throbber
United States Patent [191
`Romano
`
`[11] Patent Number:
`[45] Date of Patent:
`
`4,996,871
`Mar. 5, 1991
`
`[54] CORIOLIS DENSIMETER HAVING
`SUBSTANTIALLY INCREASED NOISE
`IMMUNITY
`[75] Inventor:
`Paul Romano, Boulder, C010.
`[73] Assignee: Micro Motion, Inc, Boulder, C010.
`[21] Appl. No.: 490,099
`[22] Filed:
`Mar. 9, 1990
`
`Related US. Application Data
`Division of Ser. No. 361,000, Jun. 2, 1989.
`
`[62]
`
`[51] Int. Cl.’ . . . . .
`
`. . . . . . . . . . . , . . . . . .. G01N 9/00
`
`[52] US. Cl. ........................................ .. 73/32 A
`[58] Field of Search ............ .. 73/86l.38, 32 A, 861.37
`[56]
`References Cited
`U.S. PATENT DOCUMENTS
`
`Re. 31,450 11/1983 Smith ............................. .. 73/86l.38
`
`Re. 31.971 8/1985 Gold . . . . . . . . . .
`
`. . . . . . .. 73/462
`
`2,635,462 4/1953 Poole et a1. . . . .
`
`. . . . .. 73/32
`
`73/32
`3,456,491 7/1969 Brockhaus
`73/462
`3,527,103 9/1970 Hale et a1. .,
`364/484
`4,093,988 6/1978 Scott ........ ..
`73/194
`4,127,028 11/1978 Cox et a1.
`73/194
`4,192,184 3/1980 Cox et a1.
`73/116138
`4,252,028 2/1981 Smith et a1.
`73/815138
`4,311,054 1/1982 Cox et a1.
`73/861.38
`4,422,338 12/1983 Smith
`73/86L27
`4,445,389 1/1984 Potziclt
`.... .. 364/508
`4,450,529 5/1984 Hill et a1.
`, 73/861.38
`4,491,025 1/1985 Smith
`4,660,421 4/1937 Dahlin =1 al. ............... "I. Til/861.38
`
`FOREIGN PATENT DOCUMENTS
`WO88/02105 3/1988 World 1m. Prop. 0,.
`
`OTHER PUBLICATIONS
`W. Steffen et a], “Direct Mass Flow Metering in Partic_
`
`ular by Means of Coriolis Methods", 01M Seminar,
`Arles, France, May ll—15, 1987, pp. 144
`
`Primary Examiner-Herbert Goldstein
`Attorney. Agent, or Firm-Peter L. Michaelson
`
`ABSTRACT
`[57]
`Apparatus and accompanying methods for use therein
`for a Coriolis mass flow rate meter which is substan
`tially immune to noise, and more particularly, to such a
`meter that is substantially unaffected by noise that oc
`curs at substantially any frequency different from a
`fundamental frequency at which the ?ow tube(s) in the
`meter vibrate. Speci?cally, the meter relies on measur
`ing mass flow rate by determining the phase difference
`that occurs between real and imaginary components of
`the discrete fourier transform (DFT) of both the left
`and right velocity sensor waveforms evaluated at the
`fundamental frequency at which the flow tubes vibrate.
`The fundamental frequency is located, during an initial’
`ization operation, by providing a power spectrum, de‘
`termined through use of the DFT of one of the sensor
`signals and then selecting that frequency at which the
`magnitude of the power spectrum reaches a maximum
`value. In addition, the frequency at which both velocity
`sensor signals is sampled is readjusted in response to any
`change in the phase of one of the velocity sensor signals,
`as transformed using the DFT, in order to assure that
`the sampling frequency always remains substantially
`equal to a pre-de?ned integer multiple of the fundamen
`tal frequency. Furthermore, the meter, through use of
`the numerical value of any such phase change, also
`provides a density indication which is also substantially
`immune to such noise.
`
`12 Claims, 35 Drawing Sheets
`
`SERILL (INPUT SIGNALS
`ANALOG 5 DIGITAL
`PFUCESS OUTPUT SlBiJLS
`All’ LURE
`
`llPUT SllITCH SIMS
`
`1
`
`Micro Motion 1018
`
`

`

`US. Patent
`
`Mar. 5, 1991
`
`Sheet 1 of 35
`
`4,996,871
`
`22% 5&2 Egg
`
`is; a was: a
`
`$512 5::
`
`R
`
`a
`
`H 6:
`
`F2
`gs
` 322:5 ism E82 E1 _ 5m: w 5% WEE _ . f ,
`v x U W 5% E85 5%: _
`
`
`
`
`x m2 m2 2. pa
`222m E?
`
`
`
`ml
`
`2
`
`

`

`1588w882S1,8N........5.:88“.5153u82:3:38M:8.
` .888a888...85:3“3:38o.mam88is:8”:..............
`
`.8811;#8E888“Da.
`
`381%mam88%
`m8amI8:82
`E:
`
`US. Patent
`
`
`
`85:5gflmmm
`
`8-
`
`.588
`
`>5+
`
`Eozmx
`
`
`
`3552Exam.
`
`.szcum...2:
`
`mmm
`
`mmm
`
`
`
`i88.H8hflfimf88:88.8888
`
`“dN65...
`
`3::8:.
`
`8
`
`.an88:85%3888:858
`
`.m.8888%m828:8i8a88:88m8
`
`5888$88
`
`38:828888888:888:88
`
`mom2mc3><.Em3
`
`4,996,871
`
`xmazfi>om
`
`Hz<8mzou8SEE:madmmmm2:
`
`8:582882888::
`
`8:8888:885888::8::
`
`m=m
`
`5:5sz
`
`888
`
`888
`
`$88888..—-_
`5888n5%8888I.(8:8m8
`8.88888=
`E88=:8888-38888-$83.”;Em:-5:..—
`
`h.mam
`
`8+8:n8as
`.>4¢m=m
`
`8m
`
`mmm
`
`mEEEm»m+
`
`szSma952253
`
`m2Sc:2...
`
`£255me
`
`98888
`
`88888
`
`8.888
`
`3
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`

`

`US. Patent
`
`Mar. 5, 1991
`
`Sheet 3 of 35
`
`4,996,871
`
`11115111:1:.
`
`mm
`
`12111111131114
`
`1111181181m2m1111
`
`
`
`111111112121111311112111111fizfiwzmzeK111
`ma5a.“111181111
`
`1151111111111111111181111::m3.1.
`
`
`
`111111811111.gm.
`
`am1133111121111:
`
`1111m11
`
`
`
`
`
`113.II.111::11811:11111111111311
`
`
`
`11111.........1111.111:1111:11111121..
`
`
`
`
`1111111111111i---1\m0-1.1.mme-1.-1.\11.1.-111111133-1111111-5-1-..1--%w§wfi.£1_.:1v.111111111111
`
`
`
`
`
`1112111-1N111...11mm...11111...1-11::311.1.
`
`
`111mm.............................111111182111,
`
`
`
`1....................----H--Hn.11a}1.03--...5.2.4:£13.15me
`
`
`
`
`111%mD51121mI.mos:Em:mInnum...
`.1N11111211115511111111111111112To:
`1131.
`11111111111111111m-...........I........3%A11811111511111.
`
`111211111281-:1111111:11
`
`
`
`
`
`
`
`
`
`FommmommomI.“mm.—11111111_1mmm111:111::1111.1........111111I.so21>so21121231_28%.a::\mn:z<_
`
`
`
`_...............
`
`
`
`unl'mamwwmflfiuuunum._mm:ES:1v"ambit--.m1111111111111111m1.111>1mmama111111111111.1511.
`
`tSod>
`
`382%
`
`zoE
`
`511111111114:;11111:111111”
`
`
`
`
`
`
`
`
`
`4
`
`
`

`

`US. Patent
`
`Mar. 5, 1991
`
`Sheet 4 of as
`
`4,996,871
`
`6228
`5%.? h M52 as
`
`E :8 1
`
`ME: 2 £1 21
`
`was; a
`
`at
`
`55 at 5%
`
`52%
`
`5% m2 m2“ :3
`
`25% emu
`
`a :55 5% v d:
`
`
`
`“2:2 as .r: -- IEEEEEEE :5 2E
`
`
`
`. E :2 15% E8?
`
`
`
`
`
`"w ............ :|_ 1 cs smzww ESQ, _ ES: :52 EE
`
`5
`
`

`

`US. Patent
`
`Mar. 5, 1991
`
`Sheet 5 of 35
`
`4,996,871
`
`FIG. 5
`TIME INTERVAL (At)
`MEASUREMENT CIRCUIT
`MAIN PROGRAM
`
`ENTER
`{POWER-ON RESET)
`
`EXECUTE INITIALIZATION
`ROUTINE 600
`
`$510
`
`A
`
`EXECUTE PHASE ANGLE CALCULATION ROUTINE 1200
`TO DETERMINE VALUE OF FILTERED PHASE DIFFERENCE,
`PHASEg, BETMEEN BOTH FLOH TUBE
`VELOCITY SENSOR SIGNALS (CHANNEL 1 C 2)
`
`_P520
`
`CALCULATE At MEASUREMENT:
`At_-K * PHASE2
`MHERE K=SCALE FACTOR
`
`l
`
`LOAD At MEASUREMENT INTO BUS INTERFACE 370
`FOR COMMUNICATION TO HOST P, AND
`CIILTMPLETEI
`GENERATE 'At MEASUREMENT
`INTERRUPT TO HOST PP
`
`1
`
`EXECUTE FREQUENCY TRACKING ROUTINE 1300
`TO DETERMINE FREQUENCY ERROR DUE TO
`CHANGES IN FLUID DENSITY AND
`MODIFY DURATION OF SAMPLING INTERVAL PRODUCED
`BY TIMER 340 ACCORDINGLY
`
`T
`
`6
`
`

`

`US. Patent
`
`Mar. 5, 1991
`
`Sheet 6 of as
`
`4,996,871
`
`g) ENTER
`
`EXECUTE POMER ON I 605
`DIAGNQSTICS
`
`FIG‘ 6
`INITIALIZATION ROUTINE
`Bl
`
`515
`5
`SEND APPROPRIATE
`FAULT MESSAGE
`TO HOST
`MICROPROCESSOR.
`VIA BUS INTERFACE 370
`

`
`EXIT
`[RETURN TO ENTRY POINT A IN
`TIME INTERVAL MEASUREMENT
`CIRCUIT MAIN PROGRAM 500}
`
`READ FILTER TIME CONSTANT (F CONSTANT)
`AND VERNIER INDEX (V INDEX] THAT HAVE BEEN
`DOWNLOADED FROM HOST MICROPROCESSOR 205
`
`r 525
`EXECUTE DFT ROUTINE 700 TO PERFORM COURSE FREQUENCY SEARCH:
`SAMPLE LEFT VELOCITY MAVEFQRM (CHANNEL 1) AT FIXED SAMPLE OF 640 HZ
`AND CALCULATE MAGNITUDE OF DISCRETE FOURIER TRANSFORM LOFT)
`l
`f 530
`SELECT COURSE FREQUENCY VALUE (nmaX)
`AT MHICH MAGNITUDE OF DFT IS MAXIMUM
`
`I
`FIX VALUE OF 'n' (OFT FREQUENCY COMPONENT) TO n
`CALCULATE AND STORE CORRESPONDING OIVISOR (D) MITHIN YTMER 34o "\- 53s
`
`I
`-EXECUTE VERNIER SEARCH ROUTINE 800 TO REPETITIVELY
`INCREMENT VALUE
`OF SAMPLING INTERVAL AND CALCULATE DFT AT FIXED FREQUENCY TO CDMPUTE
`POMER SPECTRA MITH . 1 H2 RESOLUTION MITHIN RANGE OF nmax + 5 H2
`UNTIL MAXIMUM MAGNITUDE IS OBTAINED; AND
`-STORE OIVISOR VALUE, Dmax, ASSOCIATED MITH MAXIMUM
`
`I
`
`RESCALE SAMPLING FREQUENCY
`(OUTPUT OF TIMER 34D) USING
`STORED OIVISOR VALUE, Dmax, AND
`ADJUST SAMPLING FREQUENCY TO
`EQUAL 12B TIMER FUNDAMENTAL
`FLOM TUBE FREQUENCY
`
`MAGNITUDE
`L 640
`
`V545
`
`é EXIT
`
`7
`
`

`

`US. Patent
`
`Mar. 5, 1991
`
`Sheet 7 of 35
`
`4,996,871
`
`FIG. 7
`
`DFT ROUTINE
`Ll
`
`ENTER
`
`@
`
`‘A 705
`
`INITIALIZE VARIABLES:
`"'“1
`N-'-128
`MAGgw‘O
`I
`SET CONTENTS OF
`TIMER 340 TU INITIALLY “no
`PROVIDE 540 HZ SAMPLING
`.
`FREQUENCY
`
`J4
`
`EXECUTE HEAL-IHAG COMPONENT ROUTINE 900
`To DETERMINE VALUES OF REAL mu
`IMAGINAHY COMPONENTS OF LEFT VELOCITY SENSOR
`HAVEFORM 0N CHANNEL 1 (Re1,1m1) AT
`FREQUENCY n
`
`CUMPUTE MAGNITUUEI
`HAGNEH ‘R812 +Irn13 \A 720
`
`1
`
`1m
`
`M 735
`
`MABOLD__MAGNEH
`
`765 A/
`
`STORE n VALUE;
`"Raxf"n
`
`INCREHENT FREQUENCY: “755
`nan-n+1
`
`750
`N0
`
`nZN
`YES
`RETURN
`
`8
`
`

`

`US. Patent
`
`Mar. 5, 1991
`
`Sheet 8 of 35
`
`4,996,871
`
`FIG.8
`VEQNIER SEARCH
`
`ROUTINE
`59g
`
`(? ENTER
`
`INITIALIZE VARIABLESZ
`"""'"max
`HAGo1d_-0
`n--(1 x 107) (nmaX+5)
`
`\.,-_ 910
`
`I-L
`
`ExEcuTE REAL-IRAS COMPONENT ROUTINE 900
`To DETERMINE VALUES OF REAL AND IMAGINARY
`CDMPGNENTS 0E LEFT VELOCITY SENSOR HAVEFORM (H91. m1)
`FOR FREQUENCY COMPONENT nmax
`I
`COMPUTE HAGNITUDE: “830
`UAGnew"" He 12+Im12
`
`NO
`
`840
`
`YES
`STUREI
`HAG01d_-UAGDEH v 850
`I
`STORE D VALUE:
`Dmax‘"D “860
`
`“ 845
`
`U
`
`N
`
`DECREHENT D BY USER SUPPLIED VERNIER INDEX (V INDEX)
`D-'-D - V INDEX
`AND LUAD VALUE INTO TIMER A TO INCREASE (SLEN)
`SAMPLING FREQUENCY
`
`9
`
`

`

`US. Patent
`
`Mar. 5, 1991
`
`Sheet 9 of 35
`
`4,996,871
`
`ENTER
`
`W 903
`
`FIG‘.9
`
`FIG.
`9A
`FIG.
`95
`
`REAL-IMAG CUHPONENT
`ROUTINE
`9.0.0.
`
`v" 908
`
`w 925
`
`READ SAHPLED VALUE. 3.
`FROM 5/0 320
`
`“A 9“
`
`RESET INPUT
`
`SEND FAULT MESSAGE
`TO HOST pP VIA BUS v‘ 923
`INTERFACE 370
`
`EXIT
`(RETURN TO ENTRY PRINT A IN
`TIME INTERVAL MEASUREMENT
`CIRCUIT MAIN’ PROGRAM 500)
`
`l
`
`10
`
`

`

`US. Patent
`
`Mar. 5, 1991
`
`Sheet 10 of as
`
`4,996,871
`
`FIG. 9B
`HEAL-IMAGE
`COMPONENT
`ROUTINE
`9.0.0.
`
`EXECUTE CHANNEL 2 HEAL'IMAG
`CDMPUTE ROUTINE “00 To UPDATE
`DFT HEAL mu IMAGINARY
`CWPDNENTS 0F RIGHT
`VELOCITY SENSOR SIGNAL
`(CHANNEL 2)
`
`f‘ 931
`EXECUTE CHANNEL 1 HEAL-IMAG
`COHPUTE ROUTINE 1000 T0 UPDATE
`0110011110115 OF DH HEAL AND IMAGINARY
`COMPONENTS OF LEFT VELOCITY
`sanson SIGNAL [CHANNEL 1)
`
`|
`INCHEHENT cuum: A 941
`coum~coum + 1
`
`1
`11101415112111 INDEX: V944
`INDEX -—_INDEX+1+n
`
`947
`
`INDEX >
`128?
`
`MUDIFYVINDEX: m 951
`INDEX-I-INIJEX-QB
`
`955A,
`
`K953
`
`N0
`
`NT 2
`128?
`
`EXIT
`
`11
`
`

`

`US. Patent
`
`Mar. 5, 1991
`
`Sheet 11 of as
`
`4,996,871
`
`FIG.10
`
`CHANNEL 1 REAL-IMAG
`CDMPUTE RDUTINE
`
`1030
`/
`1
`CDNPUTE ADDRESS, INDEXC. TD CDSINE VALUES IN SINE VALUE
`LDDK UP TABLE; INDEX "INDEX + STARTC.
`NHERE STARTCIS STARTING A DRESS FDR CDSINE VALUES
`
`UPDATE VALUE OF REAL COMPONENT: .
`Re1--He1 + SHABLE [INDEXd
`
`1040
`
`CDNPUTE ADDRESS. INDEXS, TD SINE VALUES IN SINE
`LDDK UP TABLE:
`INDEX 3 _-INDEX + START5, NHERE “1050
`STARTC IS STARTING ADDRESS FDR SINE VALUES
`
`UPDATE VALUE OF IMAGINARY COMPONENT: “1060
`Imp-#1111 + S_*TABLE (INDEXg)
`
`RETURN
`
`12
`
`

`

`US. Patent
`
`Mar. 5, 1991
`
`Sheet 12 of 35
`
`4,996,871
`
`FIG.11
`CHANNEL 2
`REAL-IMAG
`CDMPUTE
`RDUTINE
`
`“1120
`
`R
`
`INITIALIZEI
`R82 *0
`I102 1I-0
`
`CDMPUTE ADDRESS, INDEXC. TD CDSINE VALUES IN SINE
`LOOK UP TABLE: INDEXC-II-INDEX + STARTC, NHERE
`STARTC IS STARTING ADDRESS FDR CDSINE VALUES
`
`‘A1130
`
`—LT
`1
`
`UPDATE VALUE OF REAL CDMPDNENTI
`RB2_-Re2 + S*TABLEIINDEXC)
`
`“"1140
`
`I
`
`CDMPUTE ADDRESS, INDEXS, TD SINE VALUES IN SINE
`LDDK UP TABLE: INDEX 5--INDEX + STARTS, NHERE
`STARTS IS STARTING ADDRESS FDR SINE VALUES
`
`l
`
`UPDATE VALUE OF ‘IMAGINARY conponem:
`Img_-Img + SHABLE (mnexsl
`
`V1150
`
`RETURN
`
`13
`
`

`

`US. Patent
`
`Mar. 5, 1991
`
`Sheet 13 of 35
`
`4,996,871
`
`ENTER
`
`FIE-7.12
`PHASE ANGLE CALCULATION
`ROUTINE
`1299.
`
`W121i)
`
`SET FREOUENCY INDEX n
`TO MEASURED FUNDAMENTAL FLOW TUBE
`DRIVING FREQUENCY, nmax:
`"*j?max
`
`1
`
`EXECUTE REAL-IMAG COMPONENT ROUTINE 900 TO DETERMINE
`VALUES OF REAL AND IMAGINARY COMPONENTS OF BOTH CHANNELS
`(RB1,IIII1] AND (R82, I512) ONLY AT TUBE DRIVING FREOUENCY nmax
`
`\A 1230
`
`l
`
`FILTER VALUE OF PHASE USING THO STAGE RECURSIVE
`(SINGLE POLE) DIGITAL FILTER GIVEN USER
`SUPPLIED FILTER CONSTANT [F CONSTANTTJAND
`STORE FILTERED PHASE VALUE AS PHASE2
`
`RETURN
`
`14
`
`

`

`US. Patent
`
`Mar. 5, 1991
`
`Sheet 14 of as
`
`“4,996,871
`
`ENTER
`
`FIG. 13
`FREQUENCY TRACKING
`ROUTINE
`13m
`
`READ SAMPLED VALUE, 3.
`FROM A/D 320 FOR LEFT “1310
`VELOCITY SENSOR MAVEFORM
`
`“1315
`
`V1330
`EXECUTE REAL-IMAG COMPONENT ROUTINE 900 TO DETERMINE VALUES OF REAL AND
`IMAGINARY COMPONENTS OF LEFT VELOCITY SENSOR NAVEFORM (R91, Irn1I AT PRESENT
`FLOM TUBE FUNDAMENTAL DRIVING FREOUENCY, um
`I
`COMPUTE PHASE MEASUREMENT MITH RESPECT TO ZERO CROSSING
`FOR LEFT VELOCITY SENSOR MAVEFDRMI
`Inu
`. PHASE- H81
`
`\/-1340
`
`FILTER VALUE OF PHASE USING THO STAGE
`RECURSIVE SINGLE POLE DIGITAL FILTER GIVEN $1350
`USER SUPPLIED FILTER CONSTANT IF CONSTANT) AND
`STORE FILTERED PHASE VALUE AS PHASE1
`
`SCALE PHASEj VALUE;
`PHASE1--PHASE1* a, MHEREI
`a = SCALING FACTOR
`I
`UPDATE, VALUE OF DIVISDR FUR TIMER 340 TO
`ACCOUNT FDFI FREQUENCY ERRURI
`Dmax-o-Dmax - PHASE}
`I
`LOAD Dmax INTO TIMER 340 TO MAINTAIN SAMPLING
`RATE AT 128 TIMES FUNDAMENTAL TUBE DRIVING FREDUENCY V\13180
`
`“1350
`
`V1370
`
`I
`
`CALCULATE DENSITY;
`DENSITY-'- PHASE1 * b + DENSITYQ V‘1390
`AND OUTPUT TO DISPLAY, IF DESIRED
`
`é EXIT
`
`15
`
`

`

`US. Patent
`
`Mar. 5, 1991
`
`Sheet 15 of 35
`
`4,996,871
`
`FIG. 14
`
`
`
`0 POTTER ON RESET
`
`402
`
`INITIALIZE G
`
`”5- 14“
`HOST MIGROPROOESSOR
`(UP) MAIN PROGRAM
`AAQQ
`
`CDNFIGUHE SYSTEM
`
`403 a .....................
`
`RESET DISPLAY C
`DISPLAY INITIAL BANNER
`
`
`PERFORM DIAGNOSTICS
`(DISPLAY. POWER SUPPLY.
`
`
`HICHDF’RDCESSDR RAM, EPHDM.
`NDVRAM. MD)
`
`405
`
`YES
`
`
`
`
`DIAGNOSTIC
`FAILED?
`
`
`NO
`
`409
`
`404
`
`1401’“—
`
`405
`
`FLAG AS AULT
`
`
`CONDITION C ENTER
`
`
`CORRESPONDING FAULT
`
`
`
`CODE 8 TIME/DATE STAMP
`
`
`
`IN FAULT STACK IN NDVRAM
`
`
`mm---..__________—------------..L---------___-
`
`557;
`
`
`
`
`RE—AOGESS
`PARAMETER
`
`YES
`
`407
`RETRIEVE PARAMETERS FROM NOVRAM
`£4408“
`EXECUTE FAULT
`(ALARM LIMITS.
`INPUT FILTER,
`:I
`ROUTINE 1800 "
`TIME CONSTANT]
`A
`I
`I
`_____________________________________
`j i
`FPARAMETER
`411
`m |
`i
`l
`VALIDATION
`413
`.
`I
`, RDUTINE1410
`'
`I
`I
`I
`i
`[
`;
`g
`;
`418
`l
`i
`|
`417
`:
`E
`:
`<0 I
`i
`!
`I
`'
`I

`(FAULT
`|
`i
`I
`CONDITION)
`:
`I
`:
`“9 f
`E
`I
`
`.
`I
`.
`'
`3
`i
`!
`:
`.
`.
`i
`.
`|
`i
`I
`'
`5
`'
`I
`EXECUTE FAULT
`|
`"Li
`ROUTINE 1800
`‘
`:
`I_ _____________________________________ .J 5
`
`
`ANY ACCESSED
`PARAMETER FALL
`
`OUTSIDE ITS CORRESPONDING
`
`
`
`
`FLAG AS FAULT
`RANGE?
`CONDITION O ENTER
`CORRESPONDING FAULT
`CODE G TIME/DATE STAMP
`IN FAULT STACK IN NOVRAM
`1420
`
`N0
`
`415
`
`
`
`
`
`
`
`____
`
`16
`
`16
`
`

`

`US. Patent
`
`Mar. 5, 1991
`
`Sheet 16 of as
`
`4,996,871
`
`.
`I
`FIG. 145 ENABLE DRIVE cmcun 421
`
`{-1435
`JLJH
`
`I J-—1 H422
`
`EXCESS
`DRIVE SIGNAL
`
`f
`SET up
`1435 ’\—1 INTERRUPT MASK
`
`‘
`
`‘
`
`1437 ‘A ENABLE At MEASUREMENT
`COMPLETE INTEHRUPT
`I
`143g~ SET SOFWfRE TIMERS-
`To PHE DEFINED
`11mm; INTERVALS:
`s_coum1 ‘1111150011
`S_C0UNTg-TIME0UT2
`
`r1428
`FLAG AS FAULT CUNDITIUN S
`,ENTER CORRESPONDING FAULT
`CUDE 8 TIME/DATE STAMP IN
`FAULT STACK IN NUVRAM
`I
`{1430
`EXECUTE FAULT
`nuunne 1800
`
`P433
`
`I
`
`r1443
`I
`SIEHAEOESEUEEUSBIIFIIIS
`0005 & TIME/DATE STAMP IN
`FAULT STACK IN NOVRAH
`444
`P
`EXECUTE FAULT
`nnunmz 1800
`
`445
`f1
`
`DIAGNOSTICS
`
`442
`
`17
`
`

`

`US. Patent
`
`Mar. 5, 1991
`
`Sheet 17 of 35
`
`4,996,871
`
`F I G . 140
`
`pm
`_EXECUTE MENU ROUTINE 1500
`TO OBTAIN USEH PARAMETERS
`
`[1451
`READ PREVIOUS USER
`PARAMETERS Fnon NOVRAM
`
`140
`11
`
`!
`i
`r1466 i
`FLAG AS FAULT CONDITION 3
`,ENTEH CORRESPONDING FAULT
`T CODE 8 TIME/DATE STAMP IN
`FAULT STACK IN NOVRAH
`
`i
`‘ pm 475
`458 51% Z‘é’éJ ~ ----+
`
`453
`RESET FAULT ALARM I1
`F455
`ENABLE 100 msec
`INTERBUPT
`FI'N'TEEEUHTAI? """""" "1L """""""""" "'1
`' LOOP s nueuosnc
`SET:
`I mums 1450
`LOOP couNT--o
`11451
`i
`y
`i
`1
`i
`i
`i
`i
`
`1
`
`DIAGNOSTIC
`REQUEST FLAG
`SET?
`
`18
`
`

`

`US. Patent
`
`Mar. 5, 1991
`
`Sheet 18 of 35
`
`4,996,871
`
`p471 FIG. 140
`RESET DIAGNOSTIC
`REQUEST FLAG
`
`[-1477
`
`‘
`DEPENDING UPON LOOP coum.
`PERFORM ONE OF THE FOLLOWING
`nmsunsncs:
`-A/D TEST
`-POHER LEVELS TEST
`—INPUT CHANNEL TEST
`-1/4 mcnopnocsssun RAH TEST
`-1/& uovmn TEST
`& INTEHLEAVE THESE SEPARATE
`nusuosnc TESTS HITH seuson
`TEST DIAGNOSTIC
`
`1
`I
`
`;
`I
`:
`I
`,
`'
`I
`
`1401M
`l
`
`{M1493
`
`r1482
`FLAG AS FAULT CUNDITIDN E
`l
`ENTER CORRESPONDING FAULT
`‘mu CODE & TIME/DATE STAMP IN
`CONDITION]
`FAULT STACK IN NUVRAH
`T
`[-1487
`r1484.
`EXECUTE FAULT Jj?,
`ROUTINE :soo
`
`19
`
`

`

`US. Patent
`
`Mar. 5, 1991
`
`Sheet 19 of 35
`
`4,996,871
`
`ENTER
`FIG. 15A
`MENU
`ROUTINE
`isi
`
`4 EXIT
`(NORMAL RETURN)
`
`FIG. 15
`
`FIG.
`15‘
`FIG_
`15B
`
`HAS USER
`SELECTED TICKET
`PRINTER?
`
`r1509
`ACCESS TIME, DATE C FLOM TOTALS
`' (RESETTABLE TOTALIZER C INVENTORY TOTAL)
`C PRINT ON TICKET USING TICKET PRINTER
`
`r1512
`DISPLAY INVENTORY TOTAL
`AS NEXT MENU ITEM
`r1514
`i
`EXECUTE SCALING PARAMETER
`INPUT ROUTINE 1500
`
`T1521
`DISPLAY CURRENT VALUE OF SPAN 0F
`FREOUENCY OUTPUT C PERMIT USER TO
`SEOUENTIALLY SELECT DESIRED SPAN
`r1524
`DISPLAY CURRENT VALUE OF FULL SCALE
`OUTPUT FREQUENCY PERCENTAGE C PERMIT
`USER TO CHANGE PERCENTAGE
`r1527
`T
`DISPLAY CURRENT ANALOG Y/I OUTPUT MODE
`FOR V: 0-5 OR 1-5 VOLTS
`FOR I: 0-20 0R 4-20 M6; 8
`PERMIT USER TO CHANGE MODE
`r1530
`{
`DISPLAY C ALLOM USER TO SELECT
`CURRENT ANALOG V/I FULL SCALE PERCENTAGE
`C PERMIT USER TO CHANGE PERCENTAGE
`I
`
`20
`
`

`

`US. Patent
`
`Mar. 5, 1991
`
`Sheet 20 of 35
`
`4,996,871
`
`FIG. 158
`
`EXECUTE SERIAL COMMUNICATION
`PARAMETER ENTRY ROUTINE 1700
`
`533
`
`SEOUENTIALLY DISPLAY ALL ENTRIES
`IN FAULT STACK STORED IN NOVRAM
`
`535
`
`53B
`
`YES
`
`537
`
`NO
`
`DISPLAY CURRENT
`TIME C DATE
`
`539
`
`ALLOM USER TO CHANGE TIME 8
`DATE IN REAL TIME CLOCK
`
`
`540
` SELECTED
`LCD OUTPUT
`
`
`MASS UNITS
`CHANGED?
`
`
`
`RESET MASS TOTALIZERS
`TO ZERO
`
`
`
`542
`
`545
`
`
`USING USER SELECTED PERCENTAGES OBTAINED
`
`THROUGH SCALING PARAMETER INPUT ROUTINE 700
`CALCULATE. NUMERICAL VALUES FOR:
`
`HIGH ALARM LEVEL VALUE
`LOM ALARM LEVEL VALUE
`
`
`
`
`
`
`
`LOM FLOM CUTOFF VALUE
`FREQUENCY CONSTANT
`V/I CONSTANT
`IN TERMS OF NORMALIZED MASS UNITS
`
`
`
`
`
`
`(FAU T CONDITION)
`L
`
`“0
`
`5
`+5v PONEN
`OK?
`
`551
`
`548
`YES
`
`FLAG AS FAULT CONDITION C ENTER
`CORRESPONDING FAULT CODE 8 TIME/DATE
`STAMP IN FAULT STACK IN NOVRAM
`
`554
`
`557
`
`SAVE ALL CALCULATED PARAMETERS
`8 USER SELECTIONS IN NOVRAM
`
`9
`EXECUTE FAULT
`ROUTINE 1800 ” EXIT
`(RET 'N TO ENTRY
`POINT A IN MAIN PROGRAM 1400)
`
`0:0 EXIT (NORMAL
`RETURN)
`
`21
`
`21
`
`

`

`US. Patent
`
`Mar. 5, 1991
`
`Sheet 21 of 35
`
`4,996,871
`
`FIG. 16
`
`ENTER 93
`
`1501
`
`15A
`FIG.
`SCALING PARAMETER
`INPUT ROUTINE
`m
`
`1606
`
`16A
`FIG.
`FIG. 16B
`
`1603
`
`W
`YES
`
`
`
`
`DISPLAY CURRENT OUTPUT
`UNITS (FOR LCO DISPLAY. 8
`
`V/I G FREOUENCY OUTPUTS}
`
`
`
`
`-READ METER SIZE PHASE HEASUREMENT FILTER TIME
`CONSTANT AND VERNIER INDEX FROM INPUT SHITCHES
`
`-PERFORM TABLE LOOK UP, USING METER SIZE. TO
`
`ALLOW USER TO SEOUENTIALLY DISPLAY AND SELECT
`OUTPUT MASS AND MASS FLOR RATE UNITS (FOR LCD
`
`DISPLAY. V/I AND FREQUENCY OUTPUTS)
`
`
`
`DOMNLOAO VALUES FOR FILTER TIME
`CONSTANT AND VERNIER INDEX
`
`TO TIME INTERVAL MEASUREMENT
`
`
`151°
`CIRCUITS VIA um LINES 35
`
`
`
`NO
`
`YES
`
`1507
`
`1616
`
`
`
`DISPLAY CURRENT OUTPUT
`PERFORM TABLE LOOK UP. USING METER
`UNIT FOR SCALED
`SIZE TO ALLOW USER TO SEOUENTIALLY
`
`
`PULSE OUTPUT
`DISPLAY 8 SELECT OUTPUT UNITS
`
`FOR SCALED PULSE OUTPUT
`
`
`YESflNO
`
`1623
`
`
`
`DISPLAY—URRENTHIGH ALARM—EVEL
`
`1626
`
`
`
`ALLOW USER TO DISABLE HIGH ALARM ORSET HIGH ALARM LEVEL IN INCREMENTS
`
`OF .11 OF F S. READING
`
`122
`
`22
`
`

`

`US. Patent
`
`Mar. 5, 1991
`
`Sheet 22 of 35
`
`4,996,871
`
`YES
`
`1630
`
`NO
`
`FIG. 168
`
`1536
`
`DISPLAY CURRENT
`LDM ALARM LEVEL
`
`
`
`
`ALLDM USER TO DISABLE LDM ALARM
`DR SET LDM ALARM LEVEL IN INCREMENTS DF
`.11 0F F.S. READING
`
`DISPLAY CURRENT LOH
`FLOM CUTDFF VALUE
`
`
`
`
`1545
`
`ALLDM USER TO SELECT LDM
`FLOM CUTOFF VALUE AS:.2..&
`1 .2 .5. DR 10% DF F.S. READINGS
`
`DISPLAY CURRENT VALUE OF
`INPUT FILTER TIME CONSTANT
`
`
`
`
`1652
`
`ALLDM USER TO SELECT INPUT
`FILTER TIME CONSTANT. TC.
`(.2. .5. 1, 2. 4.7 OR 15 sec)
`
`9:0 EXIT
`
`23
`
`23
`
`

`

`US. Patent
`
`Mar. 5, 1991
`
`Sheet 23 of 35
`
`4,996,871
`
`C!!!
`
`ENTER
`
`1710
`
`no
`
`YES
`
`FIG. 17
`SERIAL PARAMETER
`INPUT ROUTINE
`119R
`
`1717
`
`
`ALLOM USER TO SELECT DESIRED
`TYPE OF SERIAL COMMUNICATION
`(RS-232C. RS-485 OR NONE)
`
`DISPLAY CURRENT
`TYPE OF SERIAL
`COMMUNICATION
`
`YES
`
`1720
`
`NO
`
`DISPLAY CURRENT
`BAUD RATE
`
`I727
`
`ALLDM USER TO SEDUENTIALLY
`DISPLAY 8 SELECT DESIRED BAUD RATE
`(ISO BAUD - 19.2 kBAUD)
`
`
`
`YES
`
`1730
`
`ND
`
`DISPLAY CURRENT PARITY
`
`
`
`
`
`1737
`
`ALLDN USER TD SELECT DESIRED PARITY
`‘00“. EVEN. NONE)
`
`lifib EXIT
`
`24
`
`24
`
`

`

`US. Patent
`
`Mar. 5, 1991
`
`Sheet 24 of 35
`
`4,996,871
`
`FIG. 18
`
`FAULT ROUTINE
`
`1§QQ
`
`ENTER
`
`SET FAULT
`
`ALARM OUTPUT
`
` 810
`
` 820
`
`
`DISPLAY LATEST
`ENTRY (FAULT CODE.
`DATE & TIME)
`
`IN FAULT STACK
`
`
`
`
`830
`
`
`YES
`PUSHBUTTON
`
`
`DEPRESSED?
`
`
`CLEAR
`
`
`
`
`
`CLEAR
`INSTRUCTION
`
`
`
`
`[WAIT FOR USER
`INTERVENTION]
`
`RECEIVED OVER
`
`SERIAL INPUT?
`
`
`
`(RETURN TO ENTRY POINT A
`IN HOST}LP MAIN PROGRAM 1400)
`
`25
`
`25
`
`

`

`US. Patent
`
`Mar. 5, 1991
`
`Sheet 25 of 35
`
`4,996,871
`
`”6- 19A
`
`100 msec INTERRUPT
`
`0:. ENTER (100 Asec INTERRUPT)
`
`1003
`
`
`FLAC AS FAULT CONDITION,
`0
`ENTER CORRESPONDING FAULT
`
` CODE 0 TIME/DATE STAMP IN
`
`
`
`FAULT STACK IN NOVRAM
`
`“0&5
`
`FIG. 19
`
`
`
`
`
`
`FIG. 190
`
`F15, 190
`m 190
`.
`
`
`
`
`
`1901
`HAS
`YES
`HATCH 000
`
`
`TIMER TIMEO
`
`
`OUT?
`
`N0
`
`1904
`
`EEEEBNESFTMARE TIMER
`3—00“ 2—-TIMEOUT2
`
`1900
`
`OECREMENT SOFTHARE TIMER,
`S_COUNT1:
`S_COUNT1 --S_COUNT1 - 1
`
`1905
`
`EXECUTE FAULT
`ROUTINE 900
`
`9:4 EXIT
`
`(RETURN TO ENTRY POINT A
`IN HOST [JP MAIN PROGRAM 1400)
`
`
`
`FLAG FAULT CONOITION,ANO
`
`ENTER CORRESPONDING FAULT
`
`
`CODE AND TIME/DATE STAMP
`
`
`IN FAULT STACK IN NOVRAM
`
`
`
`1908
`
`1909
`
`EXECUTE FAULT ROUTINE 1800
`
`.3 EXIT
`
`1907
`
`SOFTHARE TIMER
`
`S_COUNT1 11.9. COUNTER)
`
`TIMEO OUT?
`(1.2.
`S_CDUNT1= 0?)
`
`HAS
`
`
`
`
`YES
`
`
`
`
`{FAULT
`
`CONDITION]
`
`
`“0
`EXECUTE RATE FACTOR CALCULATION
`ROUTINE 2000 TO CALCULATE TEMPERATURE
`COMPENSATED RATE FACTOR. RF
`
`1911
`
`1914
`
`(RETURN TO ENTRY POINT A
`IN HOST PP MAIN PROGRAM 1400)
`
`
`
`ACCESS LATESTzkt
`VALUE OBTAINED FROM
`
`
`TIME INTERVAL
`MEASUREMENT CIRCUIT 30
`
`
`1917
`
`UPDATE FLON DIRECTION OUTPUT
`GIVEN SIGN UFzst
`
`1920
`
`CALCULATE NORMALIZEO MASS FLOM
`RATE (IN (Ag/sec):
`RATE --At
`* RF
`
`RATEa --RATE
`
`263
`
`26
`
`

`

`US. Patent
`
`Mar. 5, 1991
`
`Sheet 26 of 35
`
`4,996,871
`
`FIG . 193
`
`
`IS
`1922
`
`
`RATE < LOH
`
`FLOM CUTOFF
`
`
`VALUE?
`
`
`NO
`
`YES
`
`1925
`
`SET;
`RATE .- o
`
`
`1927
`IS
`
`RATE > HIGH
`
`ALARM LEVEL
`
`VALUE?
`
`RESET HIGH
`ALARM OUTPUT
`
`1932
`
`SET HIGH
`ALARM OUTPUT
`
`
`
`
`1934
`
`IS
`RATE < LON
`
`ALARM LEVEL
`
`VALUE?
`
`RESET LON
`ALARM OUTPUT
`
`1939
`
`SET LOM
`ALARM OUTPUT
`
`
`
`1941
`
`PERFORM TABLE LOOK UP TO ACCESS
`
`APPROPRIATE MASS CONVERSION FACTOR. MCF,
`FOR CONVERTING NORMALIZED RATE. RATE.
`INTO DESIRED OUTPUT MASS UNIT/SECOND
`(e.g.
`lbs/sec)
`CALCULATE
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`RATES-'h RATE x MCF
`
`127
`
`27
`
`

`

`US. Patent
`
`Mar. 5, 1991
`
`Sheet 27 of 35
`
`4,996,871
`
`1943
`
`FIG. 190
`
`SET: TOTALgld“ TOTAL: AND
`UPDATE TOTALS:
`
`
`
`
`TOTAL“ RATES + TOTAL
`INV TOTAL“ RATES + INV TOTAL
`
`
`
`
`1945
`
` CLEAR
`PUSHBUTTON
`
`DEPRESSED?
`
`
`
`
`
`194a
`
`YES
`
`SET:
`TOTAL-*- 0
`
`ND
`
`1950
`
`STORE VALUES OF TOTAL 8
`INV TOTAL IN NOVRAH
`
`'
`
`PRODUCE A PULSE AT SCALED PULSE OUTPUT IF THE VALUE
`OF [TOTAL-TOTALOICU Z USER SELECTED OUTPUT UNIT
`
`1953
`
`1956
`
`
`
`
`CONVERT RATES T0 DESIRED OUTPUT TIME UNIT USING
`APPROPRIATE TIME SCALING FACTOR, TF.
`(8.9.
`lbs/min)
`TO YIELD MASS FLOW RATE VALUE FOR DISPLAY, RATED:
`RATED-*RATES x TF
`
`
`
`
`
`
`
`1959
`
`CONVERT RATED 8 TOTAL TO BCD. C
`DISPLAY RATED 8 TOTAL
`
`1962
`
`
`
`
`UPDATE FREOUENCY 8 V/ I OUTPUTS USING
`NORMALIZED RATE VALUES RATE 8 RATEa:
`
`OUTPUT FRED..- RATE it FREO. CONSTANT
`V/ I OUT fi-RATEa x V/I CONSTANT
`
`
`
`
`28
`
`28
`
`

`

`US. Patent
`
`Mar. 5, 1991
`
`Sheet 28 of 35
`
`4,996,871
`
`FIG. 190
`
`
`
`
`15
`NENU
`
`PUSHBUTTON
`
`DEPRESSED?
`
`
`1957
`
`
`EXECUTE MENU
`RUUTINE 1500
`
`
`
`1973
`
`ADJUST
`
`
`FOR ZERO
`
`
`
`EXECUTE ZERO
`
`FLOH OFFSET
`
`ROUTINE 2200
`
`
`
`
`
`
`
`
`FLOU?
`
`SET DIAGNOSTIC
`REQUEST FLAG
`
`
`
`
`
`0:0 EXIT
`
`(RETURN)
`
`29
`
`29
`
`

`

`US. Patent
`
`Mar. 5, 1991
`
`Sheet 29 of 35
`
`4,996,871
`
`FIG. 20
`
`ENTER
`
`RATE FACTOR
`CALCULATION ROUTINE
`
` READ VALUE OF METER FACTOR, MF.
`
`FROM
`INPUT SWITCHES 8 ACCESS APPROPRIATE
`TEMPERATURE COEFFICIENT VALUE. k.
`FROM MEMORY
`
`BLOC
`
`
`
`
`2060
`
`
`
`
`CALCULATE RATE FACTOR. RF.
`AS:
`
`RF—-MF * (1 - kaT
`
`
`& STORE IN NOVRAM
`
`
`
`
`
`
`CALCULATE RATE FACTOR, RF.
`AS:
`RF—-MF * (1 + m)
`8 STORE IN NOVRAM
`
`3O
`
`30
`
`

`

`US. Patent
`
`Mar. 5, 1991
`
`Sheet 30 of 35
`
`4,996,871
`
`
`
`
`
`ACCESS APPROPRIATE DIGITAL FILTER
`PARAMETERS 1T1 8 T2) FOR
`TEMPERATURE MEASUREMENT FILTERING
`
`
`
`FIG. 21
`
`FILTER ROUTINE
`
`2.10.0
`
`2120
`
`
`
`2130
`
`CALCULATE
`R-*-R - T1
`
`
`
`'
`
`2140
`
`READ VALUE OF FILTER TIME
`CONSTANT. TC.
`FROM NOVRAM
`
`
`
`2150
`
`
`
`
`QTC
`
`
`CALCULATE:
`
`T1 fi—Ti
`
`+ _R_
`2T0
`
`T2.— T2
`
`
`+ (T1 - T2)
`
`
`
`
`2150
`
`STORE VALUES 0F FILTER
`
`PARAMETERS [T1 8 T2)
`IN
`NOVRAM FDR SUBSEOUENT USE
`
`
`
`2170
`
`
`
`
`SAVE FILTER OUTPUT VARIABLE.
`T2, A5 FILTERED TUBE
`TEMPERATURE, Tf,
`IN NOVRAM
`
`
`
`
`O3 EXIT (RETURN)
`
`
`
`31
`
`31
`
`

`

`US. Patent
`
`Mar. 5, 1991
`
`Sheet 31 of 35
`
`4,996,871
`
`FIG. 22
`
`FIG.
`22A
`
`FIG.
`228
`
`,v,
`‘
`
`FIG. 22A
`ZERO FLOR OFFSET
`ROUTINE
`
`2205
`
`£210
`
`DISPLAY APPROPRIATE BANNER
`
`SAVE PREVIOUS ZERO FLON OFFSET VALUE:
`DFFSETQLD «OFFSET
`
`2210
`
`SET CURRENT VALUE OF ZERO FLOR OFFSET TO ZERO:
`OFFSET—-0
`
`2215
`
`NAIT FOR TRANSIENTS TO SETTLE OUT
`
`2220
`
`
`
`2230
`
`INITIALIZE PRIOR VALUE OF SLIDING AVERAGE
`
`TD ZERO:
`EOLD.
`TO ZERO AND SET SAMPLE COUNTER. m.
`EOLD“ 0
`
`
`m-- 0
`
`
`
`
`
`
` YES
`SECOND
`
`INTERVAL
`EXPIRED?
`
`N0
`
`INCREMENT SAMPLE COUNTER BY ONE:
`
`ind—m4-
`
`2240
`
`2245
`
`OBTAIN CURRENT TIME INTERVAL MEASUREMENT
`(1.2.25t)
`FROM TIME INTERVAL MEASUREMENT
`CIRCUIT 30
`
`L32
`
`32
`
`

`

`US. Patent
`
`Mar. 5, 1991
`
`Sheet 32 of 35
`
`4,996,871
`
`FIG. 223
`
`UPDATE CALCULATION OF SLIDING AVERAGE. E, OF
`[St MEASUREMENTS, ASL”:
`THAT OCCURRED DURING INTERVAL
`EOLD - m +AtM
`E.—
`m+1
`
`
`
`2252
`
`
`
`
`
`
`
`
`
`
`
`
`|l
`
`DETERMINE MAXIMUM AND MINIMUM zst VALUES
`
`AND STORE AS MAX AND MIN. RESPECTIVELY
`
`
`STORE CURRENT SLIOINS AVERAGE VALUE AS
`
`
`
`PRIOR VALUE OF SLIDING AVERAGE:
`EOLO -- E
`
`
`
`
`2358
`
`CALCULATE
`A"-MAX ~ MIN
`
`
`
`2250
`
`
`
`> x,
`MI
`VRERE x 15
`PRE-DEFINED NOISE
`
`MARGIN?
`
`YES
`
`
`
`
`
`
`
`lEl >Y.
`
`HHERE Y 15 MAXI-
`
`MUM PERMISSIBLE
`
`
`'J
`OFFSET.
`
`NO
`
`
`
`2275
`
`SET ZERO FLOR OFFSET
`TO PREVIOUS VALUE:
`OFFSET-—UFFSET0LD
`
`2280
`
`2235
`
`SET OFFSET TO MOST
`RECENT VALUE OF (kt AND
`SAVE IN NOVRAM
`
`9." EXIT
`
`
`
`
`
`
`
`FLAG FAULT CONDITION. AND
`ENTER CORRESPONDING FAULT
`CODE AND TIME/DATE STAMP IN
`FAULT STACK IN NOVRAM
`
`
`
`
`
`2290
`
`EXECUTE FAULT
`ROUTINE 1800
`
`{RETURN TO ENTRY POINT v
`A IN MAIN PROGRAM 500) ’4 EXIT
`
`33
`
`33
`
`

`

`U.S. Patent
`
`Mar. 5, 1991
`
`Sheet 33 of 35
`
`4,996,871
`
`FIG. 23
`
`ENTER p'q LUCCURENCE 0F
`‘ At MEASUREMENT
`CUMPLETE INTERRURT)
`
`- UVERELoN FLAG
`FIG . 23A
`RESET INPUT
`”“33
`
`FIG. 23A
`TIME INTERVAL MEASUREMENT
`INTERRUPT ROUTINE
`23.9.0.
`
`2305
`.
`2315
`
`13
`
`"0
`EXCESS DRIVE
`
`SIGNAL HIGH?
`
`
`
`
`
`
`MAIT 27 MICRDSECONDS
`
`2317
`
`[FAULT CUNUITIUNJ
`
`VEs
`
`SIGNAL HIGH?
`
`
`
`
`
`
`FLAG FAULT CONDITION, AND
`
`ENTER CCRRESRUNUINC FAULT
`CUUE ANU TIME/DATE STAMP IN
`FAULT STACK IN NOVRAM'
`
`
`
`
`
`2324
`
`
`
`ERUM TIRE INTERVAL
`MEASUREMENT CIRCUIT 30
`THROUGH LEADS 35
`
`9343
`
`FLAG FAULT CONDITION
`AND ENTER CORRESPONDING
`FAULT CODE AND
`TIMER/DATE STAMP
`IN FAULT STACK
`IN NOVRAM
`
`
`
`EXECUTE FAULT
`ROUTINE 1800
`
`YES
`
`2347
`
`EXIT .3
`
`RETURN To ENTRY POINT A
`IN HOST MICROPROCESSUR
`MAIN PROGRAM 1400
`
`EXECUTE FAULT ROUTINE 1800
`
`v
`N Em
`
`(RETURN TO ENTRV
`RUINT A IN HOST ,UP MAIN
`RRUCRAM 1400)
`
`2331
`
`2339
`
`
`FAULT
`
`MESSAGE FROM TIME
`
`
`INTERVAL MEASUREMENT
`
`
`CIRCUIT 30?
`
`
`
`(At
`No
`VALUE
`READ)
`
`34-
`
`34
`
`

`

`US. Patent
`
`Mar. 5, 1991
`
`Sheet 34 of 35
`
`4,996,871
`
`2356
`
`2349
`
`
`
`HAS
`(HATCHDOGI TIMER
`290 TIRED OUT?
`
`(SEE FIG.2)
`
`(FAULT
`
`CONDITION)
`
`YES
`
`
`FLAG FAULT CONDITION.
`AND ENTER CORRESPONDING
`FAULT CODE AND TIME/DATE
`STAMP IN FAULT STACK
`
`1“ ”WM”
`
`2358
`EXECUTE FAULT ROUTINE IGOO
`
`’3 Ex“
`AOIRTSSTOAEE‘PYP
`MAIN PROGRAM 1456)
`FLAG FAULT CONDITION.AND
`ENTER CORRESPONDING FAULT
`CODE AND TIME/DATE STAMP
`IN FAULT STACK IN NOVRAH
`
`
`
`
`
`
`
`2367
`
`YES
`
`
`
`(FAULT
`CONDITION) 2353
`
`235°
`
`
`
`
`
`SOFTNARE TIMER
`
`i.e. COUNTER S_COUNT2
`TIMED OUT? (Le.
`S_COUNT2=0?)
`
`
`
`ND
`
`FIG . 23B
`
`‘
`
`RESET TIMER 290
`To 100 msec
`-
`.
`
`NO
`
`2352
`
`2353
`
`GRAPE
`S_COUNT'-; TIN OUT
`
`5423
`
`DECREHENT SUFTHARE
`TIMER, S_CDUNT2:
`S_COUNT2‘- S_COUNT2 - 1
`
`NO
`
`EXECUTE FAULT ROUTINE 1800
`0:. EXIT
`(RETURN TO ENTRY POINT
`“FEDERATION”
`
`
`INPUT
`UVERFLOH FLAG
`
`(FAULT
`SET?
`
`CONDITION)
`2374
`
`N0
`
`2370
`INPUT O7VERFLON
`YES
`
`-
`
`
`2372
`
`P033
`
`YES
`
`3378
`(FAULT CONDITION)
`
`
`FLAG FAULT CDNDITION,AND
`
`ENTER CORRESPONDING FAULT
`
`CODE AND T (ME/DATE STAMP
`
`
`IN STACK IN NOVRAM
`
`2384
`SUBTRACT ZERO FLOR OFFSET:
`At-C-At - OFFSET
`
`2350
`
`2385
`
`SAVEAt
`
`IN NOVRAM
`
`03 EXIT
`(RETURN)
`
`EXECUTE FAULT ROUTINE 1800
`
`2375
`
`SET INPUT OVERFLOH FLAG
`
`v
`0“ EX”
`(RETURN TO ENTRY
`POINT A IN HOST DP
`MAIN PROGRAM 1400)
`
`35
`
`' EXIT
`N
`(RETURN)
`
`35
`
`

`

`US. Patent
`
`Mar. 5, 1991
`
`Sheet 35 of 35
`
`4,996,871
`
`
`_W_______w__w_m_
`
`mmvxmmwww-mm
`
`
`
`
`
`-i...»f-i--3mm?........wmy.....I.1.:J.1“Esau.czm~m>_mxmpm>_
`
`
`
`
`
`m3
`mu<mmmsz
`
` :3:Ea;“mm___"5%th__3%."avgm2:gagswe:.
`
`
`_Emuulli»lllllL:xnluuuL_881mmr-iv........_Eggs
`
`
`r5!........I--I-LvmEu.
`
`
`
`mmpzmmmmeoH»
`
`mmpmz
`
`monomhumgm
`
`mmhw:
`
`wquomhumgu
`
`awhm:
`
`mquomhuugm
`
`ummmumm
`
`hmxuhh
`
`cmthmm
`
`amp“:
`
`>Amxwmm<
`
`ummm-mm
`
`meump
`
`:uszmm
`
`________
`
`hmqu»
`
`mmszmm
`
`ummmlmm
`
`Z36
`
`
`
`
`
`
`
`mmumz<mp>aopm=ummmwz<¢h>aohw=ummmmz<mb>oo~mzum
`
`36
`
`
`
`
`
`
`
`
`
`
`
`
`

`

`1
`
`CORIOLIS DENSIMETER HAVING
`SUBSTANTIALLY INCREASED NOISE
`IMMUNITY
`
`4,996,871
`
`2
`between and parallel to its side legs. The flow tube is
`designed to resonantly oscillate about this axis and an-
`other axis orthogonal thereto such that the forces which
`oppose the generated Coriolis forces are predominantly
`linear spring forces. Consequently, these spring forces
`cause one of the two side legs of the flow tube to pass
`through the midplane of oscillation before the other side
`leg does so. As such, the mass flow rate of the fluid that
`flows through the flow tube is proportional to the width
`10 of the time interval (time delay) occurring between the
`passage of the respective side legs of the tube through
`the mid-plane of oscillation. This time interval and,
`hence, the mass flow rate of the fluid can be measured,
`within a reasonable degree of accuracy, using optical
`15 sensors as disclosed in the ’450 reissue patent, or by
`using electromagnetic velocity sensors, as disclosed in
`Smith U.S. Pat. No. 4,422,338 (issued on Dec. 27, 1983).
`The ‘450 reissue patent also teaches the use of a spring
`arm which extends from the manifold along with the
`U-shaped flow tube. When this spring arm is sinusoiv
`dally driven in opposition to the U-shaped flow tube,
`the combination of spring arm and U-shaped flow tube
`operates as a tuning fork. This operation substantially
`attenuates undesirable vibrations occurring at the tube-
`manifold and spring arm-manifold interfaces. This at-
`tenuation is extremely advantageous for the following
`reason. In practice, these undesirable vibrations often
`occur, particularly at the tube-manifold interfaces, with
`sufficient intensity to effectively mask tube movement
`30 caused by the small Coriolis forces and thereby intro-
`duce significant errors into the time interval measure-
`ments of the passage of the side legs of the U-shaped
`tube through the mid-plane of oscillation. Because the
`mass flow rate is proportional to the time interval mea-
`35 surements, these errors inject significant inaccuracies
`into the measured mass flow rate. Tuning fork operation
`substantially cancels these undesirable vibrations and
`thereby significantly increases measurement accuracy.
`In addition, reducing vibrations that occur at the mani-
`40 fold also decreases long term fatigue effects induced by
`vibrations that might otherwise occur on the meter
`mounting structure. The substitution of a second flow
`tube, having a similar configuration to the first flow
`tube, for the spring arm, provides an inherently bal-
`anced tuning fork structure. The inherent symmetries in
`such a structure further reduce undesirable vibrations
`and thereby further increase measurement accuracy.
`This teaching has been recognized in the design of den-
`simeters wherein measurements of the resonant
`fre-
`50 quency of filled flow tubes are used to determine the
`density of fluids in the tubes. See, for example, Poole et
`al. U.S. Pat. No(s). 2,635,462 (issued during Apr. 1957)
`and Brockhaus 3,456,491 (issued during July 1969).
`The art also teaches the use of a serial double flow
`55 tube configuration in a Coriolis mass flow rate meter.
`Such a configuration is described in Cox et a1. U.S. Pat.
`No(s). 4,127,028 (issued on Nov. 28, 1978); 4,192,184
`(issued on Mar. 11, 1980) and 4,311,054 (issued Jan. 19.
`1982). Here, incoming fluid sequentially passes through
`60 one flow tube, then through an interconnecting conduit
`and lastly through another flow tube. Unfortunately,
`series type double flow tube meters possess inherent
`drawback: since all
`the fluid must pass through two
`flow tubes instead of one, the fluid pressure drop across
`65 the meter is greater than that of a non—serial type flow
`meter. One way to compensate for this increased pres-
`sure drop is to increa

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket