throbber
COEOI-3 COBETCKMX
`
`COU.VlN'l I/ICTV|'~1ECK1/IX
`PECFIYEIMK
`
`FOCYAAPCTBEHHOE HATEHTHOE
`BELLOMCTBO cccp
`(rocnA1'EHT cccP)
`
`‘ (.9, _$Li(..,__‘@l§6_09 A1
`
`(ms
`
`6 01 V 1/00
`
`
`
`’ OHMCAHI/1E l/l3OBPETEH [/19
`
`K
`
`ABTOPCKOMV CB I/l,ElETE}‘lb CTBY
`
`'14
`
`(21)-4797103/25
`(22) 19.12.89
`(46) 30.05.93. Bson. Me 20
`(71) I-layrmo-npomsaoxlcraennoe ofibenmuenme
`“He¢TereoqmanpM6op"
`(72) £L.fl.3eMuosa. H.|/l.KpaB~IeHKo. )'l.B.HaKo-
`Hetman, JJ,.E.Ba6aea.
`tD.CD.3¢eHm4e-3 n
`<D.H.BaxumeB
`'
`(56) Memfiefi BM. Meronuxa Mnoroxpamux
`nepexpmwa B ceficmopaaaenxe. M.: Henpa.
`1985.
`Mvmamvm B.A.. Xmpoa Jl.M. O6pa6oTKa
`naunux peryrmpuux npocrpancwaeuwux cuc-
`Tem Hafimogenvm MefoAoM Bpamaemux npo- ’
`¢Mfle|7|. — Feonorvm He<!)TV1 M ra3a. 1385. N2 8.
`
`*
`
`(54) CHOCOB l'IPOCTPAHCTBEHHO171 CEVI;
`CMOPA3[3E,E1KI/1
`(57) I/lcnonbaoaaumez Mopcxan ce171cMopa3Be.q-
`Ka. neranuaauvm C110)-ICHDHOBTDOQHHHX reana-
`rmwecxmx o51.exma, pacnonomemaux non
`
`aKyc'rw«ecI<v1 cvrnbnumm rpal-muaMM. Cym-
`HOCTb v13o6peTeHI/m: Cnocofi npocTpaHcTaeH-
`HOLT! ceficmopasaenxm axmowaer ao36y>1<p.eHme
`yn pyrux Kone5aHw7x bl pemmpauwo 0TpEl)KeH'
`Hbix BOIIH npm orpafiorxe Henpononsnux npo—
`qaunefi Me'ra.t1oM o6LLgeL7a
`rny5MHHoI71 TOHKVI
`(MOFT). HOBHM B cnocofie nansrercse pea1m3a-
`LLVISI npompancnaennoro np0¢Mm-1 oEiu.u/Ix my-
`6m-«Hux Touex nyTeM OTDa50TKM cepvm
`napannemmux Henpogonbnux npo¢wIe»‘1
`MOIT co cppmramm, O|'1pe,E|eIIeHHl>|M|/I c0rnac-
`H0 npenenbnomy asumyry Hanpaanenwz
`eapuampuem. npn nocnegoaarenmofi cMeHe
`nonoxtenma nuHM|7I no36y>K,11eHMsI VI npnelvla.
`cmn1MeTpw:H'bsx OTHOCVITBHBHO npoexmoro
`npoqmnsa ofiuwnx rnyfivu-mux TOHEK. a sarem
`EbH1OTH!eHl*1e p€|BHOMBpHOW SBVIMYTBIIBHOV1 EH‘ '
`5opKvI kauanns o6u.unx rnyfimnnux Touex no
`nnomamn v: nocnemrsomee cymwuaposamae no
`. nosepxuocm npocrpancmennoro ronorpadna
`OH’. 3 W1.
`
`I/Isofipererme omocmcn K ofinacm mop-
`cxofi cemcmopaaeenm H MD)|(eT Bun, vacuum,-
`soaauo
`_npm
`neranvlaauun
`.CflO.‘KHO'I"lOCTp0BHHblX reonorwaecxmx D5bEK"
`TOE. pacnonomennux non axycrwaecxvl cum.-
`ubmm rpammamn.
`'
`'
`Llenmo nanuoro uaofipererwm suarmercn
`noapunerme a¢cpeKmBHocm ceficmopaaaepgm
`npm npocnexmsauvm cnoxmonocrpoenuux re-
`onoruuecxmx noaepxuocrefi. pacnonmxenuux.
`Hal‘lpMMep. a ycnozwmx pa3_BvITvm a aepxuux
`_mHTepaa}Iax paapeaa axycmuecxm cunmmx
`Kpamoofipasyroumx TODVISDHTOB.
`Vxaaannan uem, .qocmrae1'cn aa c-4e'ryae—
`nwiel-wm omouxenmu curHan—noMexa Ha 5a3e
`p.ar-max npocrpancrsennoro npocbwm ofiumx
`rnyfivum-sux Touex. npvu 3T()M orpafiamaa not ce-
`
`pmo napannemmux Hel'lpOAOI1l:HbIX npodnvmefi
`co cmawramm 9 Hanpaanenvm Hel1DOAOI'|bHbIX
`npocbunefll, onpenem1eMbIMvI c y‘IeTOM npe-
`Aemmoro a3II|MyT8 Hanpasnemw: aspua-npw
`em. npw nocnenoaarenbuofi cMeHe nonoxcerwm
`npn¢Mne471 aozfiyxcneuvm M npmema. CVlMMeT-
`pwmmx OTHOCVITBIIBHO nonyuen H0|'0 npo-
`crpancmennoro npndpuns ofiumx rnyfimmux
`TOHEK. a 3aTeM aunonumor pasnomepnyro 33:4-
`My'ranL.Hy»o aufiopxy Kananoa ofiumx rny6uH-
`Hux to-«ex no nnomagn M nocnenyoouxee
`cymwmpoaauwe no noaepxuocm npoc:rpaHcT—
`aem-qoro ronorpaqua o5u.uax rnyfimmux Touex.
`
`OTHOCV|Tel'lbH0 TIDOTOTMHS SSRBIIRBMHR
`cnocofi otpafionm cepvm Henpononbuux npo«
`¢w1e\7I MOFT ofiecne-maaer nonyuerwle npo-
`
`(60
`
`(II)
`
`
`
`W’6098181.
`
`WesternGeco Ex. 1011, pg. 1
`
`WesternGeco Ex. 1011, pg. 1
`
`

`
`3
`
`1818609
`
`.
`
`4
`
`cvpancnzeuuoro npocbmna MOFT. -no Aocmra~
`BTCSI Hanwmem cnexzynoumx cymecraeuuux
`npmanaxoa.
`_
`Cnsur Henpcmonbnux npo¢umeI7I_o1'HocM-
`TéIIbHO APVF npyra, cornacno npeaenwomy
`aavmyw nanpaanenvm aapua-npueu. o6ecne-
`_ ‘WIBQET OXBBT UJVIpOKO|'O AMBHESOHH YFHOB B
`npocrpauctaenuovl aufiopxe xananoa OFF.
`pasaenerme npocrpancraermux ronorpanboa
`noneanofi u xpamcm noun :4 nonaanerme no-
`cnennefl npvo cymmmpoaauvm.
`nocneaoearenwan cmeua nonoxzeomfi
`nunvm aoafiyxnehnn vs npvlema Koneéauvm or-
`Hocmenwo npoesmcoro npoqmnn ofiumx my-
`fimmux To-4ex 3 came ouepem. npn
`nocnenymmen ofipafiorxe noaaonner unna-
`wn. amnmme Heunuoponuocrefi aepxuevu wa-
`cm paspeaa.
`CVIMMGTDI/1‘4HOCTb nm-wm aoafiyxmeuua M
`npnema 0THOCMTeI1bHO npoexrnoro npocbvmn
`cosaaer aoamoxnocn paauouepnon aauMy-
`‘l'aIlbH0l7| aufiopxm Kan-Ianoa o6Lue|7I rnyfivnmon
`TOHKM — nonywemne npocvpaucraermoro ro-
`norpadaa OFT.
`Peanuaaumu npocrpancvaermoro npocbw
`nu OFT Aenaer aoammxuum sufiopxy KBHSIIOB
`ofiumx rnyfimmux 1-owex no nnomanu. nome-
`nymmee cymmupoeauvxe no noeepxuoc-rm npo~
`CTDBHCTBBHHOFO
`ronorpaqaa OFT -
`nouaanepme Kpamux BOIIH._
`Taxmvl ofipasoqvl. yxaaannasl coaoxyrk
`HOCTB cytuecraennux npuanaxoa oéycnaanw
`eaer Hoau:-my aauannemoro cnacofia M
`ofiecneumsaer nono>ImTenbHuI7I aqubexr npu
`npocnexmaanvm cnoxcnonocrpoel-mux reana-
`rmecomx noaepxuoctefi. pacnonomenuux a
`ycnoavmx pasavmasu 5 Bepxnux nmepaanax
`paapeaa axpauupynoumx ropmaomoa.
`Ha cpvl r.1 msofipaxenu ropvlaouvanbnue
`ceueuvm VI coomercraylotume eepmxamn-rue
`ce-Ienma a nnocxocrnx 1; -= 0° :4 11 - 45° npo—
`crpancrnennoro ro.qorpad>a MOFTmm cny-«an
`yrna Haxnona orpaxersuoro ropmaotrra g0= 0°
`14 Kpamoofipaaynomera rpammu vp..='30° (A)
`npu MaMeHeHm1 nonoxcenml npotbnna omocw
`1em.Ho npocmpauvm may-4aeMo|7I noaepxHo-
`'cm ans: nayx sapnawroa aocctauum
`o'rpa>KaIauJ,vIx rpaHvIu:
`-
`1/2= 0° (npn I-JTOM 1].; =11) M 1,0
`(no =rz—w ) (5).
`x. y. t — ocn «oopavmar;
`I ~ apeMeHHasI och B cex;
`17- 3:-mMy'r Hanpasnemm aapus-npweu a
`cHcTeMe'I<O0pAMHaT x. y:
`_
`-
`zp~ aavmy-r orpaxammen rpauuuu 3 cu-
`creme xoopnvmar x. y:
`‘
`'
`no —- aavuvnyr Hanpaanenvm a3pu34npmeM
`no— omomenmo K soccranvuo orpaxanoxuevl
`rpamauu..1]o = 7] — 10.
`
`=. 45°
`
`10
`
`15
`
`, Q — ropwaomansnan nnocxocn ceueuvm:
`1 — ropuaouranbuoe ceuerme npoc1'pau-
`craermoro rogorpacba none:-man sonnu:
`2 — ropvnaonranbuoe ce-aerme npoc'rpaHcT-
`aem-Ioro rop.urpa4>a MHOrOKpaTHOl'/'1 aonuu npw
`‘¢,=3o°. 1/;=o°;
`3 — ropwsontanwoe ceuemre npocrpaucr
`sermoro roaorpacpa MHOTOKDQTHOVI aonuu npu
`<p= 30°. §1)= 45°:
`.
`'
`4. 5 ~rmHeVIHue rqqorpacpu MOIT none)-
`Hov: Ia Mnoroxpamon norm 3 nnocxocm I1 - 0°
`npu aarmyre rpanuuu q()= 0°:
`6. 7 - .rwme17mue rogorpacbu MOl'T nones-
`Hofi M Muoroxpamon son» a nnockocm 1r= 45°
`npur a3mMy‘1'e rpamauu 1/2= 45”:
`An . Ar: — cooraercrayuoman paauoén.
`npeueu acrynnerwm OJJ,HOKpaT_HHX VI Mauro-
`Kpamux aonn a aarmon Touxe (aepmxamnan
`paapeuleuuocrs):
`_
`AI1 . AI2 — ropwaouranm-nan paapemew
`Hocn. noneanofl u Muoroxpa-n»-non aonu no Ha-
`npaaneumo 17 =- 0° M 1]= 45° cooraercrsenuo.
`Ha ¢mr.2 npwaeneua cxeMa orpafimxu
`npoc1'paHcTaeHHot7I Monnqauxauun MOFT (A) M
`peam/Iayemue npu 3-ram cucreuu Muoroxpa1-
`uux nepexpumfi no 4 Henpononwuu npodm-
`MIM c tbuxcupoaannofi Henpogonhnocruo (5).
`rue:
`_
`.
`'
`x. y - opuenmpoaxa uooppuanaruux ocefl;
`8 — nvmm a_o35y>meHmI xonefiamm:
`9 — nuuun npuema Konefianvm;
`10 — nmwm npocnexmaanvm ofiumx my-
`5lAHHblX Touexfi.
`R1. R2. R3. R4 - HeI1pOAOIlbHOcTH npo¢n-_
`nen (mmmmanbnue ynanenvm um-Mn eos6y>K-
`nenvm or nmmfi npneua 9 Hanpaanermu y):
`L - mmna npmemcoro ycrpovuctaa:
`,
`d — cnamrn nepaofi To-um aosfiyxmenna
`HBHDDAORBHHX npodzmnevv MOFT no mm X:
`a. b. c. f— Mec-rononoxcenvxe xapa xrepuux
`sufiopox Kananoa nepuonwuecxm noa'ropmo-
`umxcsa H8 cxemax H85I1|OAeHVII7l no nenpo;:om.-
`Hum npoqznmm MOFT;
`1 VI 11 - noanmm orpafionm nenpononr
`I-aux npodmnevl:
`C1D. E. F — Mecrononoxerme xapax1_ep-
`Hux aufiopox Kananoa npocrpaucraeuuoro
`ronorpaqaa Ha peanuayemux cxeuax Ha5moAe-
`mm.
`Ha ¢mr.3 npegcraaneuu xapaxrepuue au-
`fiopm xauanoa npocrpaucraennoro ronorpa- ,
`¢a MOFT 3 "to-max C, D. E, F.’
`l1- pacctosmue aapua-npmen:
`27 .— npepenwuvr asmwyr Hanpaanermn
`,aapua-npuem.
`
`20
`
`25
`
`30
`
`35
`
`40
`
`45
`
`50
`
`55
`
`. PaccMo1'pMM cymecrao aasuannemoro cnog
`cofia. J10 peamnaaumu cnocofia H8 ocnoaaumn
`mmemmencn uucbopmauuu o reonorvm cpenu
`_ yuacrxa nccneaoaanmfi (no>Aam-«um Ce|7|CMO'
`i
`
`WesternGeco Ex. 1011, pg. 2
`
`WesternGeco Ex. 1011, pg. 2
`
`

`
`5
`
`1818609
`
`6
`
`pasnenxmynpenunymero arana pafior. Mnem-
`umxcn cxaaxmn M up.) sufiwpasor on'mManI.—
`Hue napamerpu cMcTeM Ha5IlIO;1eHMfi a
`Hanpaanemm x. y. )1m1.sToro 33.l13Bl.IJV|Cb mu-
`d>opMaumer71 0 Monenm cpenu pacc-mrua-axoT
`pasmepu anrmncoa M spew: nuxona npo~
`CTpaHCTBeHHbJX ronorpaqaoe OFT nonesnon
`(arm Hawlfionee rnyfioxoro ueneaoro ropM3oH~
`Ta) VI KDBTHHX aomrna Hecxonaxux ropw3oH-
`T8l'l|:HblX ceueuvmx) BDBMBHHHX ypoamax.
`¢m'.1A). OLLBHMBEIOT ropvlaomanbuyno pa3pe-
`ILleHHOCTb Al noneeuofi vi Kpamofi aom»: no
`uanpaanenmm 1] =97o +t,D. me 1/I~ a3uMy'r
`uoccranvm l'ODl/ISOHTOB n cucreme Koopmmar
`x, y: 170- yron Mexqny Hanpaaneunem npoubmm
`VI aoccramaem ropwaowra (¢ur.1A. E). B aeprw
`KaIIbHblX ceqeuvmx no rem x<e Hanpaaneuvmm
`17 onpenen-snoT aepmxanbuyno pa3peu1eH—
`HOCTL: AI(¢mr.1A) ~ apervm 3ana3n§¢aaH»m
`xpamofi aonnu no oT_HoLueHmo K noneanoxfi a
`make BblXOflr'J nocnemiefi Ha aanauuoe repu-
`aomanbnoe ceueHme(apeMeHHox71 YDOBBHB).
`Ha ocuosazwm nonyuennux p.an-mux unpe-
`nenmor A/wmy npmexvmoro ycrpoficma L, exe-
`My orpafionm Henpon,om.Hux npoqmnenz. mx
`opwenrauvno. Beill/1'-ll/1Hb| Hel1|JDA0nbH0CTel7l
`(d>mr.2A. E). noasonmmumx peanwaoaarb onwa-
`Man wyso pa3peLueHHocT2, npacrpancmermux
`rop,orpa¢oa OFT nonesuuxu Kpamux noun 3
`uanpaaneuvm ocnoeumx oceuh snnunca M:-wro-
`s<paTHm71 fsonnu.
`Kpamocn Haxannvnaanm-1 no Henpo,qom.—
`HUM npO¢o|/IHRM onpenennercn cornacuo Mase-
`CTHHM zbopmynam vmTep(1>epeHu.mJHHoro
`npv:e‘Ma (3). flocne nufiopa (no anpuopnofi Mo-
`p,e:m) napamerpoa l'lpOCTpaHcTBBHHO|71.CP1CT8'
`Mu Ha6mop,eHm7: B Hanpaeneuvm x u y
`on pep.enmo1csa Benwwma npegenbnoro a3VlMy-
`Ta Tjnpen, Hanpasnermn B3pbIB'f1DMeM (¢v1r.3) M
`cnauru npoqmnefi d ornocvrrenbno npyr npyra
`no ¢:opMyne: d = (1 cos rynpen. - L)/2. me L —
`,CU'||/1H3 ceficmvwecxofi KOCH, I‘ MEKCI/lMal'lbHOB >
`paccmsume aapua-npmem (¢wIr.2. 3). B cnyuae.
`game ecnm mqrwrunas Megan}; cpenu 6yneT 01"
`>"H|iI'~4aTl=C5l oTanpM0pHoF1.To 3 en;16op:<y xananoa
`npocrpancrsen-more ro,qorpa¢a OFT (q>nr.3)
`6y;1e~r BXOAMTI: umpoxw71 mnanaaon aswuy-roe
`Hanpaanenmi» aspbza-npmem. BK)1|O‘l¢’:l1OU.|lv1l7I
`I/I
`Hanpaanenmsa onmmanbuoro paapemeswm no-
`neanofi M KpaTHm7I BOIIH.
`Flocne npnaeneraun autueonmcannofi nap,-
`FOTOBI/ITellbHOL7I pafimu 3aHBJ'IFleMb1l7l cnocofi
`peanuayercn cne,uyroLu.nM o6pa3oM. Hpo~
`crpancraennun l'IDO¢Ml1b a6uJ.ux rnyfimmux
`To-4er< aunonmuor nyreu orpafionm napan-
`l1eJ‘Ib1-IHX npocpmnefi MOFT c paanm-man He-
`npononbuocnso. flpu 3TOM K3X<,ELbll7l npodavme
`OTHOCMTe!|bHO npegunymero oTpa6amBa»o1'
`co CMEUJSHMGM d anom. ocvr x. Hp:/I orpafiorxe
`
`10
`
`15
`
`20
`
`25
`
`30-
`
`35
`
`40
`
`45
`
`50
`
`xaxgqoro HeI'1p0)1OIIbHOVO npmpwm nmmu 503-
`fiysxaennq M npneua cmmuerpwmu omocw
`Tel'l'bHO l'1pOeKTHOl7l IIMHI/M'O5Lu,ViX rnyfimmux
`TOHBK. Kpome mro. npn nepexone x orpafionce
`cnenyromero npozpwm ocyugecrenmor nome-
`Aoaa-remauyno cMeHy nonoxenmn numun soa-
`6y>xp.eHvm M npuervla. Hoiiweuuue naunisze
`ofiecneumsanot nnomannym pasmomepnyro su-
`fiopxy KBHBIIOB o6u.zes7v rny6wHHoI7I Toukvi 9 um-
`pmcorw cnexrpe aaumyrammux Hanpaanenun
`sspburnpvrem (¢Mr.3). cymwwspoaanme 35:50p-
`xu xananns no noaepxnocm npocrpancraew
`HDFO ronorpaqna OFT.
`B xa-meme npwvaepa paccmorpvwn npmMe~
`neuyse yKa3aHHoro cnocofia 5 ycnoanmx Men~
`xoacmnoro uJenb¢a Cesepnoro Kacnusa.
`Ceiscmoreonoruuecme ycnoama CeaepHo—
`ro Kacnvm (vpanbcxan Sopoannua ixapaocrepw
`3ymTc9I Hanwmem a aepxrmx m-nepaanax
`paapeaa ropnaouros c Kpyruumm yrnawm Ha-
`KnoHa.BpeM;1 wx permcTpau,vm 1 c. 1.3 c. Hmxe
`no paspesy sanerazm ueneeue ropmaomu c
`cymecrsenno MGHELUVIMI/I yrnawm HHKHOHB. HO
`CIlO}KHOl'lOl‘.TpO3HHOl7l K0H¢wrypaLmeF1 Oma-
`»<a:oLue17n nosepxmcm. Hanwme 5 aepxvnux
`umepaanax paepeaa axycmuecxm cmnauux
`rpamau. ofiycnaanmaam chopmnpoaamae MH-
`TBHCI/IBHHX MHOFDKDSTHHX aonu, naxna_nuea—
`mumxcn H3 noneauyno b1H¢0pMaLu«1IO,
`xapaxrepusymmym uenesoii: 05heKT. Bpemsa
`permcrpauwm Hanfionee rnyfioxoro nonesnoro
`orpaxeuvm to = 3.2 c. cxopocn. pacnpocTpa—
`HBHMH ynpymx sorm V =4 KM/c. yron Haxnor-Ia
`g0= 0°. Bpems: permcrpaumm u<_oaTuoo6paayso-
`u1.e17I TDBHI/1L[b|1.5C.Vxp=3.2 KM/c. (pkg. =30°.
`Aamuyr nmmn BDCCTGHMH xpamoo6pa3y»o-
`u1_eI71 rparmuu no omomeumo K mm x 1/1 =45°.
`
`Baaaaasacb Makcnmanm-mm paccrommem
`aspua-npmem, paanum |=4.2 KM. paccuviTuaa-
`‘:01’ npocwpancmennue ro.uorpa¢ubz MOIT our
`HoKpaTHoI.'1 M MHorm<paTHo171 ‘BOIIH npu
`ropmaoman-anon ceuenvwl 3.34 c (q')var.1a). no
`Hanpaanenvuo aoccTaHm1 |'paHl/lubl onpe1.1enn-
`IOT M3KCMM3I'lbHOe paanm-me B0 apemenm
`pcrynluennn omsoxpamofi H maoroxpamofi
`aonrm 3 BB[D‘l’MK8IlbH0l71 nnocxocm Ar= 0.1 c
`(4):/Ir. 1a).
`8 coomercmvm c r1onyueHHr-,mm J:§aHHH'
`MM pacnonarawr npoqmnm MOFT napannemr
`H0 5OlH:LUOl71 nonyocm snnunca ceuenml
`npocrpancraemmro rqqorpaqaa Mnoroxpamo
`omaxceuuon Bonus 7] = 45° (¢mr.1a).
`Jlnn pea/maaumvl npemaraemoro cnocofia
`Hcnonbayror 48 I<aHam=Hy10 Aouuyro Kocy mm-
`Hofi 2.4 KM. paccmsmue Mexqxy Kananamn x =
`=D.05 KM. Mam-mmc cezicuwaecxmx nconefiamm
`Tana FM-16 3 ncompwrypauun 2x3 nmpal Flpvr
`atom Maxcmmamman nenpogonbnocn. Rmax
`
`WesternGeco Ex. 1011, pg. 3
`
`WesternGeco Ex. 1011, pg. 3
`
`

`
`.7
`
`A
`
`.
`
`V
`
`V
`
`1818609
`

`
`8
`
`' coc'Taam' Rmax =1/15 —.’L§'mnm R1=2.4 KM. R2 =
`=0.8 KM. R3 = 1.6‘ KM. R4 = 3.2 KM (dmr.2a).
`Texnonorvm oTpafion<vI._cnoco5a 9 Mopcxux
`ycnoavmx aaxmo’-4ae'rcn a 'cnenynow,eM.
`'
`Ceficmmecxan Koca yxnanuaaercn Ha Ana
`Ha'_1 noavluvuo no npo¢vnmo npnemavz. CVAHO.
`cbmxcupyer nonoxenme KOCH. Boafiyxcnetme
`konefiannn npumaaonmcn c nonynouwo ceme-
`MOVICTOHHMKS. Syxcvlpyemoro acnomoratemr
`‘Hum cynuom no npoetavuno éosfiyxzneuvm 1,
`o‘rc'rosIu4ero Ha R4 or npodwmn npvnema 2
`(qmr.2a). nepaufi M nocnemmn aapuau me-
`menu omucmrenuno Hauana 14 Karma Kocu Ha
`1/2 l; (¢Mr.26). Flocne orpafiorxvl 1 noavluvm
`fiaau aozfiyxcneavum npvxema xonefiamm OMB‘
`t1.taIOT H3 pumuy xocu M npouecc noaropnercn
`ans: BTOpO_|7I I/I nocnenynoumx no:-mum7I(¢pMr.26).
`
`‘ Orpafiorxa npo¢w_ne|7t npm Henpononbmr
`cmx R3, R2, R1ocyu4ecTenneTcn auanom-mum
`ofipaaom npvu ycnéavm. -no nepaan noavlumu
`Ka)K,l.1OI'0 orpafiamaaemoro npoqmnsa meme-
`Ha omocmenbuo nepaon noanunn npeAbu1y-
`uxero n'po¢unn Hafimoneuvm Ha 1/4 L(¢mr.2a.
`6). Flocne o'Tpa6unu4 no yxaaarmon cxeme 4
`Henpogonsnux npocbvlnefi MOFT npoM3aop,wr-
`on aufiopxa xauanoe.npocTpaHc1'aem-mro ro-
`Aorpacba OFT. Bufiupkvl Kananoa OFT
`xapaxrepwayvmcn onpenenenuon KoH¢Mrypa--
`uvlefi (¢mr.3 C. D. E, F). xorqpaa a cooTaerc1-
`sum co cxelvuofi nepnonnuecxu noa1'opsIe'rcn.
`Ofimas I<pa1-Hocn. Haxannmsanmn no n.po-
`crpancmennomy roporpadxynnn ¢vIKcvIpoaaH-
`HOI71
`TO‘-IKVI OFT 6y11e1 onpenennncn
`xonvmecmom KSHBIIOB no IIMHe17lHblM npo¢vI-
`mm M xonuuecnaom orpafiorammx Manpo-
`£lDnbHbIX npocpunen M cocvaam 192.
`.
`Tamm ofipaaon.» a otnwme 01' npoTomn'a
`npepwaraemun cnocofi ofiecne-Maser nonu-
`Luemne nonnow vs ;1oc1oaepnocTM vm¢opMa-
`mm aa
`cue?
`nonmxeuvm ypoann
`M1-I0rOKpaTHO-0Tpa)KeHHbIX BDIIH acnencravxe
`cymwmpoaanma no npoctpancraermomy ro-
`p.orpa¢y MOI’T u yny-uuenvm Kauecma upo-
`cnexmaauma ropmaowros. pervxcrpvspyemmx 5
`ycnosnnx paaammn Kparuoofipasyvouuax we-
`
`mm. a TaK)Ke cnmxenm Heperynnpuoro ¢oHa
`xonefianvm 3a cuer eucoxoro cramcrl/Hecxo ro
`3¢¢exTa H noauwenvm coomomennn cur-
`Hanltbou ny1'eM ocp_enHeHnsu ycnoanfi ao36y>K-
`_ genus:
`III npvnema |_(one6aHvn7I, ofiecne-aemaoe
`cxeMcu7: o'rpa5o1'm.
`Sxbnomvmecmvl 3¢¢eKT OT m:nom.aoaa-
`Hm nam-xoro m'ao6pe‘r‘e|-wm o6ycnastwIaae1cn
`IIDBHLUEHIIIGM nonnom u AOCTOBEDHOCTVI reo-
`norwgecxux peaynnaroa. -no ofiecnetmr au-
`nanenne J.|OI'lDIlHMTelIbHblX npornoanux H
`nepcnexmauux aanacoa Hed>TH M rasa. a T8K'
`xte cmuxenme sarpar Ha npoaepxy fiypermen
`noxmux CTDVICIYP. aaxapwspoaannux Ha npexr
`unymen cranvm pafior. VI opnenmpoaouuo co-
`craam 380 me. <py6 3 run npn o61=eMe pafior
`1000 n0l'.KM.
`'
`<Do'pMyna uao6p'e'reHm1
`'Cnoco6 npocrpauctaermcwi cencMopaa-
`neaxn, 'B|U1l0‘lal0l.l.llII|7I sosfiyxcnenne Ia npuem
`ynpyrnx Konefiam/M ceilcmw-reckon xocon mm-
`HH L npvl Mas<cmManbHoM paccromlvwl B3pHB-
`npmega I. perucrpaumo orpaxcenuux aonn no
`cucreme HETIPOAOIILHHX npoclmnen MeTop,oM
`ofimen rny6_vu-u-Iofi To-um. nonyuerme npo-
`crpancnaennoro Maccuaa ceficmvmecnmx nau-
`HHX, H naxanlm-aaumz vm¢opMaLum no
`nnomanu npu nocnenynomefi ofipafiorxe.» o In-
`M ‘I a no man c 51 Ten. \rro.'c uenblo noaumenml
`3¢¢eK'rvIaHocTvI 3a cue? ynenvmenvm 0THOL|Je'
`Hun cvIrHan—noMexa. orpafiaruaanor cepmo na-
`pannenanux Henpononsnux npodmnefi co
`cnanramm a Hanpaanemam HeI‘IDO,U.OflbHblX npd-
`¢vIneI7I
`ct". onpenenenuuuu no ¢opMy-
`ne (1 = (I COS flnpan " L)/2. me . finpen "
`npenenwun aamvsyr uanpaanenmi aspara-
`npmem npu nocnenoaarenbnofi cMeHe nono-
`'>KeHm1 npoqmnevl aoafiyxqxenvm M nplneh-Ia;
`cmMMe1pn-max omocmenbuo nonyuennord
`npocrpaucmeunoro npaqmnn o5umx my6vm~
`aux TOHBK. a aarem aunom-mot paauomepnyso
`aamMy"ram.Hyro nufiopxy Kauanoa ofiumx my-
`Bvmuux TOHEK no nnomanvl M nocnenynmee
`cymmpoaanne no noaepxnacm npocrpancr
`aeunoro roaorpaq>a ofiumx rnyfimmux Touex.
`
`110
`
`'15
`
`20
`
`’
`
`25
`
`30
`
`35
`
`40
`
`45
`
`WesternGeco Ex. 1011, pg. 4
`
`WesternGeco Ex. 1011, pg. 4
`
`

`
`x- r sv=u,‘q.=n
`
` lfoccmauofinenue W")
`
`apauuuu Bdana ocu X
`\ \\ \\
`A
`\\ \
`.
`\\ mane
`'
`\‘
`\R=l15'£ T.‘P=1}5" ré,,=r1-lp ’
`9 W €i,,5.z’%:;z5:y:::;= ;2z;'»"""
`(Due. 1
`
`'
`
`WesternGeco Ex. 1011, pg. 5
`
`WesternGeco Ex. 1011, pg. 5
`
`

`
`1818609
`
`!..3l...§}2L.4.¥..Al_A£_---..-AL.AL..¥.._.__;‘
`.|‘
`
`\
`/o\\¢‘ -
`
`
`J
`
`WesternGeco Ex. 1011, pg. 6
`
`WesternGeco Ex. 1011, pg. 6
`
`
`
`

`
`1818609
`
`b_
`
`__ Bmsopma r.C
`
`1 Penaorrop
`
`I1.HaKoHe~n-Ian
`Coctaaurem.
`Texpea M.MopreH1'a1j
`
`Koppenop: O.Fycm
`
`flonrmcuoe
`I
`Tnpaxc '
`' Baxaa 1937»
`BHI/Mn!/I 1'ocynapctaeuuoro Komwrera no méofibereuunn M OTKDHTMHM npn FKHT CCCP .
`113035. Mocxaa. )K-35. Paymckan Ha5.. 4/5
`’
`
`.
`
`FlpovI:§ao.qc'raeMHo-uanarenbcnmn I(OM5M1-I31’ "fla1'eH1"‘, r. Yxcropon. yn.l’arapm-Ia. 101
`
`WesternGeco Ex. 1011, pg. 7
`
`WesternGeco Ex. 1011, pg. 7
`
`

`
`
`
`(19) SU (11) 1818609 A1
`(51)5 G 01 V 1/00
`
`2
`Essence of the invention: A 3D seismic surveying method
`includes induction of elastic vibrations and recording of the
`reflected waves during processing of non-lengthwise profiles
`using the common depth point method (CDPM). The novelty
`of the method is the creation of a 3D profile of common depth
`points by running a series of parallel non-lengthwise CDPM
`profiles with displacements determined according to the limit
`azimuth of the source-reception direction with a sequential
`reversal of the source and reception lines symmetrical to the
`design profile of the common depth points followed by a
`uniform azimuthal readout of the channels of the common-
`depth points in terms of total area and further totaling on the
`surface of the time distance curve. 3 drawings.
`
`THE UNION OF
`SOVIET
`SOCIALIST
`REPUBLICS
`
`
`
`
`STATE PATENT OFFICE OF THE
`USSR
`(GOSPATENT USSR)
`
`SPECIFICATION
`OF AUTHOR'S CERTIFICATE
`1
`
`(21) 4797103/25
`(22) 19.12.89
`(46) 30.05.93. Bul. 20
`(71) Research and Production Association ‘Neftegeofizpribor’
`(72) D.P. Zemtsova, N.I. Kravchenko, L.V. Nakonechnaya,
`D.B. Babayev, F.F. Efendiev, and F.N. Bakhshiev
` (56) Meshbey V.I. Multiple Coverage Methods in Seismic
`Exploration. Moscow: Nedra, 1985.
`Milashin V.A., Khitrov D.M., Data Processing in Regular
`Three-Dimensional Monitoring Systems by means of Rotating
`Sections. – Oil&Gas Geology, 1985, n. 8
`(54) METHOD OF 3D SEISMIC SURVEYING
`(57) Use: Marine seismic surveying, detailing of complex
`structure geological objects located under acoustically hard
`boundaries
`
`The invention relates to the field of marine seismic
`
`surveying and can be used for detailing complexly-structured
`geological objects located under acoustically hard
`boundaries.
`
`The purpose of the present invention is the
`enhancement of seismic surveying efficiency during
`monitoring of complexly-structured geological surfaces
`located, for example, in conditions of development in upper
`intervals of a section of acoustically hard multiple generating
`horizons.
`
`The given object is attained by increasing the
`signal-interference relationship based on data from a 3D
`profile for common depth points, during which is processed a
`series of parallel non-lengthwise profiles with displacements
`in the direction of the non-lengthwise profiles, the
`displacements being defined by taking into account the limit
`azimuth of the explosion-receiver directions during
`sequential switching of the position of the seismic source and
`receiver profiles which are symmetrical relative to the
`obtained 3D profile of the common depth points, followed by
`uniform azimuth readout of channels for the common depth
`points in terms of the area and the sequential totaling by
`surface of the 3D time distance curve for the common depth
`points.
`
`
`
`As regards a prototype of the proposed method for
`processing a series of non-lengthwise profiles, CDPM
`
`WesternGeco Ex. 1011, pg. 8
`
`

`
`4
`3
`1818609
`makes it possible to obtain a 3D profile of the CDPM, which
`Q is the horizontal plane of intersection;
`is achieved by the presence of the following essential features.
`
`1 is the horizontal intersection of the 3D time
`
`The displacement of the non-lengthwise profiles
`distance curve of the useful wave;
`relative to one another according to the limit azimuth of the
`
`2 is the horizontal intersection of the 3D time
`explosion-receiver directions makes it possible to acquire a
`distance curve of the useful wave when φk = 30 ° and ψ =
`wide range of angles during 3D readouts of the CDP channels
`45°;
`and a division of the 3D time distance curves of useful and
`3. Horizontal cross-section of the spatial travel-time
`
`frequent waves and suppression of the last one during totaling.
`curve of a multiple wave at φ = 30º, ψ = 45°
`
`The sequential exchange of positions of the
`
`4, 5 are the linear CDP time distance curves of the
`induction lines and vibration receivers relative to the
`useful and repeated waves in the plane η = 0° with an
`specified CDP profile in turn during sequential processing
`azimuth of boundary of ψ = 0°;
`makes it possible to diminish the effects of nonuniformity of
`
`6, 7 are the linear CDP time distance curves of the
`the upper parts of the section.
`useful and repeated waves in the plane η = 45° with an
`
`The symmetry of the induction and reception lines
`azimuth of boundary of ψ = 45°;
`relative to the specified profile creates the possibility of
`
`Δτ1 and Δτ2 are the corresponding differences in
`uniform azimuth readout of the CDP channels and acquisition
`time of entry of the single and repeated waves at a particular
`of a 3D time distance curve of the CDP.
`point (vertical resolution);
`ΔI1 and ΔI2 are the horizontal resolution of the
`
`Achieving a 3D CDP profile makes it possible to
`
`useful and repeated waves in the direction η = 0° and η = 45°
`read out CDP channels by area and the sequential totaling by
`accordingly.
`surface of the 3D time distance curve of the CDP, i.e.,
`
`FIG. 2 shows a procedure for processing 3D
`suppression of frequent waves.
`modification of the CPDM (A) and the system of repeated
`
`In this manner the given totality of essential
`overlaps thus realized for 4 non-lengthwise profiles with a
`features makes possible the novelty of the proposed method
`fixed non-lengthwiseness (B), where:
`and provides a positive effect when studying complexly-
`
`x, y are the orientation of the coordinate axes;
`structured geological surfaces located in conditions of
`
`8 is the line of induction of vibration;
`development in upper intervals of a section which screen the
`
`9 is the line of reception of vibration;
`horizons.
`
`10 is the line following the CDPs;
`
`FIG 1 shows horizontal cross-sections and
`
`R1, R2, R3, and R4 are the non-lengthwisenesses of
`corresponding vertical cross-sections in planes η = 0° and η =
`45° of the time distance curve of the CDPM for the case of an
`the profiles (minimum distances of the inductions lines from
`inclination angle of a reflected horizon φk = 0° and a multiple
`the reception lines in the direction Y);
`generator φk = 30° (A) during changes in the position of the
`
`L is the distance of the receiver;
`profile relative to the extension of the surface being studied
`
`d is the displacements of the first induction point of
`for two variations of rising of the reflected boundaries:
`the non-lengthwise profiles of the CDPM along axis X;
`
`ψ = 0° (for which ηo = η) and ψ = 45° (for which ηo
`
`a, b, c, and f are the locations of the characteristic
`samples of channels which periodically repeat in observation
`= η - ψ) (B).
`procedures along non-lengthwise profiles in CDPM;
`
`x, y, and t are the axes of the coordinates;
`
`1 and 11 are positions of processing of non-
`
`t is the temporal axis in sec;
`lengthwise profiles; and
`
`η is the azimuth of the explosion-receiver direction
`C1, D, E, and F are locations characteristic samples
`
`in the x,y coordinate system;
`of channels of the 3D time distance curve in the obtained
`
`ψ is the azimuth of the reflected boundary in the x,y
`procedures of observation.
`coordinate system;
`ηo is the azimuth of the explosion-receiver direction
`
`FIG. 3 shows the characteristic samples of channels
`
`relative to the rising of the reflected boundary, ηo = η - ψ;
`of the 3D time distance curve in the CDPM at points C, D, E,
`
`
`and F.
`I1 is the explosion-receiver distance; and
`
`η is the limit azimuth of the explosion-receiver
`
`direction.
`
`We shall now look at the essence of the proposed
`method. Before achieving the method on the basis of existing
`information on the geology of the area around the research
`site (according to data from surveys in an earlier stage of the
`work, existing wells, and so on),
`
`
`
`WesternGeco Ex. 1011, pg. 9
`
`

`
`5
`1818609
`6
`optimal parameters are selected for the system of observation
`30°. The azimuth of the rise line of the multiple generating
`in the directions x and y. To this end the given information on
`boundary in relation to the x axis is ψ = 45°.
`the model of the environment is used to calculate the
`Based on the maximum explosion-reception
`dimensions of the ellipses and the time of entry of 3D
`distance set to I = 4.2 km, distance time CDPM curves of
`distance curves of the useful (for the deepest target horizon)
`single and multiple waves with the horizontal cross-section of
`and multiple generating waves on several horizontal sections)
`3.34 are measured (FIG. 1a). The maximum difference in the
`temporal levels, Figure 1A). Horizontal resolution ΔI of the
`entry time of single and multiple waves in the vertical plane
`useful and the repeated waves is estimated along the
`Δτ = 0.1 sec is calculated along the direction of the boundary
`directions η = ηo + ψ, where ψ is the azimuth of horizon rising
`rising (FIG. 1a).
`in the x, y coordinate system; ηo is the angle between the
`In accordance with the data obtained CDPM
`profile direction and the horizon rising (FIG. 1A B). In the
`profiles are set parallel to the major semi-axis of the cross-
`vertical cross-sections along the same η directions, the
`section ellipse of the 3D curve of the multiply reflected
`vertical resolution Δτ (FIG.1A) – time of delay of the
`waves η = 45° (FIG. 1a).
`repeated wave in respect of the useful one in the point of
`For implementation of the proposed method, a 2.4-
`entry of the latter to the preset horizontal section (temporal
`km-long 48-channel bottom streamer is used. The distance
`level).
`between the channels is x = 0.05 km. PI-1B seismic
`vibrations source has a 2x3 liters configuration. In this case,
`the maximum non-lengthwiseness of Rmax will be Rmax =
`or R1 = 2.4 km, R2 = 0.8 km, R3 = 1.6 km, R4 = 3.2 km (FIG.
`2a). The technology of using this method to subsea
`applications is as follows.
`The towed streamer is laid on the bottom on 1
`position along the reception profile 2. The ship records the
`streamer position. Vibrations are induced by the seismic
`source towed by an auxiliary ship along excitation profile 1
`located at R4 distance from the reception profile 2 (FIG.2a).
`The first and the last explosions are displaced in respect of
`the beginning and the end of the streamer by ½ L (FIG.2b).
`After running the 1 position, the excitation and the reduction
`bases are displaced by the streamer length, and the process is
`repeated for the second and the following position (FIG.2b).
`Running of the profiles with non-lengthwise R3,R2,
`and R1 is similar if the first position of each profile in
`question is displaced in respect of the first position of the
`previous observation profile on ¼ L (FIG. 2a,b). After
`operating under the above layout of 4 non-lengthwise CDP
`profiles, the channel readout is carried out on the distance
`CDP curve. CDP channel readouts are characterized by a
`specific configuration (FIG. 3 C, D, E, F), which in
`accordance with the layout is repeated periodically. The total
`accumulation multiplicity along the 3D curve for a fixed CDP
`point is based on the number of channels along linear profiles
`and the amount of processed non-lengthwise profiles and
`amounts to 192.
`Thus, unlike the prototype the proposed method
`contributes to the completeness and reliability of information
`by reducing the level of the multiple-reflected waves due to
`the sum-up over the 3D CDP curve and to the improvement
`of the quality of monitoring the horizons recorded under the
`condition of development of multiple generating boundaries
`as well as reduction of the irregular vibration background due
`to the high statistical effect and the increase in the
`signal/background ratio by averaging the vibration excitation
`and reception conditions, as provided by the operation routine.
`
`The economic effect of implementation of this
`invention lies in the more complete and accurate geological
`results, which contribute to additional estimated and
`prospective oil and gas reserves, as well as in the reduced
`cost of test drilling of false structures mapped on the previous
`step of the project, and will be of approximate RUB 380
`thousand a year with the amount of work of 1000 linear km.
`
`Claims
`A 3D seismic surveying method including
`
`induction and reception of elastic vibrations by an L-length
`towed streamer at a maximum explosion-reception distance I,
`recording of reflected waves via a system of non-lengthwise
`profiles using a common-depth point method, obtaining of a
`3D array of seismic data, and storing of areal information
`during the subsequent processing, wherein in order to
`
`Based on the data obtained the length of the
`receiving device L, the routine of running the non-lengthwise
`profiles, their orientation, and the values of non-
`lengthwiseness will be determined (Figure 2A, B). They will
`enable to optimize the resolution of time distance curves of
`useful and repeated waves in the direction of the main axes of
`the repeated wave ellipse.
`The multiplicity of accumulation along the non-
`lengthwise profiles is measures according to the known
`interferential reception formulas (3). After selecting (by the a
`priori model) the parameter of the 3D observation system in x
`and y direction, the limit azimuth ηlim of explosion-reception
`directions (FIG. 3) and profiles’ displacement d in respect to
`one other are calculated by the formula: d = (I cos ηlim - L)/2,
`where L is the length of the towed streamer, and I is the
`maximum explosion-reception distance (FIG.2,3). If even if
`the true model of the environment differs from the a priori
`one, the channel 3D distance curve (FIG.3) will include a
`wide range of azimuths of explosion - reception directions,
`including optimum resolution directions for the useful and
`the repeated waves.
`With the above preparatory work done, the claimed
`method is implemented as follows. The 3D profile of the
`common-depth points is made by processing parallel CDP
`profiles with different non-lengthwisenesses. In this case,
`each profile relative to the previous one is run with d
`displacement along the x axis. When running each non-
`lengthwise profile, the excitation and reception lines are
`symmetrical in relation to the design line of the common-
`depth points. Besides, when running the next profile, the
`excitation and reception lines sequentially switch their
`positions. The data obtained provide uniform 3D readout of
`common-depth point channels over a wide range of
`explosion-reception azimuth directions (FIG. 3). The
`channels’ readouts on the surface of the 3D distance curve
`are summed up.
`As an example, let us consider the implementation
`of this method in the shallow shelf applications in the North
`Caspian Sea.
`The seismological conditions of the North Caspian
`Sea (Ural Borozdina) characterized by the presence in the
`upper section intervals of horizons with steep inclination
`angles. The time of recording is 1 sec., 1.3 sec. Lower in the
`section, target horizons with significantly smaller inclination
`angles are located, but having a complexly-structured
`reflecting surface configuration. The presence in the upper
`intervals of the section of acoustically hard boundaries entails
`the formation of intense repeated waves overlapping the
`useful information characterizing the target object. The time
`for recording of the deepest useful reflection is to

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket