throbber
(19) United States
`(12) Patent Application Publication (10) Pub. No.: US 2006/0104633 A1
`(43) Pub. Date:
`May 18, 2006
`Kenoyer et al.
`
`US 20060104633Al
`
`(54) HIGH DEFINITION CAMERA PAN TILT
`MECHANISM
`
`?led on Apr. 29, 2005. Provisional application No.
`60/675,966, ?led on Apr. 29, 2005.
`
`(76) Inventors: Michael L. Kenoyer, Austin, TX (US);
`William V. Oxford, Austin, TX (U S);
`Patrick D. VanderWilt, Austin, TX
`(US); Hans-Christoph Haenlein, San
`Jose, CA (US); Branko Lukic, Menlo
`Park, CA (US); Jonathan I. Kaplan,
`Palo Alto, CA (US)
`
`Correspondence Address:
`MEYERTONS, HOOD, KIVLIN, KOWERT &
`GOETZEL, RC.
`700 LAVACA, SUITE 800
`AUSTIN, TX 78701 (US)
`
`(21) Appl. No.:
`
`11/251,083
`
`(22) Filed:
`
`Oct. 14, 2005
`
`Related US. Application Data
`
`(60) Provisional application No. 60/ 619,227, ?led on Oct.
`15, 2004. Provisional application No. 60/675,964,
`
`Publication Classi?cation
`
`(51) Int. Cl.
`(2006.01)
`G03B 17/00
`(52) US. Cl. ............................................................ ..396/428
`
`(57)
`
`ABSTRACT
`
`In various embodiments, a High De?nition (HD) camera
`may be controlled by one or more motors in a base of the HD
`camera. Cables and other components may be used to
`manipulate the camera lens through the side arms of the HD
`camera. Putting the motors in the base may reduce the siZe
`of the outer case of the HD camera and add stability. In some
`embodiments, images from the HD camera may be con
`verted into a serialized stream and transported over a cable
`from the lens through a center shaft of the HD camera. Other
`components may also be used to increase the functionality of
`the HD camera. In some embodiments, a camera support
`mechanism may be provided to couple a camera to a display.
`The camera support mechanism may include a front lip and
`rear leg to hold camera in place.
`
`100
`
`

`

`Patent Application Publication May 18, 2006 Sheet 1 0f 7
`
`US 2006/0104633 A1
`
`100
`101 /
`
`

`

`Patent Application Publication May 18, 2006 Sheet 2 0f 7
`
`US 2006/0104633 A1
`
`219
`217
`
`6
`
`200 f
`
`6
`
`215
`
`205
`221
`

`
`211
`
`213
`
`203 201
`

`
`.
`
`6
`
`207
`
`209
`
`Q.
`
`m
`
`o
`-'
`© ' ©
`
`o
`

`
`1
`U
`

`
`T.
`khJ
`
`I:
`
`‘L.
`
`I;
`
`FIG. 2
`
`

`

`Patent Application Publication May 18, 2006 Sheet 3 0f 7
`
`US 2006/0104633 A1
`
`307
`
`\/ 305
`
`303
`
`FIG. 3
`
`

`

`Patent Application Publication May 18, 2006 Sheet 4 0f 7
`
`US 2006/0104633 A1
`
`

`

`Patent Application Publication May 18, 2006 Sheet 5 0f 7
`
`US 2006/0104633 A1
`
`PF
`
`507
`
`505
`
`

`

`Patent Application Publication May 18, 2006 Sheet 6 0f 7
`
`US 2006/0104633 A1
`
`FIG. 7
`
`

`

`Patent Application Publication May 18, 2006 Sheet 7 0f 7
`
`US 2006/0104633 A1
`
`A ?rst signal to pan the HD PTZ
`camera may be received.
`E
`
`V
`A ?rst motor may be activated to pan
`the HD PTZ camera.
`E
`
`V
`A second signal to tilt the HD PTZ
`camera may be received.
`@
`
`A second motor may be activated to tilt
`the HD PTZ camera.
`w
`
`i
`
`If a plate moves past a prede?ned point, the opto
`interrupter may signal the respective motor to stop.
`.8_0_9_
`
`V
`
`Data to and from the HD PTZ camera may be
`transmitted as a high speed serial digital stream.
`m
`
`FIG. 8
`
`

`

`US 2006/0104633 A1
`
`May 18, 2006
`
`HIGH DEFINITION CAMERA PAN TILT
`MECHANISM
`
`PRIORITY CLAIM
`
`[0001] This application claims priority to Us. Provisional
`Patent Application serial No. 60/619,227 titled “High De?
`nition Camera and Mount”, Which Was ?led Oct. 15, 2004,
`Whose inventors are Michael L. Kenoyer, Patrick D. Vander
`Wilt, Paul D. Frey, Paul Leslie Howard, Jonathan I. Kaplan,
`and Branko Lukic Which is hereby incorporated by reference
`in its entirety as though fully and completely set forth herein.
`[0002] This application also claims priority to Us. Pro
`visional Patent Application serial No. 60/675,964 titled
`“Camera Support Mechanism”, Which Was ?led Apr. 29,
`2005, Whose inventors are Michael L. Kenoyer, Patrick D.
`VanderWilt, Paul D. Frey, Paul Leslie HoWard, Jonathan I.
`Kaplan, and Branko Lukic Which is hereby incorporated by
`reference in its entirety as though fully and completely set
`forth herein.
`[0003] This application further claims priority to Us.
`Provisional Patent Application serial No. 60,675,966 titled
`“Camera Pan/Tilt Mechanism”, Which Was ?led Apr. 29,
`2005, Whose inventors are Michael L. Kenoyer, Patrick D.
`VanderWilt, Paul D. Frey, Paul Leslie HoWard, Jonathan I.
`Kaplan, and Branko Lukic Which is hereby incorporated by
`reference in its entirety as though fully and completely set
`forth herein.
`
`BACKGROUND OF THE INVENTION
`
`1. Field of the Invention
`
`[0004]
`[0005] The present invention relates generally to cameras
`and, more speci?cally, to video camera pan tilt mechanisms.
`
`[0006] 2. Description of the Related Art
`
`[0007] Video conferencing systems may use cameras to
`capture images of conference participants at one site to
`transmit and display to conference participants at another
`site. While high de?nition (HD) cameras may be used to
`provide high de?nition images, they may be too large and
`too dif?cult to control for a video conferencing system. For
`example, it may not be possible to place a HD camera on top
`of a computer monitor as part of a conference system.
`
`[0008] Traditionally, a tilt motor on the HD camera may be
`used in a rotating head of the HD camera structure and
`coupled to a lens/sensor assembly on the HD camera. A
`panning mechanism on the HD camera may need to over
`come inertia of not only the lens/ sensor assembly, but also
`the inertia of the tilt motor and linkage in the rotating head
`of the HD camera. In addition, traditional HD cameras may
`use thick cables to send analog signals (Which may be
`susceptible to noise).
`[0009] Video conferencing systems have traditionally
`been of the set-top box format. Examples are the Polycom
`VieWStation and Tandberg 880. These may be in the range
`of 13-17" Wide by 8-10" deep and 6-10" high. They may be
`placed on the top of cathode ray tube (CRT) based televi
`sions so the camera is above the display device shoWing the
`remote participants during a video call.
`
`[0010] As large screen (32"-65") HiDef televisions have
`become more popular, the television industry has been
`
`transitioning aWay from CRT based devices and moving
`toWard plasma and liquid crystal displays (LCD) screens,
`Which alloW the display to be much thinner. Current plasma
`and LCD televisions may be as thin as 3-4". This means the
`display may no longer have a set-top on Which to place a
`video conferencing system. The camera of a video confer
`encing system may need to be as close to the display as
`possible in order optimiZe eye contact. HoWever, displays
`may not be thick enough or ?at enough to hold traditional
`set-top box video conferencing systems.
`
`[0011] The top surfaces of the displays may also not have
`a consistent shape or depth making it very dif?cult to place
`a camera on top of the display Without it being very unstable
`and likely to fall off. One solution is to install a shelf above
`the monitor and place the camera on the shelf. HoWever, that
`may mean the system cannot be moved around and may
`need to be permanently installed close to a Wall (needed to
`mount the shelf).
`
`SUMMARY OF THE INVENTION
`
`[0012] In various embodiments, a High De?nition (HD)
`camera may have a lens portion and a base portion coupled
`to each other through one or more arm portions. The HD
`camera may be controlled by one or more motors in the HD
`camera’s base. A tilt motor in the HD camera base may
`control the tilt of the HD camera, While a pan motor in the
`HD camera base may pan the HD camera. The tilt and pan
`motors may be coupled to plates in the base of the HD
`camera. The tilt motor may also be coupled to cables in an
`arm portion of the HD camera.
`
`[0013] Putting the motors in the base may reduce the siZe
`of the outer case of the HD camera and add stability. In some
`embodiments, images from the HD camera may be con
`verted into a serialized digital stream and transported over a
`data cable from the lens through a center shaft of the HD
`camera. This may alloW the placement of several compo
`nents for processing images, etc. in a base of the camera
`instead of in the lens portion. Other information may also be
`sent over the data cable (e.g., bi-directional control data and
`poWer). Other components in the lens portion and/or base
`portion may also be used to increase the functionality of the
`HD camera.
`
`[0014] In various embodiments, cables and other compo
`nents may be used to manipulate the camera lens through the
`side arms of the HD camera. Putting the motors in the base
`may reduce the siZe of the outer case of the HD camera and
`add stability. In some embodiments, images from the HD
`camera may be converted into a serialiZed stream and
`transported over a cable from the lens through a center shaft
`of the HD camera. Other components may also be used to
`increase the functionality of the HD camera.
`
`[0015] In various embodiments, a camera support mecha
`nism (CSM) may be used to couple a camera to a display. In
`some embodiments, the CSM may have a ?at top that folds
`open to access a tripod mount screW that couples the camera
`to the CSM. After attaching the camera to the top of the
`CSM, the CSM may be placed on the top center of the
`display device. The CSM may have an adjustable front lip
`that aligns to the top front edge of the display device. In
`some embodiments, the front lip may be attached to a loWer
`deck through a mount screW. The front lip may have tWo
`separate offsets that may cushion the contact With the
`display. In some embodiments, if multiple pads are used, the
`CSM may Work With display devices that have either a
`
`

`

`US 2006/0104633 A1
`
`May 18, 2006
`
`concave or a convex front surface. The front lip may be
`adjusted to one of a number of set positions so that the CSM
`can accommodate even extremely thin screens that may be
`Wall mounted.
`
`[0016] In some embodiments, When the CSM is placed on
`the display, a user may tighten an adjustment knob on one
`side of the pivot point at the rear of the CSM. This may
`rotate the adjustable rear leg toWards the back of the display.
`In some embodiments, the rear leg may rotate from ?at and
`parallel to the top of the display to perpendicular to the top
`of the display. When the rear leg has rotated to the point
`Where it makes contact With the display, further tightening of
`the knobs may apply additional pressure. The rear leg may
`be tightened to lock the rear leg ?rmly against the back of
`the display at that position. In some embodiments, the rear
`leg may have a foam/rubber tip for better gripping. In some
`embodiments, the CSM may also accommodate variable
`slope on the screen from front to back using the foam/rubber
`tip.
`
`BRIEF DESCRIPTION OF THE DRAWINGS
`
`[0017] A better understanding of the present invention
`may be obtained When the folloWing detailed description is
`considered in conjunction With the folloWing draWings, in
`Which:
`[0018] FIG. 1 illustrates a high density (HD) pan, tilt,
`Zoom (PTZ) camera, according to an embodiment;
`
`[0019] FIG. 2 illustrates a cutaWay vieW of a HD PTZ
`camera, according to an embodiment;
`
`[0020] FIG. 3 illustrates a side vieW of the internal com
`ponents of the HD PTZ camera, according to an embodi
`ment;
`[0021] FIG. 4 illustrates another vieW of the internal
`components of the HD PTZ camera, according to an
`embodiment;
`[0022] FIG. 5 illustrates a side vieW of the camera support
`mechanism, according to an embodiment;
`[0023] FIG. 6 illustrates an exploded vieW of the camera
`support mechanism, according to an embodiment; and
`[0024] FIG. 7 illustrates a top vieW of the camera support
`mechanism With a cable slot, according to an embodiment.
`
`[0025] FIG. 8 illustrates a method of positioning an HD
`PTZ camera, according to an embodiment.
`
`[0026] While the invention is susceptible to various modi
`?cations and alternative forms, speci?c embodiments
`thereof are shoWn by Way of example in the draWings and
`are herein described in detail. It should be understood,
`hoWever, that the draWings and detailed description thereto
`are not intended to limit the invention to the particular form
`disclosed, but on the contrary, the intention is to cover all
`modi?cations, equivalents and alternatives falling Within the
`spirit and scope of the present invention as de?ned by the
`appended claims.
`
`DETAILED DESCRIPTION OF THE
`EMBODIMENTS
`
`Incorporation by Reference
`[0027] US. Provisional Patent Application titled “Speak
`erphone”, Ser. No. 60/619,303, Which Was ?led Oct. 15,
`2004, Whose inventors are Michael L. Kenoyer, William V.
`
`Oxford, and Simon Dudley is hereby incorporated by ref
`erence in its entirety as though fully and completely set forth
`herein.
`[0028] US. Provisional Patent Application titled “Speak
`erphone”, Ser. No. 60/634,315 Which Was ?led Dec. 8, 2004,
`Whose inventors are William V. Oxford, Michael L. Kenoyer
`and Simon Dudley Which is hereby incorporated by refer
`ence in its entirety as though fully and completely set forth
`herein.
`
`[0029] US. Provisional Patent Application titled “Video
`Conferencing Speakerphone”, Ser. No. 60/619,212, Which
`Was ?led Oct. 15, 2004, Whose inventors are Michael L.
`Kenoyer, Craig B. Malloy, and Wayne E. Mock is hereby
`incorporated by reference in its entirety as though fully and
`completely set forth herein.
`
`[0030] US. Provisional Patent Application titled “Video
`Conference Call System”, Ser. No. 60/619,210, Which Was
`?led Oct. 15, 2004, Whose inventors are Michael J. Burkett,
`Ashish Goyal, Michael V. Jenkins, Michael L. Kenoyer,
`Craig B. Malloy, and Jonathan W. Tracey is hereby incor
`porated by reference in its entirety as though fully and
`completely set forth herein.
`
`HD PTZ Camera With Embedded Microphones; Thin Cable
`for Data and PoWer
`
`[0031] FIG. 1 illustrates a high de?nition (HD) pan, tilt,
`Zoom (PTZ) camera, according to an embodiment. In some
`embodiments, the HD PTZ camera 100 may be used to
`provide video of participants during a video conference call.
`In some embodiments, the camera may be a companion
`HiDef pan-tilt-Zoom camera With a resolution of 1280x820
`at 30 frames per second (fps). Other cameras, resolutions,
`and frame rates are also contemplated.
`
`[0032] In some embodiments, the HD PTZ camera 100
`may have a lens portion 101 coupled to a base 105 by one
`or more arm portions (e.g., camera bracket arms 103). In
`some embodiments, the lens portion 101 may be panned
`and/or tilted by motors (i.e., a device that converts one or
`more forms of energy into mechanical energy) in the base
`105. The lens portion 101 may be pointed toWards a par
`ticipant or another source of visual interest. In some embodi
`ments, the lens portion 101 may be panned by a motor
`turning the base shaft 107. In some embodiments, the lens
`portion 101 may be tilted by a motor turning a rod 109. In
`some embodiments, the pan motor and the tilt motor may be
`in the base of the HD PTZ camera 100. Other locations of
`the pan and tilt motors are also contemplated. In some
`embodiments, one motor may be used for panning and tilting
`the HD PTZ camera 100. In some embodiments, multiple
`motors may be used for panning and/or tilting the HD PTZ
`camera. In some embodiments, an electromechanical motor
`may be used. The motors may be step motors. Other motors
`are also contemplated.
`
`[0033] In some embodiments, multiple motors in the cam
`era base may be used together to pan and tilt the camera 100.
`For example, an Field Programmable Gate Array (FPGA)
`(e.g., see FPGA 321 in FIG. 3) in the camera 100 may
`receive a serial command (e.g., from a video conferencing
`system codec) to move the camera 100. The FPGA 321 may
`calculate a response to send to each motor in the base to
`move the camera to the requested position. The FPGA 321
`may store or have access to a memory medium storing the
`
`

`

`US 2006/0104633 A1
`
`May 18, 2006
`
`position of the camera and/or motors. In some embodiments,
`the response may be a stepping Wave that includes an
`acceleration phase, a constant move phase, and a decelera
`tion phase. Other response patterns are also contemplated
`(e.g., the response may be a straight response for the motor
`to move at a prede?ned speed to a designated position). The
`FPGA 321 may receive other types of serial commands. For
`example, the FPGA 321 may be requested to move the
`camera to a preset position, to pan/tilt the camera at a
`speci?ed speed, to move the camera to a speci?ed position
`as fast as possible, to continue moving the camera until a
`command is received to stop, etc. The FPGA 321 may
`translate these commands into a response to send to each
`motor (or a subset of motors) in the camera 100.
`
`[0034] FIG. 2 illustrates a cutaWay vieW of a HD PTZ
`camera 100, according to an embodiment. Pan motor 201
`and tilt motor 207 may substantially control movement of
`the HD PTZ camera 100. In some embodiments, the pan
`motor 201 and/or tilt motor 207 may be in the base of the HD
`PTZ camera 100. Putting the motors in the base may reduce
`the siZe of the outer case of the HD PTZ camera 100 and add
`stability. Pan motor 201 may rotate a ?rst plate 203 that may
`pan the HD PTZ camera 100 to the left or right. In some
`embodiments, the pan motor 201 may turn a gear With teeth
`that interlock With teeth on the plate 203 to rotate the HD
`PTZ camera 100 through a range of motion (e.g., 180
`degrees) left to right. In some embodiments, a larger or
`smaller range of motion may be implemented. Other siZes of
`plates 203 may also be used. For example, a larger plate may
`alloW a larger range of motion.
`
`[0035] In some embodiments, a tilt motor 207 may turn a
`second plate 209 using a gear With teeth that interlock With
`teeth on the second plate 209. The second plate 209 may turn
`a cable Wheel 205 that may pull cable 211 in to the left or
`right (depending on Which Way the plate 209 is rotated). The
`cable 211 may rotate a tilt Wheel 215 that may turn a rod 109
`to tilt the HD PTZ camera 100 in the up and doWn direction.
`O?fsetting connectors 213 With grooves for the cable 211
`may hold the cable 211 aWay from the side of the interior of
`the HD PTZ camera 100 While also alloWing the cable 211
`to move back and forth along the interior of the HD PTZ
`camera bracket arm 219. While tWo sets of offsetting con
`nectors 213 are shoWn, other numbers of offsetting connec
`tors 213 may also be used.
`
`[0036] In some embodiments, the motors 201 and 207
`may be ?xed. In some embodiments, the motors may be on
`moving parts Within the camera 100. In some embodiments,
`the FPGA 321 may determine appropriate responses for the
`motors based on their current positions and the effect on
`their positions caused by the movement of other motors
`being controlled by the FPGA 321 (e.g., the motion of a
`motor caused by another motor’s actions).
`
`[0037] FIG. 3 illustrates a side vieW of the internal com
`ponents of the HD PTZ camera 100, according to an
`embodiment. In some embodiments, a screW hole 301 for a
`tripod mount screW may be provided. The HD PTZ camera
`100 may attach to a mount through the tripod mount screW
`(other fasteners are also contemplated). In some embodi
`ments, the HD PTZ camera 100 may use a Wide angle lens
`309 to capture an image of a participant even at a close
`angle. A data cable 303 may provide a link for data to and
`from the HD PTZ camera 100. In some embodiments, the
`
`data cable 303 may curve doWnWard Without going past the
`back of the camera (e.g., to make the camera 100 easier to
`mount against a Wall or other ?at surface). FPGA 321 is
`shoWn in the base of the camera 100. The FPGA 321 may be
`located in other areas of the base. In some embodiments, the
`FPGA 321 may be located in the lens portion of the camera
`100. Other placements of the FPGA are also contemplated.
`In some embodiments, the signal from the HD PTZ camera
`100 may be digitiZed before being sent doWn the data cable
`303 in a high speed serial digital stream. Other data types
`and conversions are also contemplated. For example, an
`industry standard electrical (LoW Voltage Differential Sig
`naling (LVDS)) and/or mechanical (e.g., FireWire/
`IEEE1394) interface may be used. In some embodiments,
`the data cable 303 may be thin and ?exible. The data cable
`303 may provide a digital interface to the HD PTZ camera
`100 With, for example, six Wires from the HD PTZ camera
`100 to the HD PTZ camera base. Other numbers of Wires
`may also be used. In some embodiments, the data cable 303
`may form a high speed digital bus for carrying digitiZed
`microphone data, digital image data, bi-directional control
`data for controlling pan, tilt, focus, Zoom motors, iris
`motors, and/or poWer to the HD PTZ camera 100. In some
`embodiments, the data cable 303 may be up to 50 feet long.
`Other lengths are also contemplated. In some embodiments,
`the data cable 303 may run up one of the arms 305 of the HD
`PTZ camera 100 to the central components of the lens
`portion 307. In some embodiments, the data cable 303 may
`run up the other arm 305 that does not contain the tilt cable
`211.
`
`[0038] FIG. 4 illustrates another vieW of the internal
`components of the HD PTZ camera 100, according to an
`embodiment. In some embodiments, an opto-interrupter on
`the gear plate 203 may be used to stop panning or tilting of
`the HD PTZ camera 100 if the HD PTZ camera 100 is
`panned or tilted past a prede?ned point. In some embodi
`ments, additional opto-interrupters (e.g., 411) may be put on
`the other gear plate 209. In some embodiments, the opto
`interrupters may be put on both sides of each gear plate to
`detect When the HD PTZ camera 100 Was rotated or tilted
`past each end of a prede?ned point. In some embodiments,
`a spring 401 may bias the motor support plate 403 toWard
`the center of the HD PTZ camera 100. This bias may keep
`the motor gear 201 in contact With the gear plate 203.
`
`[0039] In various embodiments, an array of microphones
`405 may be used to point the HD PTZ camera 100 in the
`direction of a speaking participant. The signals from the
`microphones 405 may be beamformed to determine the
`direction of arrival. The HD PTZ camera 100 may then be
`aimed at a participant or another source of audio. In some
`embodiments, eight loW noise microphones 405 may be
`integrated into the HD PTZ camera 100. Other numbers of
`microphones and other microphone array orientations may
`be used. In some embodiments, the HD PTZ camera 100
`may not have microphones (e.g., it may be steered by a
`user). DigitiZed microphone data may be sent doWn the data
`cable 303.
`
`[0040] In some embodiments, the location or angle of a
`participant relative to the HD PTZ camera 100 may be
`determined by beamforming data from the microphones
`405. The microphone positions relative to the HD PTZ
`camera 100, along With the angle and Zoom of the HD PTZ
`camera 100 may be knoWn. The microphone positions,
`
`

`

`US 2006/0104633 A1
`
`May 18, 2006
`
`camera angle, and camera Zoom may then be used in
`conjunction With the data from the microphones 405 to
`determine the angle of the participant relative to the true
`visual ?eld of the HD PTZ camera 100. In some embodi
`ments, the spatial positioning of the participant relative to
`the visual ?eld may be determined and the HD PTZ camera
`100 may be steered/aimed to center on the participant (or
`may be steered to another predetermined angle and Zoom
`relative to the participant).
`
`[0041] In some embodiments, a remote control sensor 407
`may be provided. In some embodiments, multiple remote
`control sensors may be provided to make it easier for the HD
`PTZ camera 100 to receive signals from a remote control. In
`some embodiments, the HD PTZ camera 100 may receive
`signals through the remote control sensor 407 from an
`integrated unit and/or codec managing a video conference
`call. Additional connectors may also be provided. For
`example, light-pipe 409 may be provided (e.g., for a light
`emitting diode (LED) on a circuit board behind the light
`pipe 409). The LED may be used to indicate When a signal
`is received from the remote control or may be illuminated
`When the HD PTZ camera 100 is poWered. Other uses for the
`LED are also contemplated.
`
`Camera Support Mechanism
`
`[0042] As seen in FIGS. 5 and 6, in various embodiments,
`a camera support mechanism (CSM) 501 may be used to
`mount a camera on top of a television (TV) or display
`device. The CSM 501 and camera may be installed on top of
`a monitor very quickly (e.g., in less than 1 minute). Other
`installation times are also contemplated. The CSM 501 may
`Work for a video conferencing pan-tilt-Zoom camera, or may
`be used for mounting any object on top of another object
`With a variable shape and thickness. This could be adapted
`for example to place a Digital Versatile Disc (DVD) player
`and/or a satellite receiver on top of the TV.
`
`[0043] In various embodiments, the CSM 501 may have
`an upper deck 503 (Which may be ?at) that folds open to
`access a tripod mount screW 515 that couples the camera to
`the CSM 501. Other fasteners may also be used to couple the
`camera to the CSM 501. In some embodiments, the CSM
`may not have a ?at top that folds open. After attaching the
`camera to the top of the CSM 501, the CSM 501 may be
`placed on the top center of the display device. The CSM 501
`may have an adjustable front lip 505 (adjustable in an
`approximate range of plus or minus 5 degrees) that aligns to
`the top front edge of the display device. Other adjustment
`ranges are also contemplated. This may compensate for any
`“droop” of the loWer deck When the CSM 501 is mounted to
`a display. (The camera lens may pan tilt in a range of
`approximately +/—25 degrees. Other camera tilt ranges are
`also contemplated.) In some embodiments, the front lip 505
`may be attached to a loWer deck 519 through a mount screW
`603. Other fasteners betWeen the front lip 505 and the loWer
`deck 519 are also contemplated. The front lip 505 may have
`tWo separate offsets (e.g., foam rubber pads 507) that may
`cushion the contact With the display. Other numbers, shapes,
`and materials for the offsets are also contemplated. In some
`embodiments, if multiple pads 507 are used, the CSM 501
`may Work With display devices that have either a concave or
`a convex front surface. In some embodiments, the CSM 501
`may Work With display devices that have either a concave or
`a convex surface if a single pad is used. The front lip 505
`
`may be adjusted to one of a number of set positions so that
`the CSM 501 can accommodate even extremely thin screens
`that may be Wall mounted. For thin display devices mounted
`to a Wall, the CSM 501 and camera may actually extend a
`couple of inches in front of the display in order for the back
`of the CSM 501 to not hit the Wall.
`
`[0044] In some embodiments, When the CSM 501 is
`placed on the display, a user may tighten adjustment knob
`509 on one side of the pivot point at the rear of the CSM 501.
`In some embodiments, the adjustment knob 509 may be a
`large knurled plastic knob. Other materials and shapes are
`also contemplated. This may rotate the adjustable rear leg
`511 toWards the back of the display. In some embodiments,
`the rear leg 511 may rotate from ?at and parallel to the top
`of the display to perpendicular to the top of the display. In
`some embodiments, the rear leg 511 may accommodate
`different monitors or TVs (e.g., monitor based displays,
`rear-projection displays LCD displays, and plasma screens).
`When the rear leg 511 has rotated to the point Where it makes
`contact With the display, further tightening of the knobs 509
`may apply additional pressure. The rear leg 511 may be
`tightened to lock the rear leg 511 ?rmly against the back of
`the display at that position. In some embodiments, the loWer
`deck face gear 609 and leg face gear 611 may be used to
`move and/ or tighten the rear leg 511. In some embodiments,
`the tWo face gears 609,611 may disengage to alloW the rear
`leg 511 to sWing against the back of the display. Then the
`face gears 609,611 may engage to lock the rear leg 511 in
`one position. In some embodiments, conical mating surfaces
`may be used in place of face gears 609, 611. For example,
`conical mating surfaces (similar to a conical clutch) may be
`used to alloW continuous stopping positions for the rear leg
`511. In some embodiments, discrete stopping distances may
`be used. In some embodiments, the rear leg 511 may have a
`foam/rubber tip 517 for better gripping. In some embodi
`ments, the CSM 501 may also accommodate variable slope
`on the screen from front to back using the foam/rubber tip
`517.
`
`[0045] In some embodiments, With the CSM 501 ?rmly
`attached to the display, the camera may be relatively ?at but
`may not be perfectly lined up With the top of the display
`device resulting in a tilt offset. By turning the lifter knob 601
`(as seen in FIG. 6) on the CSM 501, the angle of the camera
`can be adjusted up or doWn approximately in a range of plus
`or minus 10 degrees (other ranges are also contemplated). In
`some embodiments, the lifter knob 601 may be made of
`knurled plastic. Other materials and shapes are also con
`templated. In some embodiments, the lifter cam 605 may
`adjust the angle of the camera as the lifter knob 601 is
`turned. The back of the CSM 501 may have a slot 701 (as
`seen in FIG. 7) in front of the adjustment knobs that may be
`used to route the camera cable Without increasing the overall
`depth. Other locations for the slot 701 are also contemplated.
`In some embodiments, the electronics from the camera in the
`video conferencing system may be split in order to use a
`smaller mount for ?tting the camera on top of the display
`device. In some embodiments, a cam folloWer arm 609 may
`be used to tilt the upper deck 503 approximately in a range
`of plus or minus 5 degrees (other ranges are also contem
`plated).
`[0046] FIG. 8 illustrates a method of positioning an HD
`PTZ camera 100, according to an embodiment. It is noted
`that in various embodiments one or more of the method
`
`

`

`US 2006/0104633 A1
`
`May 18, 2006
`
`elements may be performed concurrently, in a different
`order, or be omitted. Additional elements may be performed
`as desired.
`
`[0047] At 801, a ?rst signal to pan the HD PTZ camera
`100 may be received. For example, the ?rst signal may be
`received by an FPGA 321.
`
`[0048] At 803, a ?rst motor (e.g., pan motor 201) may be
`activated to pan the HD PTZ camera 100. In some embodi
`ments, the ?rst motor may pan the HD PTZ camera 100
`through rotation of a ?rst plate 203 coupled to the HD PTZ
`camera 100.
`
`[0049] At 805, a second signal to tilt the HD PTZ camera
`100 may be received. For example, the second signal may be
`received by an FPGA 321.
`
`[0050] At 807, a second motor (e.g., tilt motor 207) may
`be activated to tilt the HD PTZ camera 100. In some
`embodiments, the second motor may tilt the HD PTZ camera
`100 through rotation of a second plate 209 coupled to the
`HD PTZ camera 100 through cables in an arm of the HD
`PTZ camera 100.
`
`[0051] In some embodiments, the FPGA 321 may deter
`mine appropriate responses for activating the motors based
`on their current positions and the effect on their positions
`caused by the movement of other motors being controlled by
`the FPGA 321 (e. g., the motion of a motor caused by another
`motor’s actions). The FPGA 321 may determine appropriate
`responses for activating the motors in the camera to control
`the motors at 803 and 807 based on the received ?rst and
`second signals. In some embodiments, the motors may be
`activated by the FPGA 321 substantially simultaneously. In
`some embodiments, the motors may be activated at different
`times.
`
`[0052] At 809, ifthe ?rst plate 203 or the second plate 209
`moves past a prede?ned point (as detected by an opto
`interrupter), the opto-interrupter 411 may signal the ?rst
`motor or the second motor, respectively, to stop.
`
`[0053] At 811, data to and from the HD PTZ camera 100
`may be transmitted as a high speed serial digital stream
`through a thin cable coupled to the HD PTZ camera 100.
`
`[0054] Embodiments of these methods may be imple
`mented by program instructions stored in a memory medium
`or carrier medium. A memory medium may include any of
`various types of memory devices or storage devices. The
`term “memory medium” is intended to include an installa
`tion medium, e.g., a CD-ROM, ?oppy disks, or tape device;
`a computer system memory or random access memory such
`as DRAM, DDR RAM, SRAM, EDO RAM, Rambus RAM,
`etc.; or a non-volatile memory such as a m

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket