`
`COU.VlN'l I/ICTV|'~1ECK1/IX
`PECFIYEIMK
`
`FOCYAAPCTBEHHOE HATEHTHOE
`BELLOMCTBO cccp
`(rocnA1'EHT cccP)
`
`‘ (.9, _$Li(..,__‘@l§6_09 A1
`
`(ms
`
`6 01 V 1/00
`
`
`
`’ OHMCAHI/1E l/l3OBPETEH [/19
`
`K
`
`ABTOPCKOMV CB I/l,ElETE}‘lb CTBY
`
`'14
`
`(21)-4797103/25
`(22) 19.12.89
`(46) 30.05.93. Bson. Me 20
`(71) I-layrmo-npomsaoxlcraennoe ofibenmuenme
`“He¢TereoqmanpM6op"
`(72) £L.fl.3eMuosa. H.|/l.KpaB~IeHKo. )'l.B.HaKo-
`Hetman, JJ,.E.Ba6aea.
`tD.CD.3¢eHm4e-3 n
`<D.H.BaxumeB
`'
`(56) Memfiefi BM. Meronuxa Mnoroxpamux
`nepexpmwa B ceficmopaaaenxe. M.: Henpa.
`1985.
`Mvmamvm B.A.. Xmpoa Jl.M. O6pa6oTKa
`naunux peryrmpuux npocrpancwaeuwux cuc-
`Tem Hafimogenvm MefoAoM Bpamaemux npo- ’
`¢Mfle|7|. — Feonorvm He<!)TV1 M ra3a. 1385. N2 8.
`
`*
`
`(54) CHOCOB l'IPOCTPAHCTBEHHO171 CEVI;
`CMOPA3[3E,E1KI/1
`(57) I/lcnonbaoaaumez Mopcxan ce171cMopa3Be.q-
`Ka. neranuaauvm C110)-ICHDHOBTDOQHHHX reana-
`rmwecxmx o51.exma, pacnonomemaux non
`
`aKyc'rw«ecI<v1 cvrnbnumm rpal-muaMM. Cym-
`HOCTb v13o6peTeHI/m: Cnocofi npocTpaHcTaeH-
`HOLT! ceficmopasaenxm axmowaer ao36y>1<p.eHme
`yn pyrux Kone5aHw7x bl pemmpauwo 0TpEl)KeH'
`Hbix BOIIH npm orpafiorxe Henpononsnux npo—
`qaunefi Me'ra.t1oM o6LLgeL7a
`rny5MHHoI71 TOHKVI
`(MOFT). HOBHM B cnocofie nansrercse pea1m3a-
`LLVISI npompancnaennoro np0¢Mm-1 oEiu.u/Ix my-
`6m-«Hux Touex nyTeM OTDa50TKM cepvm
`napannemmux Henpogonbnux npo¢wIe»‘1
`MOIT co cppmramm, O|'1pe,E|eIIeHHl>|M|/I c0rnac-
`H0 npenenbnomy asumyry Hanpaanenwz
`eapuampuem. npn nocnegoaarenmofi cMeHe
`nonoxtenma nuHM|7I no36y>K,11eHMsI VI npnelvla.
`cmn1MeTpw:H'bsx OTHOCVITBHBHO npoexmoro
`npoqmnsa ofiuwnx rnyfivu-mux TOHEK. a sarem
`EbH1OTH!eHl*1e p€|BHOMBpHOW SBVIMYTBIIBHOV1 EH‘ '
`5opKvI kauanns o6u.unx rnyfimnnux Touex no
`nnomamn v: nocnemrsomee cymwuaposamae no
`. nosepxuocm npocrpancmennoro ronorpadna
`OH’. 3 W1.
`
`I/Isofipererme omocmcn K ofinacm mop-
`cxofi cemcmopaaeenm H MD)|(eT Bun, vacuum,-
`soaauo
`_npm
`neranvlaauun
`.CflO.‘KHO'I"lOCTp0BHHblX reonorwaecxmx D5bEK"
`TOE. pacnonomennux non axycrwaecxvl cum.-
`ubmm rpammamn.
`'
`'
`Llenmo nanuoro uaofipererwm suarmercn
`noapunerme a¢cpeKmBHocm ceficmopaaaepgm
`npm npocnexmsauvm cnoxmonocrpoenuux re-
`onoruuecxmx noaepxuocrefi. pacnonmxenuux.
`Hal‘lpMMep. a ycnozwmx pa3_BvITvm a aepxuux
`_mHTepaa}Iax paapeaa axycmuecxm cunmmx
`Kpamoofipasyroumx TODVISDHTOB.
`Vxaaannan uem, .qocmrae1'cn aa c-4e'ryae—
`nwiel-wm omouxenmu curHan—noMexa Ha 5a3e
`p.ar-max npocrpancrsennoro npocbwm ofiumx
`rnyfivum-sux Touex. npvu 3T()M orpafiamaa not ce-
`
`pmo napannemmux Hel'lpOAOI1l:HbIX npodnvmefi
`co cmawramm 9 Hanpaanenvm Hel1DOAOI'|bHbIX
`npocbunefll, onpenem1eMbIMvI c y‘IeTOM npe-
`Aemmoro a3II|MyT8 Hanpasnemw: aspua-npw
`em. npw nocnenoaarenbuofi cMeHe nonoxcerwm
`npn¢Mne471 aozfiyxcneuvm M npmema. CVlMMeT-
`pwmmx OTHOCVITBIIBHO nonyuen H0|'0 npo-
`crpancmennoro npndpuns ofiumx rnyfimmux
`TOHEK. a 3aTeM aunonumor pasnomepnyro 33:4-
`My'ranL.Hy»o aufiopxy Kananoa ofiumx rny6uH-
`Hux to-«ex no nnomagn M nocnenyoouxee
`cymwmpoaauwe no noaepxuocm npoc:rpaHcT—
`aem-qoro ronorpaqua o5u.uax rnyfimmux Touex.
`
`OTHOCV|Tel'lbH0 TIDOTOTMHS SSRBIIRBMHR
`cnocofi otpafionm cepvm Henpononbuux npo«
`¢w1e\7I MOFT ofiecne-maaer nonyuerwle npo-
`
`(60
`
`(II)
`
`
`
`W’6098181.
`
`WesternGeco Ex. 1011, pg. 1
`
`WesternGeco Ex. 1011, pg. 1
`
`
`
`3
`
`1818609
`
`.
`
`4
`
`cvpancnzeuuoro npocbmna MOFT. -no Aocmra~
`BTCSI Hanwmem cnexzynoumx cymecraeuuux
`npmanaxoa.
`_
`Cnsur Henpcmonbnux npo¢umeI7I_o1'HocM-
`TéIIbHO APVF npyra, cornacno npeaenwomy
`aavmyw nanpaanenvm aapua-npueu. o6ecne-
`_ ‘WIBQET OXBBT UJVIpOKO|'O AMBHESOHH YFHOB B
`npocrpauctaenuovl aufiopxe xananoa OFF.
`pasaenerme npocrpancraermux ronorpanboa
`noneanofi u xpamcm noun :4 nonaanerme no-
`cnennefl npvo cymmmpoaauvm.
`nocneaoearenwan cmeua nonoxzeomfi
`nunvm aoafiyxnehnn vs npvlema Koneéauvm or-
`Hocmenwo npoesmcoro npoqmnn ofiumx my-
`fimmux To-4ex 3 came ouepem. npn
`nocnenymmen ofipafiorxe noaaonner unna-
`wn. amnmme Heunuoponuocrefi aepxuevu wa-
`cm paspeaa.
`CVIMMGTDI/1‘4HOCTb nm-wm aoafiyxmeuua M
`npnema 0THOCMTeI1bHO npoexrnoro npocbvmn
`cosaaer aoamoxnocn paauouepnon aauMy-
`‘l'aIlbH0l7| aufiopxm Kan-Ianoa o6Lue|7I rnyfivnmon
`TOHKM — nonywemne npocvpaucraermoro ro-
`norpadaa OFT.
`Peanuaaumu npocrpancvaermoro npocbw
`nu OFT Aenaer aoammxuum sufiopxy KBHSIIOB
`ofiumx rnyfimmux 1-owex no nnomanu. nome-
`nymmee cymmupoeauvxe no noeepxuoc-rm npo~
`CTDBHCTBBHHOFO
`ronorpaqaa OFT -
`nouaanepme Kpamux BOIIH._
`Taxmvl ofipasoqvl. yxaaannasl coaoxyrk
`HOCTB cytuecraennux npuanaxoa oéycnaanw
`eaer Hoau:-my aauannemoro cnacofia M
`ofiecneumsaer nono>ImTenbHuI7I aqubexr npu
`npocnexmaanvm cnoxcnonocrpoel-mux reana-
`rmecomx noaepxuoctefi. pacnonomenuux a
`ycnoavmx pasavmasu 5 Bepxnux nmepaanax
`paapeaa axpauupynoumx ropmaomoa.
`Ha cpvl r.1 msofipaxenu ropvlaouvanbnue
`ceueuvm VI coomercraylotume eepmxamn-rue
`ce-Ienma a nnocxocrnx 1; -= 0° :4 11 - 45° npo—
`crpancrnennoro ro.qorpad>a MOFTmm cny-«an
`yrna Haxnona orpaxersuoro ropmaotrra g0= 0°
`14 Kpamoofipaaynomera rpammu vp..='30° (A)
`npu MaMeHeHm1 nonoxcenml npotbnna omocw
`1em.Ho npocmpauvm may-4aeMo|7I noaepxHo-
`'cm ans: nayx sapnawroa aocctauum
`o'rpa>KaIauJ,vIx rpaHvIu:
`-
`1/2= 0° (npn I-JTOM 1].; =11) M 1,0
`(no =rz—w ) (5).
`x. y. t — ocn «oopavmar;
`I ~ apeMeHHasI och B cex;
`17- 3:-mMy'r Hanpasnemm aapus-npweu a
`cHcTeMe'I<O0pAMHaT x. y:
`_
`-
`zp~ aavmy-r orpaxammen rpauuuu 3 cu-
`creme xoopnvmar x. y:
`‘
`'
`no —- aavuvnyr Hanpaanenvm a3pu34npmeM
`no— omomenmo K soccranvuo orpaxanoxuevl
`rpamauu..1]o = 7] — 10.
`
`=. 45°
`
`10
`
`15
`
`, Q — ropwaomansnan nnocxocn ceueuvm:
`1 — ropuaouranbuoe ceuerme npoc1'pau-
`craermoro rogorpacba none:-man sonnu:
`2 — ropvnaonranbuoe ce-aerme npoc'rpaHcT-
`aem-Ioro rop.urpa4>a MHOrOKpaTHOl'/'1 aonuu npw
`‘¢,=3o°. 1/;=o°;
`3 — ropwsontanwoe ceuemre npocrpaucr
`sermoro roaorpacpa MHOTOKDQTHOVI aonuu npu
`<p= 30°. §1)= 45°:
`.
`'
`4. 5 ~rmHeVIHue rqqorpacpu MOIT none)-
`Hov: Ia Mnoroxpamon norm 3 nnocxocm I1 - 0°
`npu aarmyre rpanuuu q()= 0°:
`6. 7 - .rwme17mue rogorpacbu MOl'T nones-
`Hofi M Muoroxpamon son» a nnockocm 1r= 45°
`npur a3mMy‘1'e rpamauu 1/2= 45”:
`An . Ar: — cooraercrayuoman paauoén.
`npeueu acrynnerwm OJJ,HOKpaT_HHX VI Mauro-
`Kpamux aonn a aarmon Touxe (aepmxamnan
`paapeuleuuocrs):
`_
`AI1 . AI2 — ropwaouranm-nan paapemew
`Hocn. noneanofl u Muoroxpa-n»-non aonu no Ha-
`npaaneumo 17 =- 0° M 1]= 45° cooraercrsenuo.
`Ha ¢mr.2 npwaeneua cxeMa orpafimxu
`npoc1'paHcTaeHHot7I Monnqauxauun MOFT (A) M
`peam/Iayemue npu 3-ram cucreuu Muoroxpa1-
`uux nepexpumfi no 4 Henpononwuu npodm-
`MIM c tbuxcupoaannofi Henpogonhnocruo (5).
`rue:
`_
`.
`'
`x. y - opuenmpoaxa uooppuanaruux ocefl;
`8 — nvmm a_o35y>meHmI xonefiamm:
`9 — nuuun npuema Konefianvm;
`10 — nmwm npocnexmaanvm ofiumx my-
`5lAHHblX Touexfi.
`R1. R2. R3. R4 - HeI1pOAOIlbHOcTH npo¢n-_
`nen (mmmmanbnue ynanenvm um-Mn eos6y>K-
`nenvm or nmmfi npneua 9 Hanpaanermu y):
`L - mmna npmemcoro ycrpovuctaa:
`,
`d — cnamrn nepaofi To-um aosfiyxmenna
`HBHDDAORBHHX npodzmnevv MOFT no mm X:
`a. b. c. f— Mec-rononoxcenvxe xapa xrepuux
`sufiopox Kananoa nepuonwuecxm noa'ropmo-
`umxcsa H8 cxemax H85I1|OAeHVII7l no nenpo;:om.-
`Hum npoqznmm MOFT;
`1 VI 11 - noanmm orpafionm nenpononr
`I-aux npodmnevl:
`C1D. E. F — Mecrononoxerme xapax1_ep-
`Hux aufiopox Kananoa npocrpaucraeuuoro
`ronorpaqaa Ha peanuayemux cxeuax Ha5moAe-
`mm.
`Ha ¢mr.3 npegcraaneuu xapaxrepuue au-
`fiopm xauanoa npocrpaucraennoro ronorpa- ,
`¢a MOFT 3 "to-max C, D. E, F.’
`l1- pacctosmue aapua-npmen:
`27 .— npepenwuvr asmwyr Hanpaanermn
`,aapua-npuem.
`
`20
`
`25
`
`30
`
`35
`
`40
`
`45
`
`50
`
`55
`
`. PaccMo1'pMM cymecrao aasuannemoro cnog
`cofia. J10 peamnaaumu cnocofia H8 ocnoaaumn
`mmemmencn uucbopmauuu o reonorvm cpenu
`_ yuacrxa nccneaoaanmfi (no>Aam-«um Ce|7|CMO'
`i
`
`WesternGeco Ex. 1011, pg. 2
`
`WesternGeco Ex. 1011, pg. 2
`
`
`
`5
`
`1818609
`
`6
`
`pasnenxmynpenunymero arana pafior. Mnem-
`umxcn cxaaxmn M up.) sufiwpasor on'mManI.—
`Hue napamerpu cMcTeM Ha5IlIO;1eHMfi a
`Hanpaanemm x. y. )1m1.sToro 33.l13Bl.IJV|Cb mu-
`d>opMaumer71 0 Monenm cpenu pacc-mrua-axoT
`pasmepu anrmncoa M spew: nuxona npo~
`CTpaHCTBeHHbJX ronorpaqaoe OFT nonesnon
`(arm Hawlfionee rnyfioxoro ueneaoro ropM3oH~
`Ta) VI KDBTHHX aomrna Hecxonaxux ropw3oH-
`T8l'l|:HblX ceueuvmx) BDBMBHHHX ypoamax.
`¢m'.1A). OLLBHMBEIOT ropvlaomanbuyno pa3pe-
`ILleHHOCTb Al noneeuofi vi Kpamofi aom»: no
`uanpaanenmm 1] =97o +t,D. me 1/I~ a3uMy'r
`uoccranvm l'ODl/ISOHTOB n cucreme Koopmmar
`x, y: 170- yron Mexqny Hanpaaneunem npoubmm
`VI aoccramaem ropwaowra (¢ur.1A. E). B aeprw
`KaIIbHblX ceqeuvmx no rem x<e Hanpaaneuvmm
`17 onpenen-snoT aepmxanbuyno pa3peu1eH—
`HOCTL: AI(¢mr.1A) ~ apervm 3ana3n§¢aaH»m
`xpamofi aonnu no oT_HoLueHmo K noneanoxfi a
`make BblXOflr'J nocnemiefi Ha aanauuoe repu-
`aomanbnoe ceueHme(apeMeHHox71 YDOBBHB).
`Ha ocuosazwm nonyuennux p.an-mux unpe-
`nenmor A/wmy npmexvmoro ycrpoficma L, exe-
`My orpafionm Henpon,om.Hux npoqmnenz. mx
`opwenrauvno. Beill/1'-ll/1Hb| Hel1|JDA0nbH0CTel7l
`(d>mr.2A. E). noasonmmumx peanwaoaarb onwa-
`Man wyso pa3peLueHHocT2, npacrpancmermux
`rop,orpa¢oa OFT nonesuuxu Kpamux noun 3
`uanpaaneuvm ocnoeumx oceuh snnunca M:-wro-
`s<paTHm71 fsonnu.
`Kpamocn Haxannvnaanm-1 no Henpo,qom.—
`HUM npO¢o|/IHRM onpenennercn cornacuo Mase-
`CTHHM zbopmynam vmTep(1>epeHu.mJHHoro
`npv:e‘Ma (3). flocne nufiopa (no anpuopnofi Mo-
`p,e:m) napamerpoa l'lpOCTpaHcTBBHHO|71.CP1CT8'
`Mu Ha6mop,eHm7: B Hanpaeneuvm x u y
`on pep.enmo1csa Benwwma npegenbnoro a3VlMy-
`Ta Tjnpen, Hanpasnermn B3pbIB'f1DMeM (¢v1r.3) M
`cnauru npoqmnefi d ornocvrrenbno npyr npyra
`no ¢:opMyne: d = (1 cos rynpen. - L)/2. me L —
`,CU'||/1H3 ceficmvwecxofi KOCH, I‘ MEKCI/lMal'lbHOB >
`paccmsume aapua-npmem (¢wIr.2. 3). B cnyuae.
`game ecnm mqrwrunas Megan}; cpenu 6yneT 01"
`>"H|iI'~4aTl=C5l oTanpM0pHoF1.To 3 en;16op:<y xananoa
`npocrpancrsen-more ro,qorpa¢a OFT (q>nr.3)
`6y;1e~r BXOAMTI: umpoxw71 mnanaaon aswuy-roe
`Hanpaanenmi» aspbza-npmem. BK)1|O‘l¢’:l1OU.|lv1l7I
`I/I
`Hanpaanenmsa onmmanbuoro paapemeswm no-
`neanofi M KpaTHm7I BOIIH.
`Flocne npnaeneraun autueonmcannofi nap,-
`FOTOBI/ITellbHOL7I pafimu 3aHBJ'IFleMb1l7l cnocofi
`peanuayercn cne,uyroLu.nM o6pa3oM. Hpo~
`crpancraennun l'IDO¢Ml1b a6uJ.ux rnyfimmux
`To-4er< aunonmuor nyreu orpafionm napan-
`l1eJ‘Ib1-IHX npocpmnefi MOFT c paanm-man He-
`npononbuocnso. flpu 3TOM K3X<,ELbll7l npodavme
`OTHOCMTe!|bHO npegunymero oTpa6amBa»o1'
`co CMEUJSHMGM d anom. ocvr x. Hp:/I orpafiorxe
`
`10
`
`15
`
`20
`
`25
`
`30-
`
`35
`
`40
`
`45
`
`50
`
`xaxgqoro HeI'1p0)1OIIbHOVO npmpwm nmmu 503-
`fiysxaennq M npneua cmmuerpwmu omocw
`Tel'l'bHO l'1pOeKTHOl7l IIMHI/M'O5Lu,ViX rnyfimmux
`TOHBK. Kpome mro. npn nepexone x orpafionce
`cnenyromero npozpwm ocyugecrenmor nome-
`Aoaa-remauyno cMeHy nonoxenmn numun soa-
`6y>xp.eHvm M npuervla. Hoiiweuuue naunisze
`ofiecneumsanot nnomannym pasmomepnyro su-
`fiopxy KBHBIIOB o6u.zes7v rny6wHHoI7I Toukvi 9 um-
`pmcorw cnexrpe aaumyrammux Hanpaanenun
`sspburnpvrem (¢Mr.3). cymwwspoaanme 35:50p-
`xu xananns no noaepxnocm npocrpancraew
`HDFO ronorpaqna OFT.
`B xa-meme npwvaepa paccmorpvwn npmMe~
`neuyse yKa3aHHoro cnocofia 5 ycnoanmx Men~
`xoacmnoro uJenb¢a Cesepnoro Kacnusa.
`Ceiscmoreonoruuecme ycnoama CeaepHo—
`ro Kacnvm (vpanbcxan Sopoannua ixapaocrepw
`3ymTc9I Hanwmem a aepxrmx m-nepaanax
`paapeaa ropnaouros c Kpyruumm yrnawm Ha-
`KnoHa.BpeM;1 wx permcTpau,vm 1 c. 1.3 c. Hmxe
`no paspesy sanerazm ueneeue ropmaomu c
`cymecrsenno MGHELUVIMI/I yrnawm HHKHOHB. HO
`CIlO}KHOl'lOl‘.TpO3HHOl7l K0H¢wrypaLmeF1 Oma-
`»<a:oLue17n nosepxmcm. Hanwme 5 aepxvnux
`umepaanax paepeaa axycmuecxm cmnauux
`rpamau. ofiycnaanmaam chopmnpoaamae MH-
`TBHCI/IBHHX MHOFDKDSTHHX aonu, naxna_nuea—
`mumxcn H3 noneauyno b1H¢0pMaLu«1IO,
`xapaxrepusymmym uenesoii: 05heKT. Bpemsa
`permcrpauwm Hanfionee rnyfioxoro nonesnoro
`orpaxeuvm to = 3.2 c. cxopocn. pacnpocTpa—
`HBHMH ynpymx sorm V =4 KM/c. yron Haxnor-Ia
`g0= 0°. Bpems: permcrpaumm u<_oaTuoo6paayso-
`u1.e17I TDBHI/1L[b|1.5C.Vxp=3.2 KM/c. (pkg. =30°.
`Aamuyr nmmn BDCCTGHMH xpamoo6pa3y»o-
`u1_eI71 rparmuu no omomeumo K mm x 1/1 =45°.
`
`Baaaaasacb Makcnmanm-mm paccrommem
`aspua-npmem, paanum |=4.2 KM. paccuviTuaa-
`‘:01’ npocwpancmennue ro.uorpa¢ubz MOIT our
`HoKpaTHoI.'1 M MHorm<paTHo171 ‘BOIIH npu
`ropmaoman-anon ceuenvwl 3.34 c (q')var.1a). no
`Hanpaanenvuo aoccTaHm1 |'paHl/lubl onpe1.1enn-
`IOT M3KCMM3I'lbHOe paanm-me B0 apemenm
`pcrynluennn omsoxpamofi H maoroxpamofi
`aonrm 3 BB[D‘l’MK8IlbH0l71 nnocxocm Ar= 0.1 c
`(4):/Ir. 1a).
`8 coomercmvm c r1onyueHHr-,mm J:§aHHH'
`MM pacnonarawr npoqmnm MOFT napannemr
`H0 5OlH:LUOl71 nonyocm snnunca ceuenml
`npocrpancraemmro rqqorpaqaa Mnoroxpamo
`omaxceuuon Bonus 7] = 45° (¢mr.1a).
`Jlnn pea/maaumvl npemaraemoro cnocofia
`Hcnonbayror 48 I<aHam=Hy10 Aouuyro Kocy mm-
`Hofi 2.4 KM. paccmsmue Mexqxy Kananamn x =
`=D.05 KM. Mam-mmc cezicuwaecxmx nconefiamm
`Tana FM-16 3 ncompwrypauun 2x3 nmpal Flpvr
`atom Maxcmmamman nenpogonbnocn. Rmax
`
`WesternGeco Ex. 1011, pg. 3
`
`WesternGeco Ex. 1011, pg. 3
`
`
`
`.7
`
`A
`
`.
`
`V
`
`V
`
`1818609
`
`»
`
`8
`
`' coc'Taam' Rmax =1/15 —.’L§'mnm R1=2.4 KM. R2 =
`=0.8 KM. R3 = 1.6‘ KM. R4 = 3.2 KM (dmr.2a).
`Texnonorvm oTpafion<vI._cnoco5a 9 Mopcxux
`ycnoavmx aaxmo’-4ae'rcn a 'cnenynow,eM.
`'
`Ceficmmecxan Koca yxnanuaaercn Ha Ana
`Ha'_1 noavluvuo no npo¢vnmo npnemavz. CVAHO.
`cbmxcupyer nonoxenme KOCH. Boafiyxcnetme
`konefiannn npumaaonmcn c nonynouwo ceme-
`MOVICTOHHMKS. Syxcvlpyemoro acnomoratemr
`‘Hum cynuom no npoetavuno éosfiyxzneuvm 1,
`o‘rc'rosIu4ero Ha R4 or npodwmn npvnema 2
`(qmr.2a). nepaufi M nocnemmn aapuau me-
`menu omucmrenuno Hauana 14 Karma Kocu Ha
`1/2 l; (¢Mr.26). Flocne orpafiorxvl 1 noavluvm
`fiaau aozfiyxcneavum npvxema xonefiamm OMB‘
`t1.taIOT H3 pumuy xocu M npouecc noaropnercn
`ans: BTOpO_|7I I/I nocnenynoumx no:-mum7I(¢pMr.26).
`
`‘ Orpafiorxa npo¢w_ne|7t npm Henpononbmr
`cmx R3, R2, R1ocyu4ecTenneTcn auanom-mum
`ofipaaom npvu ycnéavm. -no nepaan noavlumu
`Ka)K,l.1OI'0 orpafiamaaemoro npoqmnsa meme-
`Ha omocmenbuo nepaon noanunn npeAbu1y-
`uxero n'po¢unn Hafimoneuvm Ha 1/4 L(¢mr.2a.
`6). Flocne o'Tpa6unu4 no yxaaarmon cxeme 4
`Henpogonsnux npocbvlnefi MOFT npoM3aop,wr-
`on aufiopxa xauanoe.npocTpaHc1'aem-mro ro-
`Aorpacba OFT. Bufiupkvl Kananoa OFT
`xapaxrepwayvmcn onpenenenuon KoH¢Mrypa--
`uvlefi (¢mr.3 C. D. E, F). xorqpaa a cooTaerc1-
`sum co cxelvuofi nepnonnuecxu noa1'opsIe'rcn.
`Ofimas I<pa1-Hocn. Haxannmsanmn no n.po-
`crpancmennomy roporpadxynnn ¢vIKcvIpoaaH-
`HOI71
`TO‘-IKVI OFT 6y11e1 onpenennncn
`xonvmecmom KSHBIIOB no IIMHe17lHblM npo¢vI-
`mm M xonuuecnaom orpafiorammx Manpo-
`£lDnbHbIX npocpunen M cocvaam 192.
`.
`Tamm ofipaaon.» a otnwme 01' npoTomn'a
`npepwaraemun cnocofi ofiecne-Maser nonu-
`Luemne nonnow vs ;1oc1oaepnocTM vm¢opMa-
`mm aa
`cue?
`nonmxeuvm ypoann
`M1-I0rOKpaTHO-0Tpa)KeHHbIX BDIIH acnencravxe
`cymwmpoaanma no npoctpancraermomy ro-
`p.orpa¢y MOI’T u yny-uuenvm Kauecma upo-
`cnexmaauma ropmaowros. pervxcrpvspyemmx 5
`ycnosnnx paaammn Kparuoofipasyvouuax we-
`
`mm. a TaK)Ke cnmxenm Heperynnpuoro ¢oHa
`xonefianvm 3a cuer eucoxoro cramcrl/Hecxo ro
`3¢¢exTa H noauwenvm coomomennn cur-
`Hanltbou ny1'eM ocp_enHeHnsu ycnoanfi ao36y>K-
`_ genus:
`III npvnema |_(one6aHvn7I, ofiecne-aemaoe
`cxeMcu7: o'rpa5o1'm.
`Sxbnomvmecmvl 3¢¢eKT OT m:nom.aoaa-
`Hm nam-xoro m'ao6pe‘r‘e|-wm o6ycnastwIaae1cn
`IIDBHLUEHIIIGM nonnom u AOCTOBEDHOCTVI reo-
`norwgecxux peaynnaroa. -no ofiecnetmr au-
`nanenne J.|OI'lDIlHMTelIbHblX npornoanux H
`nepcnexmauux aanacoa Hed>TH M rasa. a T8K'
`xte cmuxenme sarpar Ha npoaepxy fiypermen
`noxmux CTDVICIYP. aaxapwspoaannux Ha npexr
`unymen cranvm pafior. VI opnenmpoaouuo co-
`craam 380 me. <py6 3 run npn o61=eMe pafior
`1000 n0l'.KM.
`'
`<Do'pMyna uao6p'e'reHm1
`'Cnoco6 npocrpauctaermcwi cencMopaa-
`neaxn, 'B|U1l0‘lal0l.l.llII|7I sosfiyxcnenne Ia npuem
`ynpyrnx Konefiam/M ceilcmw-reckon xocon mm-
`HH L npvl Mas<cmManbHoM paccromlvwl B3pHB-
`npmega I. perucrpaumo orpaxcenuux aonn no
`cucreme HETIPOAOIILHHX npoclmnen MeTop,oM
`ofimen rny6_vu-u-Iofi To-um. nonyuerme npo-
`crpancnaennoro Maccuaa ceficmvmecnmx nau-
`HHX, H naxanlm-aaumz vm¢opMaLum no
`nnomanu npu nocnenynomefi ofipafiorxe.» o In-
`M ‘I a no man c 51 Ten. \rro.'c uenblo noaumenml
`3¢¢eK'rvIaHocTvI 3a cue? ynenvmenvm 0THOL|Je'
`Hun cvIrHan—noMexa. orpafiaruaanor cepmo na-
`pannenanux Henpononsnux npodmnefi co
`cnanramm a Hanpaanemam HeI‘IDO,U.OflbHblX npd-
`¢vIneI7I
`ct". onpenenenuuuu no ¢opMy-
`ne (1 = (I COS flnpan " L)/2. me . finpen "
`npenenwun aamvsyr uanpaanenmi aspara-
`npmem npu nocnenoaarenbnofi cMeHe nono-
`'>KeHm1 npoqmnevl aoafiyxqxenvm M nplneh-Ia;
`cmMMe1pn-max omocmenbuo nonyuennord
`npocrpaucmeunoro npaqmnn o5umx my6vm~
`aux TOHBK. a aarem aunom-mot paauomepnyso
`aamMy"ram.Hyro nufiopxy Kauanoa ofiumx my-
`Bvmuux TOHEK no nnomanvl M nocnenynmee
`cymmpoaanne no noaepxnacm npocrpancr
`aeunoro roaorpaq>a ofiumx rnyfimmux Touex.
`
`110
`
`'15
`
`20
`
`’
`
`25
`
`30
`
`35
`
`40
`
`45
`
`WesternGeco Ex. 1011, pg. 4
`
`WesternGeco Ex. 1011, pg. 4
`
`
`
`x- r sv=u,‘q.=n
`
` lfoccmauofinenue W")
`
`apauuuu Bdana ocu X
`\ \\ \\
`A
`\\ \
`.
`\\ mane
`'
`\‘
`\R=l15'£ T.‘P=1}5" ré,,=r1-lp ’
`9 W €i,,5.z’%:;z5:y:::;= ;2z;'»"""
`(Due. 1
`
`'
`
`WesternGeco Ex. 1011, pg. 5
`
`WesternGeco Ex. 1011, pg. 5
`
`
`
`1818609
`
`!..3l...§}2L.4.¥..Al_A£_---..-AL.AL..¥.._.__;‘
`.|‘
`
`\
`/o\\¢‘ -
`
`
`J
`
`WesternGeco Ex. 1011, pg. 6
`
`WesternGeco Ex. 1011, pg. 6
`
`
`
`
`
`1818609
`
`b_
`
`__ Bmsopma r.C
`
`1 Penaorrop
`
`I1.HaKoHe~n-Ian
`Coctaaurem.
`Texpea M.MopreH1'a1j
`
`Koppenop: O.Fycm
`
`flonrmcuoe
`I
`Tnpaxc '
`' Baxaa 1937»
`BHI/Mn!/I 1'ocynapctaeuuoro Komwrera no méofibereuunn M OTKDHTMHM npn FKHT CCCP .
`113035. Mocxaa. )K-35. Paymckan Ha5.. 4/5
`’
`
`.
`
`FlpovI:§ao.qc'raeMHo-uanarenbcnmn I(OM5M1-I31’ "fla1'eH1"‘, r. Yxcropon. yn.l’arapm-Ia. 101
`
`WesternGeco Ex. 1011, pg. 7
`
`WesternGeco Ex. 1011, pg. 7
`
`
`
`
`
`(19) SU (11) 1818609 A1
`(51)5 G 01 V 1/00
`
`2
`Essence of the invention: A 3D seismic surveying method
`includes induction of elastic vibrations and recording of the
`reflected waves during processing of non-lengthwise profiles
`using the common depth point method (CDPM). The novelty
`of the method is the creation of a 3D profile of common depth
`points by running a series of parallel non-lengthwise CDPM
`profiles with displacements determined according to the limit
`azimuth of the source-reception direction with a sequential
`reversal of the source and reception lines symmetrical to the
`design profile of the common depth points followed by a
`uniform azimuthal readout of the channels of the common-
`depth points in terms of total area and further totaling on the
`surface of the time distance curve. 3 drawings.
`
`THE UNION OF
`SOVIET
`SOCIALIST
`REPUBLICS
`
`
`
`
`STATE PATENT OFFICE OF THE
`USSR
`(GOSPATENT USSR)
`
`SPECIFICATION
`OF AUTHOR'S CERTIFICATE
`1
`
`(21) 4797103/25
`(22) 19.12.89
`(46) 30.05.93. Bul. 20
`(71) Research and Production Association ‘Neftegeofizpribor’
`(72) D.P. Zemtsova, N.I. Kravchenko, L.V. Nakonechnaya,
`D.B. Babayev, F.F. Efendiev, and F.N. Bakhshiev
` (56) Meshbey V.I. Multiple Coverage Methods in Seismic
`Exploration. Moscow: Nedra, 1985.
`Milashin V.A., Khitrov D.M., Data Processing in Regular
`Three-Dimensional Monitoring Systems by means of Rotating
`Sections. – Oil&Gas Geology, 1985, n. 8
`(54) METHOD OF 3D SEISMIC SURVEYING
`(57) Use: Marine seismic surveying, detailing of complex
`structure geological objects located under acoustically hard
`boundaries
`
`The invention relates to the field of marine seismic
`
`surveying and can be used for detailing complexly-structured
`geological objects located under acoustically hard
`boundaries.
`
`The purpose of the present invention is the
`enhancement of seismic surveying efficiency during
`monitoring of complexly-structured geological surfaces
`located, for example, in conditions of development in upper
`intervals of a section of acoustically hard multiple generating
`horizons.
`
`The given object is attained by increasing the
`signal-interference relationship based on data from a 3D
`profile for common depth points, during which is processed a
`series of parallel non-lengthwise profiles with displacements
`in the direction of the non-lengthwise profiles, the
`displacements being defined by taking into account the limit
`azimuth of the explosion-receiver directions during
`sequential switching of the position of the seismic source and
`receiver profiles which are symmetrical relative to the
`obtained 3D profile of the common depth points, followed by
`uniform azimuth readout of channels for the common depth
`points in terms of the area and the sequential totaling by
`surface of the 3D time distance curve for the common depth
`points.
`
`
`
`As regards a prototype of the proposed method for
`processing a series of non-lengthwise profiles, CDPM
`
`WesternGeco Ex. 1011, pg. 8
`
`
`
`4
`3
`1818609
`makes it possible to obtain a 3D profile of the CDPM, which
`Q is the horizontal plane of intersection;
`is achieved by the presence of the following essential features.
`
`1 is the horizontal intersection of the 3D time
`
`The displacement of the non-lengthwise profiles
`distance curve of the useful wave;
`relative to one another according to the limit azimuth of the
`
`2 is the horizontal intersection of the 3D time
`explosion-receiver directions makes it possible to acquire a
`distance curve of the useful wave when φk = 30 ° and ψ =
`wide range of angles during 3D readouts of the CDP channels
`45°;
`and a division of the 3D time distance curves of useful and
`3. Horizontal cross-section of the spatial travel-time
`
`frequent waves and suppression of the last one during totaling.
`curve of a multiple wave at φ = 30º, ψ = 45°
`
`The sequential exchange of positions of the
`
`4, 5 are the linear CDP time distance curves of the
`induction lines and vibration receivers relative to the
`useful and repeated waves in the plane η = 0° with an
`specified CDP profile in turn during sequential processing
`azimuth of boundary of ψ = 0°;
`makes it possible to diminish the effects of nonuniformity of
`
`6, 7 are the linear CDP time distance curves of the
`the upper parts of the section.
`useful and repeated waves in the plane η = 45° with an
`
`The symmetry of the induction and reception lines
`azimuth of boundary of ψ = 45°;
`relative to the specified profile creates the possibility of
`
`Δτ1 and Δτ2 are the corresponding differences in
`uniform azimuth readout of the CDP channels and acquisition
`time of entry of the single and repeated waves at a particular
`of a 3D time distance curve of the CDP.
`point (vertical resolution);
`ΔI1 and ΔI2 are the horizontal resolution of the
`
`Achieving a 3D CDP profile makes it possible to
`
`useful and repeated waves in the direction η = 0° and η = 45°
`read out CDP channels by area and the sequential totaling by
`accordingly.
`surface of the 3D time distance curve of the CDP, i.e.,
`
`FIG. 2 shows a procedure for processing 3D
`suppression of frequent waves.
`modification of the CPDM (A) and the system of repeated
`
`In this manner the given totality of essential
`overlaps thus realized for 4 non-lengthwise profiles with a
`features makes possible the novelty of the proposed method
`fixed non-lengthwiseness (B), where:
`and provides a positive effect when studying complexly-
`
`x, y are the orientation of the coordinate axes;
`structured geological surfaces located in conditions of
`
`8 is the line of induction of vibration;
`development in upper intervals of a section which screen the
`
`9 is the line of reception of vibration;
`horizons.
`
`10 is the line following the CDPs;
`
`FIG 1 shows horizontal cross-sections and
`
`R1, R2, R3, and R4 are the non-lengthwisenesses of
`corresponding vertical cross-sections in planes η = 0° and η =
`45° of the time distance curve of the CDPM for the case of an
`the profiles (minimum distances of the inductions lines from
`inclination angle of a reflected horizon φk = 0° and a multiple
`the reception lines in the direction Y);
`generator φk = 30° (A) during changes in the position of the
`
`L is the distance of the receiver;
`profile relative to the extension of the surface being studied
`
`d is the displacements of the first induction point of
`for two variations of rising of the reflected boundaries:
`the non-lengthwise profiles of the CDPM along axis X;
`
`ψ = 0° (for which ηo = η) and ψ = 45° (for which ηo
`
`a, b, c, and f are the locations of the characteristic
`samples of channels which periodically repeat in observation
`= η - ψ) (B).
`procedures along non-lengthwise profiles in CDPM;
`
`x, y, and t are the axes of the coordinates;
`
`1 and 11 are positions of processing of non-
`
`t is the temporal axis in sec;
`lengthwise profiles; and
`
`η is the azimuth of the explosion-receiver direction
`C1, D, E, and F are locations characteristic samples
`
`in the x,y coordinate system;
`of channels of the 3D time distance curve in the obtained
`
`ψ is the azimuth of the reflected boundary in the x,y
`procedures of observation.
`coordinate system;
`ηo is the azimuth of the explosion-receiver direction
`
`FIG. 3 shows the characteristic samples of channels
`
`relative to the rising of the reflected boundary, ηo = η - ψ;
`of the 3D time distance curve in the CDPM at points C, D, E,
`
`
`and F.
`I1 is the explosion-receiver distance; and
`
`η is the limit azimuth of the explosion-receiver
`
`direction.
`
`We shall now look at the essence of the proposed
`method. Before achieving the method on the basis of existing
`information on the geology of the area around the research
`site (according to data from surveys in an earlier stage of the
`work, existing wells, and so on),
`
`
`
`WesternGeco Ex. 1011, pg. 9
`
`
`
`5
`1818609
`6
`optimal parameters are selected for the system of observation
`30°. The azimuth of the rise line of the multiple generating
`in the directions x and y. To this end the given information on
`boundary in relation to the x axis is ψ = 45°.
`the model of the environment is used to calculate the
`Based on the maximum explosion-reception
`dimensions of the ellipses and the time of entry of 3D
`distance set to I = 4.2 km, distance time CDPM curves of
`distance curves of the useful (for the deepest target horizon)
`single and multiple waves with the horizontal cross-section of
`and multiple generating waves on several horizontal sections)
`3.34 are measured (FIG. 1a). The maximum difference in the
`temporal levels, Figure 1A). Horizontal resolution ΔI of the
`entry time of single and multiple waves in the vertical plane
`useful and the repeated waves is estimated along the
`Δτ = 0.1 sec is calculated along the direction of the boundary
`directions η = ηo + ψ, where ψ is the azimuth of horizon rising
`rising (FIG. 1a).
`in the x, y coordinate system; ηo is the angle between the
`In accordance with the data obtained CDPM
`profile direction and the horizon rising (FIG. 1A B). In the
`profiles are set parallel to the major semi-axis of the cross-
`vertical cross-sections along the same η directions, the
`section ellipse of the 3D curve of the multiply reflected
`vertical resolution Δτ (FIG.1A) – time of delay of the
`waves η = 45° (FIG. 1a).
`repeated wave in respect of the useful one in the point of
`For implementation of the proposed method, a 2.4-
`entry of the latter to the preset horizontal section (temporal
`km-long 48-channel bottom streamer is used. The distance
`level).
`between the channels is x = 0.05 km. PI-1B seismic
`vibrations source has a 2x3 liters configuration. In this case,
`the maximum non-lengthwiseness of Rmax will be Rmax =
`or R1 = 2.4 km, R2 = 0.8 km, R3 = 1.6 km, R4 = 3.2 km (FIG.
`2a). The technology of using this method to subsea
`applications is as follows.
`The towed streamer is laid on the bottom on 1
`position along the reception profile 2. The ship records the
`streamer position. Vibrations are induced by the seismic
`source towed by an auxiliary ship along excitation profile 1
`located at R4 distance from the reception profile 2 (FIG.2a).
`The first and the last explosions are displaced in respect of
`the beginning and the end of the streamer by ½ L (FIG.2b).
`After running the 1 position, the excitation and the reduction
`bases are displaced by the streamer length, and the process is
`repeated for the second and the following position (FIG.2b).
`Running of the profiles with non-lengthwise R3,R2,
`and R1 is similar if the first position of each profile in
`question is displaced in respect of the first position of the
`previous observation profile on ¼ L (FIG. 2a,b). After
`operating under the above layout of 4 non-lengthwise CDP
`profiles, the channel readout is carried out on the distance
`CDP curve. CDP channel readouts are characterized by a
`specific configuration (FIG. 3 C, D, E, F), which in
`accordance with the layout is repeated periodically. The total
`accumulation multiplicity along the 3D curve for a fixed CDP
`point is based on the number of channels along linear profiles
`and the amount of processed non-lengthwise profiles and
`amounts to 192.
`Thus, unlike the prototype the proposed method
`contributes to the completeness and reliability of information
`by reducing the level of the multiple-reflected waves due to
`the sum-up over the 3D CDP curve and to the improvement
`of the quality of monitoring the horizons recorded under the
`condition of development of multiple generating boundaries
`as well as reduction of the irregular vibration background due
`to the high statistical effect and the increase in the
`signal/background ratio by averaging the vibration excitation
`and reception conditions, as provided by the operation routine.
`
`The economic effect of implementation of this
`invention lies in the more complete and accurate geological
`results, which contribute to additional estimated and
`prospective oil and gas reserves, as well as in the reduced
`cost of test drilling of false structures mapped on the previous
`step of the project, and will be of approximate RUB 380
`thousand a year with the amount of work of 1000 linear km.
`
`Claims
`A 3D seismic surveying method including
`
`induction and reception of elastic vibrations by an L-length
`towed streamer at a maximum explosion-reception distance I,
`recording of reflected waves via a system of non-lengthwise
`profiles using a common-depth point method, obtaining of a
`3D array of seismic data, and storing of areal information
`during the subsequent processing, wherein in order to
`
`Based on the data obtained the length of the
`receiving device L, the routine of running the non-lengthwise
`profiles, their orientation, and the values of non-
`lengthwiseness will be determined (Figure 2A, B). They will
`enable to optimize the resolution of time distance curves of
`useful and repeated waves in the direction of the main axes of
`the repeated wave ellipse.
`The multiplicity of accumulation along the non-
`lengthwise profiles is measures according to the known
`interferential reception formulas (3). After selecting (by the a
`priori model) the parameter of the 3D observation system in x
`and y direction, the limit azimuth ηlim of explosion-reception
`directions (FIG. 3) and profiles’ displacement d in respect to
`one other are calculated by the formula: d = (I cos ηlim - L)/2,
`where L is the length of the towed streamer, and I is the
`maximum explosion-reception distance (FIG.2,3). If even if
`the true model of the environment differs from the a priori
`one, the channel 3D distance curve (FIG.3) will include a
`wide range of azimuths of explosion - reception directions,
`including optimum resolution directions for the useful and
`the repeated waves.
`With the above preparatory work done, the claimed
`method is implemented as follows. The 3D profile of the
`common-depth points is made by processing parallel CDP
`profiles with different non-lengthwisenesses. In this case,
`each profile relative to the previous one is run with d
`displacement along the x axis. When running each non-
`lengthwise profile, the excitation and reception lines are
`symmetrical in relation to the design line of the common-
`depth points. Besides, when running the next profile, the
`excitation and reception lines sequentially switch their
`positions. The data obtained provide uniform 3D readout of
`common-depth point channels over a wide range of
`explosion-reception azimuth directions (FIG. 3). The
`channels’ readouts on the surface of the 3D distance curve
`are summed up.
`As an example, let us consider the implementation
`of this method in the shallow shelf applications in the North
`Caspian Sea.
`The seismological conditions of the North Caspian
`Sea (Ural Borozdina) characterized by the presence in the
`upper section intervals of horizons with steep inclination
`angles. The time of recording is 1 sec., 1.3 sec. Lower in the
`section, target horizons with significantly smaller inclination
`angles are located, but having a complexly-structured
`reflecting surface configuration. The presence in the upper
`intervals of the section of acoustically hard boundaries entails
`the formation of intense repeated waves overlapping the
`useful information characterizing the target object. The time
`for recording of the deepest useful reflection is to