Chemlstri 197.? \b/ 16 .Yo 11 1207
`
`“Aromatic” Substituent Constants for Structure-Activity Correlations?
`
`Corwin Hansch,* Albert Leo, Stefan H. Unger, Ki Hwan Kim, Donald Xikaitani, and Eric J. Lien
`Department of C h e m i s t y , Pomona College, Claremont, California 91 711 Receiced J u n e 18, 1973
`
`Aromatic substituent constants (lipophilic T , electronic um and u,>. and steric MR, molar refractivity) have been
`collected for 236 substituents including 128 7r values and 191 values for which both u,,, and cr,] were found. Swain
`and Lupton’s 3 and cR values could then be calculated for these 191 substituents by a corrected procedure. The mu-
`tual correlation of u,,, and g,] is high, r = 0.903. while 5 and C are essentially orthogonal.
`
`Interest in the use of substituent constants for correlat-
`ing structure with reactivity continues to grow rapidly in
`both simple organic1 as well as complex biochemical2 and
`biomedicinalsa-d systems. The use of cr constants (Ham-
`mett and Taft) for the electronic and E, constants
`(Taft3e) for the steric effects of substituents has greatly
`facilitated understanding of organic reaction mechan-
`isms.1.3e.4 The hydrophobic parameters5 a and log P have
`bridged the gap between simple organic and biochemical-
`biomedicinal systems. To further advance the extrather-
`modynamic approach4b to quantitative structure-activity
`relationships (QSAR),3a-d we have made a search of the
`literature to assemble as many substituents as possible for
`which both um and uu have been determined. These ap-
`pear in Table I together with measured T values and other
`parameters calculated as described below.
`There are two reasons for focusing on these two particu-
`lar electronic parameters6 instead of any of the others.
`First, far more of these constants are available than others
`such as uI or uR.7 Second, it is possible, using only om and
`up! to factor the electronic effect into resonance and non-
`resonance components.6 Since Taft and Lewis7 first ex-
`plored factoring of this kind, it has become increasingly
`evident that it can lead to greater insight into substituent
`effects. Although there are a variety of ways in which such
`factoring can be accomplished,6-8s$ the general approach of
`Swain and Lupton6 has the advantage that 3 and (R can
`be calculated directly from crm and up, avoiding nongener-
`a1 procedures.8.f A further improvement by way of an op-
`timization-orthonormalization
`procedure will be pub-
`lished shortly.$ This modification has the advantage of
`depending upon a large amount of data instead of an “ar-
`bitrarily” selected model reaction(s); it contains only a
`single general chemical constraint and it guarantees com-
`pletely independent (orthogonal) and equiscalar (normal)
`substituent vectors. Actually, 5 and CR are remarkably
`orthogonal, as will be discussed below, and therefore they
`largely avoid the common pitfall of multicollinearity (even
`though they are neither “optimum” nor precisely orthogo-
`nal).
`To provide a measure of hydrophobic character, Table I
`lists the known5b values of T from the benzene solute sys-
`tem partitioning in the octanol-water soluent system and
`also includes many new x values not previously reported.
`T constants have previously been measured using a variety
`of solute systems.§ The most common “parent” solutes
`tThis work was supported by Grant CA 11110 from the National Insti-
`tutes of Health and in part by Contract DRR-70-4115 from the National
`Institutes of Health.
`:C. G. Swain, S. H. Unger, P. Strong, and N. R. Rosenquist, unpub-
`lished results.
`§To avoid confusion in use of the term “system” in partitioning studies,
`the following symbolism will be followed in this and subsequent papers
`from this laboratory. (11 K or log P is followed by a dash and the formula for
`the substituent or the solute, respectively. For li values, the substituent
`formula can be followed by a slash (/) and then the solute name or formula.
`(21 The solvent system is given in parentheses following the solute, but only
`the organic phase need be specified. If no solvent is specified, it is assumed
`to be octanol-water. For example, a-4-Cl/phenol (oleyl alcohol) = 0.82
`refers to the K value for the chloro substituent in the para position from the
`phenol solute system measured in oleyl alcohol-water.
`
`(besides benzene) on which the substituents are placed
`are phenol, phenoxyacetic acid, benzoic acid, aniline. and
`nitrobenzene. The variation from system to system can
`often be predicted with acceptable precision.5a and it is
`generally not so great that it precludes using the s con-
`stants from benzene to serve in the design of new drugs
`and enzyme substrates where the variable substituent is
`attached to any aromatic ring. The s-/benzene values are
`much more independent of electronic contributions than.
`say, a-/nitrobenzene and are thus more likely to represent
`a true “lipophilicity” for aromatic substituents. Where
`the attachment is at an aliphatic site, the substituent a
`constant from benzene requires a correction for electronic
`effects and possibly for “folding” over the ring.5b Additiv-
`ity of both P and u on benzene rings is considered below.
`The most widely used parameter for steric substituent
`effects in organic reaction mechanism studies is Es.3e This
`parameter is useful for studying intramolecular steric ef-
`fects, particularly in reactions where the substituent is
`near the reaction center. However, since E , constants
`have not been determined for the majority of substituents
`listed in Table I and since biochemical-biomedical “ste-
`ric” requirements are often (but not always) of the “bulk”
`type, we have sought another measure, albeit approxi-
`mate, of the general “steric” bulk. Fortunately, there are
`two parameters which are readily available for each sub-
`stituent: molar refraction (MR) and molecular weight
`(MW). Van der Waals molar volumes as calculated by
`Bondis might also have been used but. for the full range
`of substituents listed in Table I, a great number of ap-
`proximations and assumptions would have been necessary.
`MR values have been used previously in some biological
`QSAR.lO For liquids, the MR can be calculated (in units
`of volume) from the Lorentz-Lorentz relation=
`- 1)/d(n2 + 2)
`(cm3/mol) ( I )
`MR = ~
`~
`(
`1
`2
`~
`
`where MW = molecular weight, n = index of refraction
`(normally at 20”, Na D line), and d = density (normally
`at 20”).
`The tolerance by enzymes and receptors for the “bulki-
`ness” of the substrates and drugs to which they are ex-
`posed is a problem of great concernll in biomedicinal-bio-
`chemical studies. We believe that MR and/or M W may
`be crude but useful measures of “bulk.” W e uish to em-
`phasize, howecer, that we consider these parameters as
`only a possible interim solution. M R contains an electron-
`ic contribution (it is directly proportional to the polarira-
`bility); therefore, its use in multiple regression analysis
`must be ciezoed with caution. The MR values in Table I
`were included partly for the purpose of the cluster analy-
`sis which appears in the following paper.12 In this they are
`somewhat less critical than in a multiple regression.
`Methods
`1. Hydrophobic Parameters. Log P values have been
`
`determined as previously d e ~ c r i b e d . ~ a In general, at least
`
`=References to MR are found in Table I, footnote d
`
`Mylan Exhibit 1024, Page 1
`
`

`
`N=191 R4.903 5 ~ 0 . 1 7 Um =-O.ll (0.03)+1.2310.OB)r up
`
`/
`
`,,/
`
`/”
`
`R I’
`
`.I ‘-a.m
`
`-11.2
`
`- 0 . a
`
`U.GY
`
`0.32
`
`u. 611
`
`vm
`
`u. w
`
`1.16
`
`I . YV
`
`d 2. m
`
`1.77
`
`Figure 1. Plot of oln ~ ‘ 6 . b y , for 191 substituents
`
`four determinations of P have been made a t varying con-
`centrations. Where P is a function of concentration, we
`have extrapolated to infinite dilution. We have used the
`value of 2.13 for log P-benzene. BoCek and Tichj.** have
`obtained a value of 2.15. In a few instances, as noted,
`r-X/benzenec was not available, and a constant from an-
`other solute system was given. Ionic substituents, such as
`- C O z - and -?jMes+, are so hydrophilic that, when at-
`tached to benzene, the resulting log P is so low that it is
`quite difficult to measure. In such cases, the more
`lipophilic biphenyl solute system was used.
`2. Electronic Parameters. un, and gP values were
`taken from our larger (unpublished) collection of substitu-
`ent constantstt and represent both primary and secon-
`dary values of varying quality. We have attempted to se-
`lect the “best” values available for each substituent, using
`updated values and discarding inconsistent values. How-
`ever, we urge that the original sources be consulted be-
`cause of the variety of methods represented.
`We have completely repeated Swain and Lupton’s pro-
`cedure for obtaining 5 and @ since the factor p = 1.65 was
`omitted from the calculation of u’ (ionization of 4-X-bicy-
`clooctanecarboxylic acids in 50 wt % EtOH, Set 5 ) 6 with
`the effect that their 5 values are out of scale w i t h a . Fur-
`thermore, our selected um and up do not always agree
`with those of Swain and Lupton. We have consistently
`rounded to two decimal places, and our 5 and (R are self-
`consistent with the url, and up in Table I. Thus
`
`**M. Tich? and K. BoEek, private communication.
`ttPomona College Medicinal Chemistry Project, Claremont, Calif
`91711.
`
`5 = 1.369 (i0.186)
`0.009 (i0.038)
`
`- 0.373 (h0.142) C J ~ -
`
`S
`1-
`iI
`14 0.9915 0.0417 (2)
`
`The figures in parentheses are 95% confidence limits; the
`overall F statistic if F2.11 = 318.77 (Fz,ll. a = ~ . 0 0 5 = 8.91).
`All the coefficients are evaluated from 14 data points of
`Baker, et al 13 (corrected for p = 1.65), but all 5 are cal-
`culated from eq 2 . Then
`@==oa,-cYr7
`
`(3 1
`CY = 0.921 under the assumption6 that
`which gives
`R(XMe3t) = 0.0 ( u p = 0.82, 5 = 0.89). Independent eval-
`uation of new substituent constants has confirmed the
`general validity of this assumption.8,; Results given below
`further show that 5 and 6l are remarkably orthogonal.
`considering the relative simplicity of the assumptions.
`3. Steric Parameters. There are various systems for
`calculating molar refractivity, but the atom-group-struc-
`ture constants of Vogel and the bond values of Vogel and
`others= are the ones most commonly used. The atom-
`group-structure system of Vogel could be applied to the
`greatest number of substituent structures of Table I, and
`so it was chosen for the sake of consistency. However, ex-
`altations between aliphatic and aromatic values can be
`rather large (as much as lo%), and for substituents con-
`taining unsaturation or a lone electron pair which could
`interact with the benzene ring, and for which Vogel did
`not list separate aromatic values, we have used Ingold’s
`special values. We have ignored the slight variation
`
`Mylan Exhibit 1024, Page 2
`
`

`
`Aromatic Substituent Constants
`
`Journal ofhfedicinal Chemistry, 1973, Vol. 16, No. 11 1209
`
`Table I. “Aromatic” Substituent Constants
`
`No.
`1
`2
`3
`4
`5
`6
`7
`8
`9
`10
`11
`12
`13
`14
`15
`16
`17
`18
`19
`20
`21
`22
`23
`24
`25
`
`26
`27
`28
`29
`30
`31
`32
`33
`34
`
`35
`36
`37
`38
`39
`40
`
`?Th
`-0.55
`0.86
`
`0.88
`-0.57
`-4.36W
`-0.65
`-0.32
`0.79
`0.17
`
`-1.49
`-0.38
`-1.87
`0.56
`- 1.03
`-1.04
`0.02
`
`0.40
`
`-0.57
`0.11
`
`0.82
`-0.55
`-0.01
`-0.72
`-1.27
`-1.68
`
`1.02
`
`-0.17j
`
`b m
`~ -0.01
`0.39
`0.28
`0.32
`0.43
`0.56
`-0.10
`0.35
`0.37
`0.12
`0.11
`0.10
`0.28
`0.22
`
`UP
`0.12
`0.23
`0.29
`0.33
`0.54
`0.66
`0 .oo
`0.42
`0.45
`0.14
`0.12
`0.11
`0.36
`0.10
`
`Y
`-0.07
`0.44
`0.27
`0.31
`0.38
`0.51
`-0.15
`0.31
`0.33
`0.10
`0.10
`0.09
`0.24
`0.25
`
`-0.07
`0 .oo
`
`-0.17
`0.00
`
`-0.04
`0 .oo
`
`0.81
`0.23
`0.15
`0.31
`0.01
`0.26
`
`-0.02
`0.50
`0.45
`-0.07
`0.36
`0.07
`0.34
`-0.15
`0.52
`
`0.19
`0.33
`0.51
`0.53
`0.30
`0.27
`
`0.80
`0.19
`0.10
`0.27
`0.21
`0.33
`
`0.07
`0.32
`0.33
`
`0.34
`
`0.27
`-0.05
`0.45
`
`0.19
`0.21
`0.36
`0.30
`0.28
`0.22
`
`0.81
`0.21
`0.12
`0.29
`0.16
`0.32
`
`0.05
`0.38
`0.37
`
`0.35
`
`0.30
`-0.07
`0.48
`
`0.20
`0.25
`0.41
`0.37
`0.29
`0.24
`
`0.16
`
`0.24
`
`MWe
`44.8
`79.9
`251.7
`118.4
`69 .O
`26 .O
`44 .O
`29 .O
`45 .O
`93.9
`49.5
`140.9
`44.0
`44 .O
`60 .O
`15 .O
`31 .O
`30.1
`97 .O
`116 .O
`25 .O
`115.1
`147.1
`40 .O
`72 .O
`27.1 *1U1
`43.1 *V1
`59.0 * v o 1
`59.0 *1VQ
`58.1 *VM1
`58.1 *1VZ
`74.1 *YUS&M1
`29.1 *2
`143.2 *?
`
`at
`MRd
`0.18 11.04Ah
`-0.17
`8.88B
`0.04 28.81
`0.05 20.12
`0.19
`5.02
`0.19
`6.33B
`0.13
`6.05BC
`0.13 6.88B
`0.15
`6.93B
`0.05 13.39
`0.03 10.49
`0.03 18.60
`0.14
`9.81B
`-0.13 10.28B
`11 .22B
`5.65
`7.19
`9.09
`11.17B
`0.08 10.19
`0.05
`9.55B
`0.06 17.59
`0.06 17.51%
`-0.18 10.11
`-0.05 16.42B
`
`-0.13
`0.00
`
`-0.08
`10.99B
`0.20 11.18B
`0.15 12.87B
`11.88
`0.05 14.57B
`14.41
`0.09 22.33
`-0.10 10.30
`0.10
`
`0.01
`0.14
`0.18 14.13B
`0.25 13.44
`0.05 15.18
`0.07 15.57B
`
`Wiswesser line
`notation1
`*BQQ
`*E
`*XEEE
`*XGGG
`*XFFF
`*CN
`* v o
`*VH
`*VQ
`*1E
`*lG
`*11
`* v z
`*lUNQ
`*VMQ
`*1
`*1Q
`*1z
`*VXFFF
`*XFFOX*FF(C,D) 9
`*lUU1
`10
`*1SXFFF
`11
`*lSWXFFF
`11
`*1CN
`1
`*1UlNW -T
`12
`
`Ref
`o m r p g
`1
`1
`2
`2
`3
`3
`3
`3
`2
`2
`2
`2
`2
`2
`5
`4
`2
`2
`1
`1
`1
`1
`1
`1
`4
`6
`7
`7
`
`2
`8
`
`5
`2
`2
`
`14
`
`14
`2
`16
`
`2
`8
`
`9
`10
`11
`11
`4
`12
`
`5
`2
`13
`8
`14
`15
`14
`2
`16
`
`17
`17
`18
`19
`19
`3
`
`0.17
`
`0.15
`
`0.03 15.57B
`
`3
`
`3
`
`0.26
`
`-0.07
`
`Functions
`B (OH) 2
`Br
`CBr3
`cch
`CF3
`CN coo -
`CHO
`COOH
`CHtBr
`CHzC1
`C H J
`CONHI
`CH=NOH
`C=O(NHOH)
`CH3
`CHiOH
`CHtNH,
`CEO (C Fa)
`3,4- (CFzOCFI)
`C=CH
`CHISCF3
`CH2SOzCF3
`CHQCN
`CH=CHNO,
`(trans)
`CH=CH?
`COCHI
`COzCH3
`CHICOOH
`C=O(NHCHs)
`CH?CONH?
`C=S(NHCH3)
`CZHB
`1-(1,2-BioHiaC~H)
`a-carboranyl
`3-Barenyl
`1-Neobarenyl
`C E C C F ~
`CF(CFI)?
`C (OH) (CF3)2
`CH=CHCFI
`(trans)
`41
`CH=CHCFa
`(cis)
`42 CH=CHCN
`43
`CzCCH3
`44
`CH=CHCHO
`45
`CH=CHCOOH
`46
`CHzCH=CHz
`47
`C yclopropyl
`48
`CHCOCHa
`49
`CO?C?H;
`50
`CH?OC=O(CHs)
`51
`CHgCHgCOzH
`52
`3,4- (CH&H,CH?)
`53
`CHzCH(NH3+)-
`coo -
`1.55
`CaH,
`1.53
`CH(CHa)?
`-0.15m
`CH?N(CH3)?
`C F ~ C F ~ C F Z C F ~
`2-T hienyl
`1 . 6 1
`3,4-(CH=
`1.32
`CHCH=CH)
`CH=CHCOCHs
`C yclobutyl
`
`0 .oo
`1.10
`
`-0.69
`0.51
`-0.17
`-0.29
`1.20
`-3.56‘
`
`54
`55
`56
`57
`58
`59
`60
`61
`
`-0.06i
`
`1.39X
`
`64 C(CH:j),
`65 CHsSi(CH&
`66 4-Pyridyl
`67 CH=CHCOICIH:,
`68 Cyclopentyl
`
`1.98
`
`0.32
`0.861
`2.14X
`
`17
`143.2
`*?
`17
`143.2
`*?
`93 .O *lUUlXFFF
`18
`169 .O *XFXFFFXFFF 19
`167.0 *XQXFFFXFFF 19
`95 .O * l U l X F F F -T
`3
`95 .O *lUlXFFF -C
`52.1 *lUlCN
`39.1 *1uu2
`*1U1VH
`55.1
`*lUlVQ
`71.1
`*2u1
`41.1
`* AL3TJ
`41 . I
`*1v1
`57.1
`* v 0 2
`73.1
`*1ov1
`73.1
`*2VQ
`73.1
`*3*(C,D)
`42.1
`*1YZVQ
`88.1
`
`2
`
`22
`4
`
`20
`21
`20
`22
`
`23
`
`0.17
`0.09
`0.13
`0.90
`
`0.27
`-0.15
`
`0.24
`0.14
`
`-0.07
`
`-0.21
`
`-0.03
`
`0.37
`
`-0.03
`-0.26
`
`0.45
`0.05
`-0.07
`-0.26
`
`0.33
`
`-0.02
`-0.27
`
`16.23B
`14.14B
`-0.12 16.88B
`1.04 17.91Bk
`14.49
`13.53
`15.06
`0.15 17.47B
`16.48
`16.52
`-0.05
`-0.01 13.94
`
`-0.19
`
`-0.07
`-0.07
`
`0.47
`0.09
`0.04
`
`0.21
`
`-0.48
`-0.08
`-0.10
`-0.16
`
`0.19
`
`-0.13
`-0.15
`0.01
`0.52
`0.05
`0.04
`
`-0.01
`-0.15
`-0.48
`-0.16
`-0.20
`-0.21
`
`0.03
`-
`0.02
`
`-0.06
`-0.05
`
`0.44
`0.10
`0.03
`
`0.28
`
`-0.49
`-0.06
`-0.07
`-0.15
`
`0.24
`
`-0.08
`-0.10
`
`14.96
`14.98
`18.74
`0.11 17.65
`0.04 24.04An
`0.01 17.47A0
`
`-0.27
`
`21.10B
`17.88
`-0.03 18.59
`-0.11 19.59
`-0.13
`19.62
`-0.07
`29.61D
`23 .03Ae
`-0.19 27.21B
`22.02
`
`43.1 *3
`43.1 *Y
`58.1 * l N l & l
`219 .O */XFF/ 4F
`83.1 * BT5SJ
`52.1 R A* B*(C,D)
`
`* l U l V l
`69.1
`* AL4TJ
`55.1
`*4*(C,D)
`56.1
`*4
`57.1
`*X
`57.1
`*l-SI-1&1&1
`87.2
`* DT6NJ
`78.1
`*1UlVO2
`99.1
`6 9 . 1 * AL5TJ
`
`5
`24
`
`19
`26
`2
`
`20
`
`4
`5
`2
`2
`
`20
`
`20
`21
`20
`8
`
`23
`
`2
`15
`22
`4
`
`4
`2
`25
`19
`26
`2
`
`20
`27
`4
`4
`2
`2
`
`20
`27
`
`Mylan Exhibit 1024, Page 3
`
`

`
`1210 Journai ofMedmnal Chemlstn. 1973, Val 16, No I 1
`
`Hansch, et a1
`
`Table I (Continued)
`
`No.
`Functiow
`69 CiHi,
`70
`(CH?)3N (CH,) 1
`71 CsCl
`72 CeF,
`73 CsH2[2,4,6-
`(NO?)il
`74 C6Hi
`
`T*
`
`0.60
`
`6 1 "
`
`-0.08
`
`0.25
`0.34
`0.26
`
`Ul)
`-0.15
`- 0 , 1 3
`0.24
`0.41
`0.30
`
`7 c
`-0.06
`
`0.24
`0.30
`0.24
`
`M R '
`1%
`-0.09 24.25
`28.04
`0.02 49.53B
`0.13 23.98B
`0.08 42.21B
`
`1.96
`
`0.06
`
`-0.01
`
`0.08
`
`-0.08 25.36"
`
`76 Cyclohexyl
`77
`(CH?)rN(CH3)3+
`
`2.51X
`-4.15
`
`0.15
`
`-0.22
`0.02
`
`24.80
`
`26.69
`
`0.30
`
`0.33
`
`0.28
`
`0.07 32.74
`
`MWe
`71.2
`86.2
`249.3
`167.1
`212.1
`
`77.1
`
`81.2
`
`83.2
`101.2
`
`118.1
`
`Wiswesser line
`notation '
`
`*5
`*3N1&1
`*R-/G 5
`*R-/F 5
`*R BNW DNW
`FNW
`*R
`* AL35TJ
`* AL6TJ
`*3K
`* CT56 BN DOJ
`
`Ref
`d p "
`-
`5
`25
`29
`29
`1
`
`gri,
`5
`
`29
`29
`1
`
`2
`
`2
`27
`
`27
`25
`
`30
`
`30
`
`78
`
`
`'
`T
`2-Benzoxazolyl
`79 _t.yJ
`2-B enzthiazolyl
`80 C=O(CaH:)
`81 CH=NCsH$
`82 CHlCsH5
`83 CH(OH)C6H,
`
`2.13
`
`0.27
`
`0.29
`
`0.25
`
`0.06 38.88DiJ
`
`134.2 * C T 5 6 B N DSJ
`
`30
`
`30
`
`1.05
`-0.29
`2.01
`0.54
`
`0.34
`0.35
`-0.08
`
`2.66
`
`0.14
`0.03
`
`0.15
`
`0.43
`0.42
`-0.09
`-0.03
`
`0.01
`0.16
`-0.07
`-0.12
`0.05
`
`0.30
`0.31
`-0.08
`
`0.12
`0.06
`
`0.18
`
`0.16 30.33B
`0.13 3 3 . 0 1 ~ 7 1
`-0.01 30.01
`31.52
`29.44
`0.05 33.21B
`-0.12 34.17B
`34.65
`-0.11 45.68B
`
`105.1 *VR
`104.1 *lUNR
`91.1 *lR
`107.1 *YQR
`95.2 * AL36TJ
`101.1 *lUUlR
`103.1 *lUlR
`105.2 *2R
`176.2 *lIJlVR DNW
`
`0.05
`-0.18
`
`0.22
`-0.15
`
`-0.15 40.25B
`- 0.04 48.24AQ
`
`31
`33
`1
`34
`27
`1
`35
`36
`20
`
`31
`32
`1
`
`1
`35
`
`20
`
`20
`37
`
`85 CsCCsH,
`86 CH=CHCsH,
`87 CHQCHQCGH;
`88 CH=CHCOC,Hd-
`(4-NO2)
`89 CH=CHCOCsHj
`90 Ferrocenyl
`
`0.951
`2.46
`
`0.18
`-0.15
`
`91 Adamantyl
`
`3.30Y
`
`-0.12
`
`-0.13
`
`-0.12
`
`-0.02 40.63Ar
`
`131.2 *lUlVR
`* AL50J 0-FE--
`185.0
`OL50J
`135.3 * BL66 B6 A B-
`C 1B ITJ
`
`38
`
`0.17
`
`0.21
`
`0.15
`
`0.08 5 9 . 0 8 D ~ ~ 193.2 * C T 5 6 B N D N J 30
`BR
`
`l-Phenyl-2-
`benzimidazolvl
`
`F
`GeBr:$
`GeC1,
`GeFa
`H
`HgCHJ
`I
`IO
`IO?
`NO
`NO2
`N z N f
`N N N
`NH:!
`NHOH
`NHr--
`NHNH,
`NHS02NHSO.r
`NH?
`5-C1-1-tetrazolyl
`
`N-CClr
`N -C=O
`N-C=S
`5-Azido-l-
`tetrazolyl
`NHCN
`1-Tetrazolyl
`5-OH-1-tetrazolyi
`F. SH-1-tetrazolyl
`
`93
`94
`95
`96
`97
`98
`99
`100
`101
`102
`103
`104
`105
`106
`107
`10s
`109
`110
`111
`112
`
`113
`
`114
`115
`116
`117
`
`118
`119
`120
`121
`
`0.71
`0.14
`
`0 .oo
`1.12
`-3.74
`-3.46
`-0.12
`-0.28
`
`0.46
`- 1.23
`-1.34
`
`-0.88
`-2.11a
`
`-0.65
`
`0.41
`
`1.15
`
`- 1.04
`
`0.36
`0.37
`0.34
`0.66
`0.71
`0.85
`0 .oo
`0.43
`0.35
`
`0.68
`
`0.71
`1.76
`0.27
`-0.16
`-0.04
`0.86
`-0.02
`
`0.56
`0.23
`0.06
`0.73
`0.79
`0.97
`0.00
`0.10
`0 . 1 8
`
`0.78
`0.12
`0.78
`1.91
`0.15
`-0.66
`-0.34
`0.60
`-0.55
`
`0.60
`
`0.21
`0.27
`0.48
`0.54
`
`0.21
`0.52
`0.39
`0.45
`
`0.61
`
`0.13
`0.19
`0.38
`0.54
`
`0.06
`0.50
`0.33
`0.45
`
`0.27
`0.41
`0.43
`0.62
`0.67
`0.79
`0.00
`0.54
`0.40
`
`0.31
`-0.15
`-0.34
`0.16
`0.17
`0.24
`0 .oo
`-0.40
`-0.19
`
`0.63
`
`0.20
`
`0.16
`0.36
`-0.13
`-0.68
`-0.40
`-0.27
`-0.71
`
`211.3
`60.37B
`35.4
`6.03B
`19 .o
`0.92B
`312.3
`36.35D
`178.9
`25.85D
`129.6
`6.95D
`1 .o
`1.03
`215.6
`19.43D
`126.9
`13.94B
`142 9
`39.06C'
`63.51CD. 158.9
`5 2
`30.0
`7.36'
`46 . O
`28.0
`42 . O
`16 . O
`32 . O
`17 . O
`31 . O
`174.2
`
`10 2 B
`5.42B
`7.22
`
`8.44
`28.40'
`
`0.07 23. 16Di,
`
`103.5
`
`-0.08 18.35D
`96.9
`-0.08
`8.82D
`42 . O
`-0.09
`17.24D
`58.1
`0.05 26 .85CDr 110.1
`
`-0.18 10.14
`41 .O
`0.02 18.33D"
`69.1
`--0.04 19.77D"
`8 5 . 1
`0.05 26.06D3( 101.1
`
`0.67
`1.69
`0.30
`0.02
`0.06
`0.94
`0.17
`
`0.58
`
`0.23
`0.29
`0.51
`0.53
`
`0.26
`0.52
`0.40
`0.44
`
`20
`37
`
`39
`
`30
`
`34
`2
`2
`40
`40
`40
`22
`41
`2
`
`1
`4
`2
`42
`43
`2
`4
`44
`4
`
`13
`2
`2
`40
`40
`40
`22
`41
`2
`
`1
`
`2
`42
`43
`2
`4
`44
`4
`
`*VOYR&R
`*G
`*F
`*-GE-EEE
`*-GE-GGG
`*-GE-FFF
`*H
`*-HG-l
`*I
`*IO
`*IW
`*NO
`*NW
`*NN &J
`*NNN
`*Z
`*MQ
`*Z &H
`*MZ
`"MSWMSZW
`* ATSNNNNJ
`EG
`*NUYGG
`*NCO
`*NCS
`* AT5NNNNJ
`ENNN
`*MCN
`* AT5NNNNJ
`* ATSNNNNJ E$
`* AT5NNNNJ
`ESH
`
`3
`
`3
`
`3
`3
`43
`3
`
`28
`3
`3
`3
`
`3
`3
`43
`3
`
`28
`3
`3
`3
`
`Mylan Exhibit 1024, Page 4
`
`

`
`Aromatic Substituent Constants
`
`Table I (Continued)
`
`JournalofMedicinal Chemistry, J973, Vol. 16, No. J I 1211
`
`No.
`
`Functiona
`
`T b
`
`O m
`
`UP
`
`5c
`
`RC
`
`MRd
`
`MWe
`
`Wiswesser line
`notation1
`
`Ref
`Om
`c * g
`
`0.30
`
`0.19
`
`0.33
`
`-0.11
`
`101.1
`
`*M- ETSNNNSJ
`
`28 28
`
`123 NHCHO
`124 NHCONH?
`125 NHCSNHz
`126 NHCHa
`127 NHSOqCHI
`128 N(CF3)s
`129 NHCOCFX
`
`-0.98
`-1.30
`-1.40
`-0.47
`-1.18
`
`0.08
`
`0.19
`-0.03
`0.22
`-0.30
`0.20
`0.40
`0.30
`
`0.00
`-0.24
`0.16
`-0.84
`0.03
`0.53
`0.12
`
`0.25
`0.04
`0.23
`-0.11
`0.25
`0.34
`0.36
`
`-0.23 10.31
`-0.28
`13.72
`-0.05 22.19
`-0.74 10.33
`-0.20 18.17'
`0.22 14.28
`-0.21 14.30
`
`0.63
`
`0.64
`
`0.61
`
`0.07 49.17Dm
`
`131
`132
`133
`134
`135
`136
`137
`138
`139
`140
`141
`142
`143
`144
`145
`146
`147
`148
`149
`150
`151
`
`-0.97
`
`0 .08"'
`0.18
`-1.51
`0.46
`-0.47
`0.17
`
`-5.96W
`
`1.45u
`1 .69
`1.37
`0.45
`-0.29
`0.49
`
`0.17
`0.21
`0.24
`-0.24
`-0.15
`
`-0.03
`0.00
`0.12
`-0.61
`-0.83
`
`0.23
`0.28
`0.27
`-0.11
`0.10
`
`-0.25
`-0.26
`-0.13
`-0.51
`-0.92
`
`0.07
`0.04
`0.30
`0.88
`0.11
`-0.10
`-0.34
`0.32
`-0.12
`0.16
`-0.08
`0.02
`0.27
`
`-0.15
`-0.26
`0.07
`0.82
`-0.10
`
`-0.51
`0.39
`-0.40
`0.01
`-0.55
`-0.19
`0.31
`
`0.14
`0.14
`0.38
`0.89
`0.18
`
`-0.28
`0.28
`-0.02
`0.21
`0.09
`0.09
`0.24
`
`-0.28
`-0.39
`-0.28
`0 .oo
`-0.26
`
`-0.25
`0.13
`-0.38
`-0.18
`-0.63
`-0.27
`0.08
`
`19.77
`14.93
`23.40
`14.98
`15.55
`31 .22'
`20.88D
`19.58
`21.18
`23.19
`31.66
`
`24.25
`25.82
`24.26
`31.31
`30.04
`37 .88'
`33.01D
`34.64
`37.45
`
`44.0
`59.1
`75.1
`30.1
`94.1
`152 .O
`112 .o
`201.2
`
`*MVH
`*MVZ
`*MYZUS
`*M1
`*MSW1
`*NXFFFXFFF
`*MVXFFF
`* AT5NNNNJ
`ESS-
`ET5MNNNJ
`
`92.5
`58.1
`74.1
`44.1
`44.1
`172.2
`72.1
`72.1
`88.1
`87.1
`103.2
`59.1
`86.1
`102.1
`72.15
`105.1
`92.1
`156.2
`104.1
`120.1
`135.2
`
`*MVlG
`*MV1
`*MYUS
`*M2
`*Nl&l
`*NSWl&&SWl
`*NUNN1&1
`*MV2
`*MV02
`*MVM2
`*MY US&M 2
`*K
`*MVY
`*MlV02
`*M4
`*NUNR
`*MR
`*MSWR
`*NUlR
`*MVR
`*NUNR BQ E l
`
`
`
`
`
`
`
`
`
`
`
`
`
`43 43
`43 43
`28 28
`4
`2
`43 43
`45 45
`43 43
`
`3
`
`3
`
`43 43
`2
`2
`14 14
`4
`6
`46
`2
`
`43 43
`14 14
`14 14
`2
`2
`43 43
`47
`6
`4
`13 13
`48 48
`43 43
`43 43
`43 43
`43 43
`
`NHCOCHzCl
`NHCOCHI
`NHCSCHs
`NHCzHj
`N(CH3)z
`N(SOzCH3)z
`N=NN (CH3)2
`NHCOCzHj
`NHC02CzHj
`NHCONHCzHj
`NHCSNHCzH:
`N(CH,)C
`NHCOCH (CH3)z
`NHCH?COzC?Hs
`NHC4Hg
`N=NC sH j
`NHCaH,
`NHSOzCsHj
`N=CHCsHj
`NHCOCsH,
`N=NC sH3-
`(2-OH) (5-CH3)
`N=CHCsHa-
`
`152
`
`154 N(C6Hj)z - '
`155 0 -
`156 OH
`157 3,4-(OCFzO)
`158 OCF3
`159 OCHF?
`160 OCONHz
`161 3,4-(OCH,O)
`162 OCH,
`164 OCFzCHFCl
`165 OCOCH,
`166 OCH2COOH
`167 OEt
`168 OPO(OCH3)z
`169 OCH(CH3)Z
`170 OC3H7
`171 OCiHo
`172 OCjHii
`173 OCsHj
`174 OSOzCaH:
`175 0-8-glucose
`
`176 OCOC6Hj
`177 POCI,
`178 PCl,
`179 POF,
`180 PFZ
`181 PSClZ
`182 POZH-
`183 PHz
`184 P(Cl)N(CHS),
`185 PO(CH3)t
`
`- 3.87W
`-0.67
`
`1.04
`
`- 1.05
`-0.05
`-0.02
`-0.88
`
`-0.64
`-0.87
`0.38
`
`1.05
`
`2.08
`0.93
`-2.84-
`
`1.46
`
`-0.07
`
`-0.54
`
`0.10
`
`-0.63
`
`39.29D
`
`134.2
`
`*NUlR DO1
`
`0.09
`
`-0.06
`
`0.14
`
`-0.19
`
`41.03
`
`150.2
`
`*MVR DO1
`
`0.00
`-0.47
`0.12
`0.36
`0.38
`0.31
`
`-0.16
`0.12
`0.39
`0.35
`0.39
`
`0.10
`
`0.10
`0.10
`0.10
`0.10
`0.25
`0.36
`
`0.21
`0.80
`0.53
`0.81
`0.26
`0.73
`0.20
`0.05
`0.38
`0.42
`
`-0.22
`-0.81
`-0.37
`0.36
`0.35
`0.18
`
`-0.16
`-0.27
`0.36
`0.28
`0.31
`-0.33
`-0.24
`0.04
`-0.45
`-0.25
`-0.32
`-0.34
`-0.03
`0.33
`
`0.07
`-0.35
`0.29
`0.35
`0.38
`0.35
`
`-0.17
`0.26
`0.39
`0.37
`0.41
`
`-0.29
`-0.49
`-0.64
`0.04
`0 .oo
`-0.14
`0 .oo
`-0.51
`0 .oo
`-0.06
`-0.07
`
`0.22
`
`-0.44
`
`0.30
`0.22
`0.25
`0.25
`0.34
`0.36
`
`-0.72
`-0.45
`-0.55
`-0.57
`-0.35
`0 .oo
`
`0.13
`0.43
`0.61
`0.89
`0.61
`0.39
`0.26
`
`0.56
`
`0.23
`0.93
`0.49
`0.77
`0.12
`0.84
`0.17
`
`0.30
`
`-0.08
`-0.42
`0.16
`0.18
`0.50
`-0.39
`0.11
`
`0.28
`
`54.96
`
`2.85B
`8.95B
`7.86B
`7.86B
`11 .28B
`8.96B
`7.87B
`16.99
`17.30B
`12.47B
`13.99B
`12 .47B
`22 .02B
`17 .06B
`17 ,06B
`21 .66B
`26.26B
`27 .68B
`36.70'
`36.53D
`
`32 .33B
`20.16D
`21 .42D
`9.58D
`11.02D
`28 .29D
`
`12.19D
`27.01D
`19.93D
`
`168.2
`16 .O
`17 . O
`82 .O
`85 . O
`57 .O
`60 . O
`46 . O
`31 .O
`95.1
`133.5
`59 . O
`75 .O
`45.1
`125 . O
`59.1
`59.1
`73.1
`87.2
`93.1
`157.2
`179 .O
`
`121.1
`117.9
`101.9
`85 .O
`69 .O
`133.9
`80 .O
`33 . O
`110.5
`77 .o
`
`*NR&R
`*O
`*Q
`*OXFFO*(C,D)
`*OXFFF
`*OYFF
`* o v z
`*010*(C,D)
`*01
`* o s w 1
`*OXFFY GF
`* o v 1
`*OlVQ
`*02
`*OPO&O1&01
`*OY
`*03
`'04
`*05
`*OR
`*OSWR
`*0- BT6OTJ
`
`*PO&GG
`*PGG
`*PO&FF
`*PFF
`*PS&GG
`*PWQ
`*PHH
`*PGN1&1
`*PO&1&1
`
`43 43
`
`43 43
`
`49 50
`44 44
`2
`2
`9
`9
`45 45
`51 51
`
`2
`
`22 22
`2
`2
`43 43
`51 51
`2
`2
`52
`2
`53
`2
`2
`2
`2
`2
`2
`2
`2
`4
`2
`43 43
`
`43 43
`54 53
`54 41
`41 41
`41 41
`54 53
`2
`2
`54
`41 41
`54
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`Mylan Exhibit 1024, Page 5
`
`

`
`__Ref
`Flit r,
`55
`.i 5
`54
`41
`5 3
`56
`
`Nli.
`186
`187
`188
`189
`190
`191
`192
`193
`194
`195
`196
`
`I97
`
`198
`199
`200
`2 01
`202
`203
`204
`203
`2 06
`207
`208
`209
`210
`211
`21 2
`213
`21 4
`21 5
`216
`21 7
`218
`219
`220
`221
`322
`223
`224
`22.5
`226
`
`Function,'
`
`-,,
`
`0 70
`
`0 05%
`1 23
`
`--4 76iV
`0 39
`-1 82
`1 65
`
`0 ,ir5
`1 44
`0 41
`
`- 1 58
`-1 63
`0 61
`0 10
`1 07
`
`0 27
`2 32
`
`c
`
`0 42
`0 O?
`
`0 35
`0 65
`0 42
`0 56
`
`0 09
`0 38
`0 33
`
`( I 40
`
`0 20
`0 35
`0 38
`0 11
`0 29
`0 80
`0 61
`- 0 02
`0 05
`0 25
`0 46
`
`0 63
`0 79
`0 40
`0 41
`0 33
`0 54
`0 75
`0 52
`0 60
`0 1<5
`0 3s
`0 39
`0 18
`I 00
`(J 61
`
`0 iii
`
`0 37
`-0 08
`
`0 52
`
`rT
`0 53
`u 31
`0 33
`0 60
`
`0 44
`
`0 50
`
`0 32
`
`\ j
`
`M I Z '
`0 19 21 87D
`0 39 21 19D
`32 42D
`0 12 31 16D
`39 49D"
`40 75D
`47 6 2 D '
`40 99D
`36 14D
`0 20 40 46D
`41 68D
`
`MWe
`109 .0
`61 1
`121.1
`137.1
`177.5
`161 . .i
`193.6
`143 .5
`127.1
`165.2
`157.1
`
`Wiswesser line
`notation
`"P0&01&01
`* P l & l
`+PO2 &02
`*P0&02&02
`"PO&GR C F
`^PGR C F
`"PS&GR C F
`'"PGR
`*PHR C F
`"P0&03&03
`*POl&R C F
`
`39 37D
`
`157.1
`
`*PO&l&R C F
`
`0 49
`0 53
`0 19
`0 47
`0 91
`0 68
`-0 05
`0 09
`0 15
`0 57
`
`0 29
`0 31
`0 07
`0 21
`0 75
`0 57
`-0 02
`0 03
`0 28
`0 41
`
`0 69
`0 93
`0 50
`0 52
`0 37
`0 58
`0 86
`0 49
`0 72
`0 00
`0 47
`0 44
`0 03
`0 90
`0 70
`0 le
`0 70
`
`0 60
`0 73
`0 35
`0 36
`0 30
`0 51
`0 70
`0 52
`0 54
`0 20
`0 34
`0 36
`0 23
`1 02
`0 56
`
`0 62
`
`40 63D'
`0 23 47 81D
`0 24 59 29D
`0 12 60 55D
`0 27 67 42D
`8 65
`0 22
`0 15
`9 89A
`-0 03
`0 07
`9 22B
`- 0 11
`0 19 12 28
`28 34B
`0 14 13 07
`0 26 12 86
`0 18 13 81B
`0 19 13 40
`0 09 13 81B
`0 11 13 28
`0 22 13 08
`0 01 13 70
`0 22 13 49
`- 0 18 13 82B
`0 16 18 408
`0 11 18 42R
`-0 18 18 42R
`-0 04
`0 18 33 20
`34 29B
`
`0 13
`
`141.1
`161.2
`201.2
`185.2
`217.2
`8 3 . 1
`127.1
`6 4 . 1
`80.1
`33.1
`8 0 . 1
`150.4
`117.1
`133.1
`101.1
`38 .1
`8 3 . 1
`9 9 . 1
`115.1
`6 3 . 1
`79 .I
`47.1
`133.1
`7 5 . 1
`6 1 . 1
`6 2 . 1
`141.2
`109.2
`216.3
`
`*Pl&R C F
`*P0&4&4
`-PO&R&R
`*PR&R
`*PS&R&R
`"SWF
`'"SFFFFF
`"SW
`'SWO
`'SEI
`"SZW
`^SXGGG
`'SO&XFFF
`*SWXFFF
`WXFFF
`"SCN
`"SYFF
`"SO&YFF
`YSWYFF
`Y30% 1
`*SWI
`"S 1
`xSXFFY FF
`"SVI
`'S2
`"Sl&l
`*SWR
`*SN.
`"Sl&UNSWR D1
`
`56
`54
`54
`54
`
`5 4
`55
`54
`
`<5 4
`
`54
`55
`57
`57
`5 7
`58
`59
`60
`2
`2
`9
`
`1
`
`18
`61
`61
`6
`1
`62
`1
`
`2
`2
`61
`2
`9 ..
`>
`5
`
`63
`
`0 74
`
`2 59
`
`0 32
`0 61
`0 10
`0 48
`0 48
`0 54
`-0 04
`0 00
`
`0 38
`0 66
`0 00
`0 57
`0 56
`0 69
`-0 07
`-0 01
`
`0 29
`0 58
`0 13
`0 44
`0 44
`0 47
`-0 04
`- 0 01
`
`0 12 16 32D
`0 13 16 82D
`-0 12 17 03D
`0 17 32 76D
`0 16 23 85D
`7 62D
`0 25
`-0 04 24 96D
`-0 01 43 64D
`
`148 . 0
`105 .o
`94 . O
`267.8
`134.4
`8 5 . 1
`73.2
`147.4
`
`0 02
`
`- - 0 01
`
`-0 0.3
`
`0 02 62 32D
`
`221.6
`
`0 01
`
`- 0 13
`
`0 . 1 1 80.99D
`
`295 7
`
`-2 I
`6,' c
`228
`229
`230
`231
`23%
`233
`234
`
`235
`
`236
`
`~
`
`'-SE-XFFF
`'-SE-CN
`*-SE-l
`'-SI-EEE
`'-SI-GGG
`--SI-FFF
`*-SI-l&l&l
`*-SI-l&l&O-SI-
`1&1&1
`"-SI-l& O-SI-
`1&1&12
`'-SI- O-SI-
`- 0 09
`1&1&13
`-_
`first,
`' Function begins with attachment atom, sorted alphabetically on attachment atom and within each such grouping:
`if' no (1 o r 11, then alphabetically on remainder; second, if no C, then on H and alphabetically on remainder; third, C then
`I i then allJhabetically on remainder. l2 A11 T values from partition coefficients measured in this laboratory using octanol-
`watci' solvent system and substituted benzene solutes unless footnoted to give other sources or suffixed to give other solute
`systcms: W --- from substituted biphenyl solutes; X = from substituted phenoxyacetic acid solutes; Y = calculated from
`0 1 I deiiv:iLive: Z = from substituted toluene solutes.
`Calculated from u,,, and u,, given in this table according to the pro-
`c.t-durr (iutlined in the text. d Molar refraction using A. I. Vogel's [ J . Chem. Soc., 1833 (1948) ] atom, group, or structural Ru
`lyell(,w l i n d values unless suffixed: A = calculated [usually from index of refraction, density, and molecular weight from
`I'firentz 1,orentz formula (eq I ) ] using Vogel's (1948) values for corrections; B = atom, group, or structural H, ( = R c red
`values from Ingold ("Structure and Mechanism in Organic Chemistry," 2nd ed, Cornel1 University Press, Ithaca, N. Y.,
`line
`1969. 1 1 1 ~ 142 1.52). Note: Table 10.1 "alcohol" and "ether" values inverted; C = approximate; D = bond values [including
`1JlJnd t o ( ' 1Jf substrate) from A. I. Vogel, W. T. Cresswell, G. €3. Jeffery, and J. Leicester, J . Chem. soc., 514 (19.521, and
`cswrlier i.ct:'c.iences cit,ed therein (general); A. I. Vogel, W. T. Cresswell, and J. Leicester, J . Phys. Chem., 58, 174 (1954) (Sn,
`Si, (if,. and fIg bonds); A. A. Foxton, (2. H. Jeffery, and A. I. Vogel, J . Chem. SOC. A , 249 (1966) (P bonds); R. G. Gillis, Rev.
`l'unj A p p / . C'hcm., 10, 21 (1960) (bonds to C, H, 0, and self), updated by P. M. Christopher and T. L. Patterson, Aust. J .
`( ' h ~ m . . 21, 2:173 f 19683, and earlier references cited therein; C. Stijlzer and A. Simon, Chem. Ber., 96, 1335 (1963) (P bonds to
`I,', C I . N ; 11. Sayre, J . Amer. Chem. Soc., 80, 5438 (1958) (P bonds to S). From "Handbook of Chemistry and Physics,"
`531.~1 ed, Chemical Rubber Publishing Co., Cleveland, Ohio, 1972. The WLN follow as closely as possible the rules in "The
`
`53
`
`5 5
`
`55
`57
`57
`57
`58
`59
`60
`2
`2
`2
`
`18
`61
`61
`2
`1
`62
`1
`2
`2
`2
`61
`2
`2
`2
`5
`36
`63
`
`64
`4
`2
`40
`40
`41
`2
`65
`
`64
`48
`2
`40
`40
`41
`2
`63
`
`65
`
`65
`
`65
`
`65
`
`Mylan Exhibit 1024, Page 6
`
`

`
`Aromatic Substituent Constants
`
`Journal ofMedicinal Chemistr?, 2973, Vol 16, No 11 1213
`
`Wiswesser Line-Formula Chemical Notation,” E. C. Smith, Ed., McGraw-Hill, New York, N. Y., 1968, with these additions.
`(1) The WLN begins a t the point of attachment: (a) if the substituent group becomes part of an aromatic fused ring system,
`the substituent is cited as a closed ring and the attachment locants (for the substituent ring) are marked with asterisks. The
`notation is followed by a parentheses showing attachment locants on the parent ring; (b) if the substituent completes a
`single saturated ring on an aromatic ring it is treated as a linear chain with a two-point attachment; (c) the WLN for a car-
`bocyclic or heterocyclic ring as a substituent begins with a space and then a locant showing the attachment point on the sub-
`stituent ring. (2) Methyl contractions are made on “X,” “Y,” and “K” symbols but not on rings. (3) Multipliers are used
`according to normal rules. (4) The # symbol denotes a saturated alkyl chain of undetermined length. (5) If a “?” begins the
`notation, the structure is not definable by WLN. The following refrences refer to um and up, respectively: (1) 0. Exner,
`Collect. Czech. Chem. Commun., 31, 65 (1966); (2) D. H. McDaniel and H. C. Brown, J . Org. Chem., 23, 420 (1958); (3) W. A.
`Sheppard, Trans. N . Y. Acad. Sci., [11] 29, 700 (1967); (4) H. H. Jaff6, Chem. Rev., 53, 191 (1953); (5) M. Charton, J . Org.
`Chem., 30, 552 (1965); (6) M. Charton, ibid., 28, 3121 (1963); (7) P. Cecchi, Ric. Sci., 28, 2526 (1958); (8) P. Zuman, “Sub-
`stituent Effects in Organic Polarography,” Plenum Press, New York, N. Y., 1967, p 76; (9) L. M. Yagupol’skii and L. N.
`Yagupol’skaya, Dokl. Chem., 134, 1207 (1960); (10) J. A. Landgrebe and R. H. Rynbrandt, J. Org. Chem., 31, 2585 (1966);
`(11) V. V. Orda, L. M. Yagupol’skii, V. F. Bystrov, and A. U. Stepanyants, J. Gen. Chem. USSR, 35, 1631 (1965); (12) R.
`Stewart and L. G. Walker, Can. J. Chem., 35, 1561 (1957); (13) W. F. Little, C. N. Reilley, J. D. Johnson, K. N. Lynn, and
`A. P. Sanders, J. Amer. Chem. SOC., 86, 1376 (1964); (14) T. Nishiguchi and Y. Iwakura, J. Org. Chem., 35, 1591 (1970);
`(15) 0. Exner and J. Jon&, Collect. Czech. Chem. Commun., 27, 2296 (1962); (16) M. F. Hawthorne, T. E. Berry, and P. A.
`Wegner, J. Amer. Chem. SOC., 87, 4746 (1965); (17) L. I. Zakharkin, V. N. Kalinin, and I. P. Shepilov, Dokl. Chem., 174, 484
`(1967); (18) V. F. Bystrov, L. M. Yagupol’skii, A. U. Stepanyants, and Yu. A. Fialkov, ibid., 153, 1019 (1963); (19) W. A.
`Sheppard, J. Amer. Chem. SOC., 87, 2410 (1965); (20) G. B. Ellam and C. D. Johnson, J . Or

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket