throbber
Introduction to
`
`Automotive Powertrains
`
`
`
`Craig J. Hoff,’ Ph.D., P.E.
`Gregory W. Davis, Ph.D., P.E.
`
`FORD 1425
`
`

`

`
`
`
`This book is intended for advanced engineering students and practicing automotive
`engineers who are interested in learning about the overall design of an automotive
`powertrain. It is an introductory text on the topic, but it will provide the interested reader
`with a basis for understanding the fundamentals of automotive engines and automotive
`transmissions, and more importantly how to select those components to provide the
`optimum compromise between acceleration performance, gradeability performance and
`fuel economy performance.
`The level of analysis used in the text is not particularly difficult (it is assumed that the
`reader has a good grasp of engineering mechanics), however the equations derived in the
`text become flie basis for developing computer models that can be used to predict vehicle ‘
`performance.
`
`Acknowledgemen
`
`
`n 5.3"
`arc;
`
`The authors of this book would like to thank and to acknoWledge the work and support of
`many others who have come before us.
`In particular, we would like to thank Dr. Colin
`‘ Jordan for his significant contributions to the original notes from which this book was
`drawn. Finally, we would like to acknowledge the works of others who have made many
`of the original illustrations in this edition. Unfortunately, we have not yet been able to
`track down the sources of some of these works. We are working diligently to locate the
`authors and to replace illustrations as needed. This work is currently a pre-production
`work intended for educational use.
`
`FORD 1425
`
`

`

`Tble Cones
`
`
`
`Preface .................................................................................. 3
`Table of Contents .................................................................. 5
`1 Automotive Drivetrain Components and Layouts .......... 1 1
`1.1
`Typical Drivetrain Layouts ............................................................................... 11
`1.1.1
`Typical Rear Wheel Drive Configuration ..........................................»....... 1 1
`1.1.2
`Typical Front Wheel Drive Configuration................................................ 14
`1.1.3
`Rear Wheel Drive with Rear Engine ........................................................ 15
`1.1.4
`Typical Four Wheel Drive Configuration ................................................. 16
`1.1.5
`Drivetrain Packaging ................................................................................ 17
`1.2
`Driveline Components ...................................................................................... 18
`1.2.1
`Clutches..................................................................................................... 18
`1.2.2
`Hydraulic TorqueConverter 19
`1.2.3
`Manual Transmission ..................'.............................................................. 2 1
`1.2.4
`Automatic Transmissions.......................................................................... 22
`1.2.5
`Transaxles ................................................................................................. 23
`1.2.6
`Driveshafis ................................................................................................ 24 I
`1.2.7
`Differentials .............................................................................................. 25
`1.2.8
`Rear Axle .................................................................................................. 26
`1.3
`References ......................................................................................................... 26
`Chapter 2 ....................................,........................................ 27
`2 Road Loads ................................................................... 27
`2.1
`Introduction ....................................................................................................... 27
`2.2
`Aerodynamic Lift and Drag .............................................................................. 29 ,
`2.2.1
`Inviscid Flow: Euler and Bernoulli Equations .......................................... 30
`2.2.2
`Application to an Automobile................................................................... 32
`2.2.3
`Viscid Flow: Boundary Layers ................................................................. 34
`2.2.4
`Application to an Automobile................................................................... 3 5
`2.2.5
`Inviscid Flow over Bodies ........................................................................ 35
`2.2.6
`Viscid Flow over Bodies........................................................................... 37
`2.2.7
`Application to an Automobile................................................................... 40
`2.2.8
`Experimental Techniques.......................................................................... 40
`2.2.9
`Application to an Automobile................................................................... 42
`2.2.10
`Vortex Shedding ....................................................................................... 46
`2.2.11
`Application to anAutomobile.............................................‘..‘.................... 46
`2.2.12
`Automotive Drag Studies ......................'.................................................... 47
`2.2.13
`Afierbody Drag ......................................................................................... 48
`2.2.14 Wheel and Wheel Wells ............................................................................ 49
`2.2.15
`Forebody Effects ....................................................................................... 50
`
`FORD 1425
`
`

`

`Inb‘educh'on to Automotive Powertruins
`
`‘
`
`Optimization Study ................................................................................... 52
`2.2.17
`Effect of Wind........................................................................................... 53
`2.2.18
`Complete Aerodynamic Forces of a Vehicle ............................................ 54
`2.2.19
`Density of Air ............................~............................................................... 55
`2.2.20
`Alternate Form for Drag Equation ............................................................ 57
`2.2.21
`2.3
`Rolling Resistance ............................................................................................ 59
`2.3.1
`Simple Model for Rolling Resistance ....................................................... 60
`2.3.2
`Effect of Road Surface .............................................................................. 61
`Effect of Temperature on Rolling Resistance ........................................... 61
`2.3.3
`Effect of Tire Inflation Pressure ............................................................... 62
`2.3.4
`Effect of Tire Speed
`............................................................................. 62
`2.3.5
`Effect of Tire Materials ............................................................................. 62
`2.3.6
`2.3.7 . Effect of Tire Slip Angle........................................................................... 63
`2.3.8
`Other Models for Rolling Resistance ........................................................ 64
`2.4
`Coast Down Testing.......................................................................................... 64
`2.5
`GradeRes1stance ........... 65
`2.6
`The Proving Ground Equation .......................................................................... 66
`2.7
`References ..........................................................
`........... 68
`3 Power Systems .............................................................. 69
`3.1
`Introduction to Internal Combustion Engines and Their Performance ............. 69 .
`3.1.1
`Spark-ignited (SI) or Gasoline Four-stroke Engines ................................ 69
`3.1.2
`Compression-ignition (DI) or Diesel Four-stroke Engines ....................... 70
`3.2
`Engine Brake Torque and Power ...................................................................... 72
`3.2.1
`Brake Power.............................................................................................. 73
`3.2.2
`Friction Power (FP) ................................................................................... 75
`3.2.3
`Indicated Power (IP) ................................................................................. 75
`3.2.4
`Specific Power .......................................................................................... 75
`3.2.5
`Mean Effective Pressure (MEP) ............................................................... 75
`3.3
`Efficiencies ....................................................................................................... 78
`3.3.1
`Mechanical Efficiency .............................................................................. 78
`3.3.2
`Overall Thermal Efficiency (or Fuel Efficiency)...................................... 78
`3.3.3
`Combustion Efficiency ............................................................................. 80
`3.3.4
`Thermal Efficiency (or Specific Efficiency)............................................. 80
`3.3.5
`Specific Fuel Consumption (SFC) ............................................................ 81
`3.3.6
`Volumetric Efficiency............................................................................... 81
`3.4
`Fuels.................................................................................................................. 81
`3.4.1
`Octane Rating............................................................................................ 82
`3.4.2
`Decane Rating ........................................................................................... 82
`3.4.3
`Determination ofFuel Specific Gravity and Heating Value..................... 82
`3.5
`Emissions .......................................................................................................... 82
`3.6
`Other Engine Parameters ..........................................................'
`...................... 83
`3.6.1
`Mean Piston Speed (S) ........
`..................................................... 83
`3.6.2
`Inlet Air Velocity ...................................................................................... 83
`3.7
`Typical Engine Performance Data .................................................................... 83
`3.7.1
`Full Load Performance Comparison of SI and CI Engines ...................... 83
`
`-
`
`I
`
`I
`’
`
`I
`'
`I
`i
`‘
`-
`‘
`-
`
`I
`J
`,
`
`I
`,
`.
`
`FORD 1425
`
`

`

`Automotive Drivetrain Components and Layouts
`
`7
`
`3.7.3
`3.8
`3.8.1
`3.8.2
`
`Part Load Performance ............................................................................. 86
`Other Power Systems ........................................................................................ 87
`Gasoline Direct Injection (GDI) Spark-Ignited Engines .......................... 87
`Electric Motors .......................................................................................... 89
`
`3.8.3
`Hybrid Electric Power Systems ................................................................ 90
`3 .9
`References ......................................................................................................... 92
`Chapter 4 ............................................................................ 93
`4 Driveline ......................................................................... 93
`4.1
`Introduction ....................................................................................................... 93
`
`4.2
`
`Driveline ........................................................................................................... 96
`
`4.2.1
`
`Idea] Driveline
`
`....................... 96
`
`4.2.2
`4.3
`4.3.1
`4.3.2
`4.3.3
`
`Driveline Losses ........................................................................................ 99
`Tires (Idealized Model) ................................................................................... 103
`NN Ratio (Idealized Tire) ...................................................................... 103
`Available Tractive POWer ....................................................................... 108
`Available Tractive Effort ........................................................................ 111
`
`‘
`
`Actual Tractive Power and Tractive Effort............................................. 1 15
`4.3.4
`Tires (Better Model) ....................................................................................... 1 18
`4.4
`Tire Forces andMoments ...... 118
`4.4.1
`Tire Slip .................................................................................................. l 19
`4.4.2
`N/V Ratio (Better Model) .................-...................................................... 122
`4.4.3
`' TractiveEfi‘ort ................ 122
`4.4.4
`Example —- Effect of Tire Slip ................................................................. 124
`4.4.5
`Slip Angle ............................................................................................... 127
`4.4.6
`The Friction Ellipse......................................................................................... 130
`4.5
`4.5.1-
`Rolling Resistance (Revisited) ................................................................ 134
`4.5.2
`A Final Note on Tires ............................................................................. 135
`
`Move—Ofi'Elements
`...................................... 135
`4.6
`References ........................................................................................................ 137
`4.7
`5 Gear Ratio Selection............ ........................................ 139
`5.1
`Typical Gear Ratios Selected for Passenger Vehicles .................................... 143
`5.2
`A Procedure for Selecting Gear Ratios ........................................................... 149
`5.2.1
`Selection of a top gear N/V ratio ............................................................ 149
`5.2.2
`Determination of Top Gear Ratio and Axle Ratio .................................. 153
`5.2.3
`Low Gear Ratio Determination ............................................................... 154
`
`5.2.4
`5.3
`5.3.1
`5.3.2
`5.3.3
`5.3.4
`5.3.5
`5.3.6
`
`Selecting Intermediate Gear ratios .....................................................‘..... 1 59
`Example .......................................................................................................... 168
`Select a Top Gear NN ratio.................................................................... 169
`Select a top gear ratio .............................................................................. 169
`Select an axle ratio .......................................................... ;.: ..................... 169
`Select first gear ratio ..........................‘..................................................... 1 70
`Select intermediate gear ratios ................................................................ 170
`Evaluate Gear Ratios ............................................................................... 172
`
`5.4
`
`5.5
`
`Homework ....................................................................................................... 172
`
`References.....................................................I ................................................. 173
`
`FORD 1425
`
`

`

`
`
`-._‘
`
`i i i i i i i
`
`. i
`
`Introduction to Automotive Powcrtrains
`
`6 Acceleration Performance ........................................... 175
`6.1
`Predicting Acceleration Performance ............................................................. 178
`6.2
`Power-Limited Acceleration............................................'............................... 1 80
`6.3
`Power-Limited Acceleration — Calculation Procedure
`...' ....................... 188
`6.4
`Examples: Power-Limited Acceleration — Manual Transmission .................. 190
`6.5
`Acceleration — Automatic Transmission......................................................... 209
`6.5.1
`Torque Converter Basics......................................................................... 209
`6.5.2
`Matching of the engine and torque converter ......................................... 212
`6.6
`Examples: Power-Limited Acceleration — Automatic Transmission.............. 218
`6.7
`Dynamic Axle Loads
`.................................... 224
`6.7.1
`Special Case: Static Loads on Level Ground without a Trailer.............. 228
`6.7.2
`Determining the Location of the Vehicle CG ......................................... 228
`6.7.3
`Low-Speed AcceleratiOn......................................................................... 230
`6.8
`Traction-Limited Acceleration........................................................................ 232
`6.8.1
`Maximum Possible Acceleration ............................................................ 232
`6.8.2
`Actual Maximum Acceleration — Low Speed. ................_........................ 235
`6.8.3
`Traction Limited Acceleration - Example .............................................. 237
`6.9
`Final Comments .............................................................................................. 238
`7 Gradeability Performance ............................................ 239
`7.1.
`Power-Limited Gradeability ........................................................................... 239
`7.2
`Traction-Limited Gradeability ..................................-...................................... 247'
`7.3
`Gradeabilityw1thaTrailer.............. 251
`7.3.1
`Power-Limited Gradeability ................................................................... 251
`7.3.2
`Traction-Limited Gradeability ................................................................ 253
`7.4
`References....................................................................................................... 258 .
`Chapter 8 .......................................................................... 259
`8 Fuel Economy Performance ........................................ 259
`8.1
`Engine Fuel Consumption............................................................................... 259
`8.2 WOT Fuel Economy ....................................................................................... 264
`8.3
`POT Fuel Economy......................................................................................... 266
`8.3.1
`Example Problem.................................................................................... 267
`8.4
`Corporate Average Fuel Economy (CAFE).................................................... 277
`8.5
`Vehicle Emissions Performance ..................................................................... 289
`8.6
`Selecting Powertrain Components .................................................................. 294
`9 Manual Transmissions ................................................. 299
`9.1
`Clutch Systems................................................................................................ 299
`9.2
`Analysis of a Clutch........................................................................................ 310
`9.2.1
`Uniform Pressure Model ......................................................................... 311
`9.2.2
`Uniform Rate of Wear Model ............................................
`.................. 312
`9.3
`Manual Transmission Gearboxes............................... ~. .................................... 315
`9.3.1
`Operation of a Constant Mesh Transmission.......................................... 321
`9.3.2
`Typical Overdrive Transmission............................................................. 324
`10 Automatic Transmissions ............................................. 327
`10.1
`Introduction..................................................................................................... 327
`
`FORD 1425
`
`

`

`Automotive Drivetrain Components and Layoufs
`
`9
`
`Torque Converters .......................................................................................... 329
`10.2
`10.2.1
`Fluid Couplings....................................................................................... 329
`10.2.2
`Torque Converters .................................................................................a. 332
`10.3
`Planetary (Epicyclic) Gear Trains....._.............................................................. 340
`10.3.1
`Kinematics of a Planetary Gear Train..................................................... 342
`10.3.2
`Speed and Torque Ratios for Simply Planetary Gear Trains .................. 342 .
`10.3.3
`Summary of Equations for Simply Planetary Gear Sets and Example... 345
`10.3.4
`Compound Planetary Gearsets ................................................................ 346
`10.4 Control Elements ............................................................................................ 347
`10.4.1
`Control of a Simple Planetary Gearset.................................................... 354
`10.4.2
`Example — Allison AT540 Transmission................................................ 355
`10.5 Other Considerations ...................................................................................... 362
`10.5.1
`Transmission And Engine Oil Coolers ................................................... 362
`10.5.2 Parking...................................................................... 364
`1 1 Differentials .................................................................. 365
`11.1
`Introduction..................................................................................................... 365
`11.2 Open Differentials ........................................................................................... 367
`11.2.1
`Vehicle traveling in a straight line .......................................................... 368
`11.2.2
`Vehicle Turning .....
`................................... 370
`11.3
`Limited Slip Differentials
`...................... 373
`11.4
`Locking Differentials ...................................................................................... 374
`11.5
`Planetary gear set as a Differential ................................................................. 375
`Table of Figures ................................................................ 377
`
`FORD 1425
`
`

`

`Chapter 2
`
`2 Road Loads
`
`
`
`The fundamental forces acting on the automobile will discussed in this chapter. These
`forces include the road load forces (wind resistance, rolling resistance, and grade
`resistance) and the tractive forces available at the wheels from the power plant and
`transmission.
`
`2.1 Introduction
`
`A fiee body diagram of a vehicle traveling up an incline is shown in Figure 2-1. The
`FBD allows for the case of rear wheel drive (TEr > 0), front wheel drive (TE; > 0) and
`four-wheel drive (TEf and TE, > 0).
`
`
`
`FORD 1425
`
`

`

`__________________1
`
`28
`
`_
`
`Introduction to Automotive Pawcrtraim-
`
`The major forces acting on the vehicle are:
`
`W
`N]; N,
`
`= Gross vehicle weight
`= Normal forces on the front and rear axles, respectively
`
`RR}; RR, = Rolling resistance on the front and rear tires, which act to oppose
`the vehicle motion.
`
`TEfi TE, = Tractive effort on the fiont and rear tires, which is the force created
`by the engine at the. driving wheels propelling the vehicle forward.
`
`WR
`
`Lift
`
`the component of the
`= Wind resistance or drag, which is
`aerodynamic force that acts to oppose the motion of the vehicle.
`
`the
`component of
`the
`force, which is
`lift
`= Aerodynamic
`aerodynamic force that acts vertically relative to the motion of the
`vehicle
`
`Summing the forces in the direction of vehicle motion (i.e. the x—direction): 7
`
`EF, = max
`TEf+TEr—-WR—RRI—RR,—Wsin6=max
`
`(2'1)
`
`The component of the weight acting to oppose the'motion (W sin 0) is often referred to as
`the Grade Resistance (GR). To simplify the analysis for the moment, the tractive forces
`acting on the front and rear tires (TEf and TE,, respectively) can be combined into a single.
`force (TE). With these changes, the equation of motion in the x-direction1s:
`-
`-
`
`TE—WR—RR~GR =ma,
`
`(2.2)
`
`The wind resistance, rolling resistance, and grade resistance all oppose the motion of the
`vehicle and are commonly referred to as the road load (RL).
`
`(2.3)
`
`(2-4)
`
`RL=WR+RR+GR
`
`Solving Equation (2.2) for the acceleration of the vehicle yields:
`
`m
`
`TE~RL
`
`TE~WR—RR—GR
`a, =——— or a, =
`m
`
`This is the fundamental equation of vehicle motion.
`acceleration, ax = dV/ dt , the equation of motion becomes:
`
`Substituting the definition of
`
`(2.5)
`
`m
`
`£17K_TE—RL
`dt
`
`FORD 1425
`
`

`

`Road Loads
`
`29
`
`Equation (2.5) can be integrated once to determine the velocity of the vehicle over time,
`V(t).
`Integrating the result with respect to time once again will yield the position of the
`vehicle over time, 80‘).
`
`Alternately, alternately the acceleration can be defined as ax = VdV/dS, so that the
`
`equation of motion is:
`
`~
`
`(2-6)
`
`m
`
`Vd—V— TE— KL
`dS
`
`Equation (2.6) can be integrated once to find V(S). This form18 particularly useful for
`studying vehicle-passing maneuvers, where the goalIS to determine the distance needed
`for one vehicle to pass another vehicle.
`
`Finally, if the vehicle is traveling at a constant speed (a = 0), Equation (2.4)'can be
`rearranged:
`_
`
`This indicates that when a vehicleIS traveling with constant velocity, the tractive effort
`required18 equal to the road load.
`
`TE =RL
`
`(2.7)
`
`Returning to the free body diagram, the forces can be summed in the y-direction to yield:
`
`2
`
`Fy=a
`my
`
`Nf
`
`+N +Lz’fi—Wcos0=ma
`7‘
`y
`
`(2.8).
`
`This equation (along with another equation found by summing moments) is important in
`determining the normal forces acting on the tires. The normal forces are directly related
`to the maximum tractive effort that can be developed by the tires. On a solid road the
`acceleration in the y-direction will be given by:
`
`a =—
`
`(2.9)
`
`where R is the radius of curvature of the road surface. On a flat road R v) 00 and 61,, = 0.
`However, on hills and bumps this acceleration term can be substantial.
`Further
`discussion of these equations will be put off until Chapter 4.
`
`2.2 Aerodynamic Lift and Drag
`Automotive vehicles move along the ground, but also through the air. The vehicle must
`push the air out of the way as it passes. The air in turn exerts both lift and drag forces on
`the vehicle. Automakers spend considerable time and money testing vehiclesin wind
`tunnels to improve the aerodynamic characteristics of the vehicle. Figure 2-2 shows
`
`FORD 1425
`
`

`

`30
`
`_
`
`Introduction to Automotive Powertrains
`
`
`
`Figure 2-2 Streamlines over an automobile (Gillespe, 1992).
`
`.
`
`streamlines passing over an actual vehicle in a full-size windtunnel. Smoke has been
`used to visualize the fluid streamlines.
`In recent years there has been considerable effort to solve aerodynamics problems
`using Computational Fluid Dynamics (CFD) techniques. The techniques work very well
`in the aerospace industry, where the vehicle moves through only one medium (air) and
`have an ‘aerodynamic’ shape. Automobiles with their blunt shape (which leads to a large
`wake region) and the complex interactions between the air, vehicle, and ground have
`proven to be very difficult to model accurately. Also, automotive aerodynamics is
`greatly affected by the presence of other vehicles. Cars rarely travel through ‘clean’ air,
`as planes do.
`-
`To understand the aerodynamic forces on the automobile, it is necessary to review a
`bit of fluid mechanics.
`
`2.2.1 Inviscid Flow: Euler and Bernoulli Equations
`
`Leonhard Euler (1707—1783) and his one-time roommate Daniel Bernoulli (1700—1782)
`developed
`the
`foundations
`for modern
`aerodynamic
`theory
`(among
`other
`accomplishments). Although the equations apply only to inviscid flow, the equations
`have been shown to be valid in the areas of viscid flow fields that are not near a solid
`surface.
`Figure 2-3 shows three arbitrary streamlines in a flow field. The Euler
`Equations for inviscid fluid motion are developed by applying Newton’s second law
`(F 2 ma , or more specifically F HL == pa) to a fluid element at a point on the streamline.
`Assuming steady flow and neglecting gravity forces the Euler equations are found to
`
`be:
`
`s—direction:
`
`92 = —p Vi]—
`as
`' as
`
`'
`
`X
`
`n direction'
`.
`
`V2
`~63 -
`6n p R
`
`(2.10)
`
`(2 11)
`
`FORD 1425
`
`

`

`Road Loads
`
`3 1
`
`Increasing Pressure
`
`
`
`Increasing Pressure
`
`Figure 2-3 Streamlines in a flow field.
`
`Where p is the static pressure, V is the fluid velocity, p is the fluid density, and R is the
`radius of curvature for the streamline at the location. The Bernoulli equation is found by
`integrating equation (2.10) along the streamline. For can incompressible fluid
`( p = constant) the result is:
`
`firfizzfifl”?
`p2p2
`
`(2.12)‘
`
`The Bernoulli equation essentially says that, under the assumed conditions, a particle
`traveling along a streamline has a constant level of energy (often referred to as “head”).
`More specifically, when the kinetic energy (V2 / 2) goes up,
`the pressure energy
`(generally referred to as flow work) has to go down (and vice versa).
`When the flow is brought to a stop, all the energy will be in the form of pressure
`energy and a maximum pressure will be reached. The location in the flow field where
`this occurs is called the stagnation point. The stagnation pressure is:
`
`(2.13)
`
`W 2
`
`pm =p+
`
`The Euler n—equation is usually used simply as written (2.11). An examination of the
`equation reveals that the acceleration of the particle in the n-direction (V2 /R) can never
`be negative, meaning that the pressure must increase radially outward across the curved
`streamlines (i.e. in the positive n-direction). This fact has been noted Figure 2-3.
`
`FORD 1425
`
`

`

`32
`
`Introduction to Automotive Powerlrains
`
`2.2.2 Application to an Automobile
`The Euler and Bernoulli equations have direct application to automotive aerodynamics.
`Reconsider Figure 2-2. It can be seen that:
`0 There is a stagnation streamline on the front bumper; we expect high pressure
`there. (Note: This would be a good place to put the inlet to the radiator.)
`
`o The curvature of the streamlines indicate:
`
`0 High pressure at the bumper.
`
`0 Low pressure at the leading edge of the hood.
`
`0 High pressure at the base of the windshield
`0 Low pressure over the roof. (Contributing greatly to lift, but making it a
`good place for a sunroof.)
`
`Actual pressure measurements taken along the centerline of a vehicle are shown in
`Figure 2-4 and confirm the expected results.
`
`3?
`
`1.0
`
`o mum: (no m;
`0 34m. up
`
` v-lelllllle1IIIIII3993
`
`I...’ll':_.'_!.-
`
`PRESSURE COEFFICIENIS PLOTIED NORM“ 1’0 SURFACE
`
`Figure 2-4 Pressure measurements along the centerline of an automobile (Gillespe, 1992).
`
`The pressures in the figure have been non-dimensionalized (as is typical
`aerodynamics) by defining the pressure coefficient:
`
`in
`
`
`P‘P
`C =
`°°
`p V2sz
`
`l
`
`1
`
`2.14
`
`(
`
`)
`
`Where pa, is the static pressure measured in the free stream (essentially the atmospheric
`
`pressure).
`
`FORD 1425
`
`

`

`Road Loads
`
`3 3
`
`
`
`Figure 2-5 CFD Studies showing pressure acting on a vehicle (Roettger).
`
`In
`Figure 2—5 shows the pressures acting on a vehicle as predicted by a CFD study.
`Figure 2—5(a) the pressures are mapped on to the surface of the vehicle using a color map
`(which is admitted difficult to read in a black and white reproduction). The darker (red)
`colors on the front facia and along the base of the windshield indicates high pressure.
`The light (blue) color along the front edge of the hood and along the A—pillars indicates
`low pressures. These pressures are consistent with the expectations from reading the
`streamline patterns (shown Figure 2-5 (c) and (d)).
`The use of CFD tools allows the affects of the vehicle to be seen in more complete
`detail.
`In Figure 2—5(b) the pressure field along a plane through the centerline of. the
`vehicle is visualized using a color map. The high pressure build-up in front of the vehicle
`and along the base of the Windshield is indicated with a dark red color. The lower
`pressure region along the front edge of the hood and all over the roof of the vehicle is
`indicated with dark blue shading. (Trust me.)
`
`FORD 1425
`
`

`

`A
`W.'x
`
`
`
`
`rL.41.L_..a.
`
`34
`
`Introduction [0 Automotive Powertrains
`
`2.2.3 Viscid Flow: Boundary Layers
`
`Ludwig Prandtl (1875-1953) proposed the existence of the boundary layer in 1905, a
`concept that is considered by many to be the greatest single discovery in the history of
`fluid mechanics. Prandtl showed that the effects of fluid viscosity on a flow field were
`concentrated in a thin region (called the boundary layer) near a surface. A fluid element
`touching the surface will stick to the surface (called the no-slip boundary condition) and
`in turn this slows down the fluid particles near it. This effect propagates away from the
`surface in a process referred to as boundary layer growth.
`The growth of the boundary layer as fluid flows over a flat plate is shown in Figure
`2-6. At first the fluid in the boundary layer flows in orderly layers (laminar). As the
`fluid moves long the

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket