throbber
United States Patent [191
`Romano
`
`-
`
`[11] Patent Number:
`[45] Date of Patent:
`
`4,934,196
`Jun. 19, 1990
`
`[54] CORIOLIS MASS FLOW RATE METER
`HAVING A SUBSTANTIALLY INCREASED
`N
`OISE IMMUNITY
`[75] Inventor: Paul Romano, Boulder, Colo.
`[73] Assignee: Micro Motion, Inc., Boulder, C010.
`[21] Appl. No.: 361,000
`.
`Jun‘ 2’ 1989
`{22] Flled:
`[51] Int. 01.5 .............................................. .. G01F 1/84
`[52] US. Cl. ................... .. 73/86L38; 364/510
`[58] Field of Search ............... .. 73/861.37, 861.38, 510
`56
`R f
`C, ed
`[
`]
`e erences lt
`U.S. PATENT DOCUMENTS
`Re. 31,450 11/1983 Smith ............................. .. 73/861.38
`_ Re_ 31971 8/1985 Gold ‘ _ _ _ . _ _ . _
`_ ‘ ~ __ 73/462
`2,635,462 4/1953 Poole et aL
`_____ “ 73 /32
`3,456,491 7/1969 Brockhaus
`73/32
`3,527,103 9/1970 Hale et al .................... .. 73/462
`4,093,988 6/1978 Scott ..................... .. 364/484
`73/ 194
`4,127,023 11/ 1973 COX et a1 ~
`1g;
`gc’li‘t?t i1‘- 1"
`4,311,054 V1982 Cox et a1- "
`73/236138
`4 422 338 12/1983 Smith
`73/861 38
`4:445:38‘) V1984 potzidé'g'tglz"
`73661:”
`4,450,529 5/1984 Hill et a1_ _ _ _ l _ .
`_ _ _ ‘ I __ 364/508
`4,491,025 1/1985 Smith .......... ..
`73/86L3B
`4,660,421 4/ 1987 Dahlin et a1. .................. .. 73/861313
`
`,
`
`,
`
`m e a.
`
`.
`
`FOREIGN PATENT DOCUMENTS
`
`WO88/0l205 3/1988 PCT Int’l Appl. .
`
`OTHER PUBLICATIONS
`W. Steffen et a1, “Direct Mass Flow Metering in Partic
`
`ular by Means of Coriolis Methods”, OIM Seminar,
`Arles, France, May 1l—l5, 1987, pp. 1-24.
`.
`Primary Examiner-Herbert Goldstem
`Attorney, Agent, or Firm—Peter L. Michaelson
`[57]
`ABSTRACT
`Apparatus and accompanying methods for use therein
`for a Coriolis mass flow rate meter which is substan
`tially immune to noise, and more particularly, to such a
`meter that is substantially unaffected by noise that 9e
`enrs at substantially any frequency different from e
`fundamental frequency at which the ?ew tube(s) in the
`meter vibrate. Speci?cally, the meter relies on measur
`ing mass flow rate by determining the phase difference
`that occurs between real and imaginary components of
`the discrete mine’ transfmm (DFT) of both the left
`and rlght veloclty sensor waveforms evaluated at the
`fundamental frequency at which the ?ow tubes vibrate.
`The fundamental frequency is located, during an initial
`ization operation, by providing a power spectrum, de
`termined through use of the DFT, of one of the sensor
`signals and then selecting that frequency at which the
`magnitude of the power spectrum reaches a maximum
`value. In addltlon, the frequency at whlch both veloc1ty
`sensor signals 1s sampled 1s readjusted 1n response to any
`change in the phase of one of the velocity sensor signals,
`as transformed using the DFT, in order to assure that
`the Sampling frequency always remains Substantially
`equal to a pre-de?ned integer multiple of the fundamen
`tal frequency. Furthermore, the meter, through use of
`the numerical value of any such phase change, also
`provides a density indication which is also substantially
`immune to such noise.
`
`.
`
`.
`
`-
`
`-
`
`39 Claims, 35 Drawing Sheets
`
`SYSTEM BLOCK 1111mm
`
`A,
`9
`YEASURBENT 1m
`Comm TM 14051»
`1
`2
`
`FPom 1.1155
`m
`
`{205
`
`2053 l
`255
`7
`SERIAL
`INTERFACE
`
`251m r252 stuttuttuls
`115-2320
`|
`r25,
`05-485
`\J
`.250
`257 W l
`- """"""""" ' T 26 mm mmrr
`-
`Bus
`soun STATE
`m M W
`1min
`"El-"5
`r1111 111mm!
`.
`i
`2
`265
`253
`27 111mm
`,UIGITAL
`RELAY
`FAULT_ALARN
`‘OUTPUT CIRCUIT
`L
`269
`
`971
`
`L
`_ WXE A/IJ
`awe e31 '
`
`_ v 101 "1
`v/1 ANALOG
`CONVERTER
`OUTPUT
`‘275
`270
`274
`[FLGI RATE]
`t___
`DISPLAY
`LE9
`27B 259
`“220 Q U W
`
`— _ pm DH
`36
`mill?" 7
`~30
`CliUJll
`mural
`
`,5
`
`'
`
`25°
`
`~50
`
`290
`
`BUS
`INTEFFAL:
`.. 40
`2
`
`2a
`
`[In new
`-
`2B5
`1cm TYPE
`saw:
`% ztm FLU! uuamnm
`180 mm
`“mm D09
`‘2% meaning
`men OUTPUT
`HEW
`me 292
`CLEAR HHBJTllIl
`F CONSTANT
`a VIMJEX
`
`.
`\
`
`585M501]
`185
`
`w
`DRIVE
`0011 1m
`
`100
`
`mIvE
`mm M 1134 511115
`CIRCUIT
`P
`m
`40 295 E: =15“ ,5»,
`
`1
`
`Micro Motion 1006
`
`

`
`US. Patent Jun. 19,1990
`
`Sheet 1 of 35
`
`4,934,196
`
`222m :53 Egg
`£55 a was: a
`
`a
`
`as E:
`
`unl
`
` @2255 52m :32: E1 _ $5: r :22“ WE? _ v f 5E 21 x m2 m2
`v x 3 a 52m E85 52% _
`
`
`
`o2 %
`
`
`
`w 6:
`
`.02
`
`2
`
`

`
`U.S. Patent
`
`Jun. 19, 1990
`
`Sheet 2 of 35
`
`4,934,196
`
`
`
`mainam
`
`22:83%m6:
`
`
`ommmummmmm:<%<Evasmzwfim
`
`isassaw-E5.535:83.?8$238255am
`
`m><4m:
`
`.3.355mmH5:35...3
`
`
`:5::2:._.:SE_at
`ass:3III::|II+8m:855&3>2.
`
`5&8
`
`
`
`_m_<m394m.a_mmm“o_mzomm
`85::5%52.528._IL2%was
`
`
`5::as:men;E22
`wmfiwwwzy%mmw__mW
`
`
`as23%::33
`
`mgamwe:33;:5atam:=2:
`
`scézs5:ENMEEZH:2momzmm
`
`ze=_%aE5:8..5:;m_E$=:>53:
`z._:§§=5:maE2:2:
`
`§_=%a§§._523$2:E2:E2gmzmm
`2%,22zo:=m_._mE53.5mmW2:magmm:
`
`5<Vmm%D:35-Mag
`hman5&3amaI$38ea292O2:8
`
`.
`
`3
`
`
`

`
`U.S. Patent
`
`Jun. 19,1990
`
`Sheet 3 of 35
`
`4,934,196
`
`EEEO:Sm.or:5&85:2
`zmamafiz2anan
`
`S%=_ill53
`
`.5522E.
`
`n_3m2_2mmas.3
`
`ea2
`
`N:
`
`m.mE
`
`34.35::M22
`
`
`
`SSE“.zémgmé
`
`om
`
`5&8ow..Il...@.....u..%mm_v.§.f_.nwuuuuu
`
`
`
`
`
`§_§__gmex............-m%fl%4_
`
`
`,5:QENMh5%m.:1gmannme:52%;M9fimmsmwageE2_:_§
`
`
`zozsazsm.----m_a_.H..m--.m5:2_\<2m
`ms:E5:3WEm.2§:<_Eusmg
`
`
`22528-.wm---.fi-.“22E3&._mgmzmm
`EOE:48::3
`.55-52_=2:
`
`maF
`
`
`
`rlllillln2ah.“am...am...am...rm:
`
`mfomoa4,..--AT-+.a:wT-+.-.<.\.._.-rH:§3-mun
`
`
`
`_Q:r----.".._.§,._m;§§as
`..IIIIIIIIIIIIIL.N:zum
`m.zE%_a:E--"A
`
`2:ya
`
`\¢..IIII1|..
`rllllulls
`
`Illllu
`mEE<E%m:
`
`
`
`oflgmzmm
`
`Ex29:
`
`4
`
`
`
`
`

`
`US. Patent Jun. 19,1990
`
`Sheet 4 0f35
`
`4,934,196
`
`O2 =8
`
`5528
`52m h 5% 5
`
`5% 2 o: 21
`
`1% $22 U at
`
`@252 a
`
`201$? EH
`
`was; E, .r: :EMEEIEEEE
`
`$56 5 + at 21
`
`22am w \W/ _ 5:: EEHE _
`
`
`
`mag - H mm: :3 ME :1 “
`
`
`
`3 W ............ I?“
`
`2 :25 5% v . mm
`
`m? +
`
`W +
`
`a2
`
`5:
`
`4 o2 mazwm E52
`:5 5E
`
`m O2 52%. :53:
`
`52¢ 55
`
`I2: #1
`
`wig
`
`592m
`
`5
`
`

`
`US. Patent Jun.19, 1990
`
`Sheet 5 0f 35
`
`4,934,196“
`
`F I 6 . 5
`TIME INTERVAL (At)
`MEASUREMENT cmcun
`MAIN PROGRAM
`5&0.
`
`(2) ENTER
`(POWER-ON RESET)
`
`EXECUTE INITIALIZATION
`ROUTINE 600
`
`EXECUTE PHASE ANGLE CALCULATION ROUTINE 1200
`TO DETERMINE VALUE OF FILTERED PHASE DIFFERENCE, $520
`PHASEg, BETMEEN BOTH FLOM TUBE
`VELOCITY SENSOR SIGNALS (CHANNEL 1 C 2)
`
`CALCULATE At MEASUREMENT:
`At_-'K X PHASE2
`MHERE K=SCALE FACTOR
`
`$530,
`
`LOAD At MEASUREMENT INTO BUS INTERFACE 370
`FOR COMMUNICATION TO HOST pP, AND
`GENERATE 'At MEASUREMENT COMPLETEI
`INTERRUPTTO HOST [LP
`
`EXECUTE FREOUENCY TRACKING ROUTINE 1300
`TO DETERMINE FREOUENCY ERROR DUE TO
`CHANGES IN FLUID DENSITY AND
`MODIFY DURATION OF SAMPLING INTERVAL PRODUCED
`BY TIMER 340 ACCORDINGLY
`
`r550
`
`6
`
`

`
`US. Patent Jun. 19, 1990
`
`Sheet 6 of 35
`
`4,934,196
`
`g) ENTER
`
`EXECUTE POWER ON I 505
`DIAGNOSTICS
`
`FIG‘ 5
`INITIALIZATION ROUTINE
`QQQ
`
`615
`S
`SEND APPROPRIATE
`FAULT MESSAGE
`TO HOST
`MICRDPRDCESSDR,
`VIA BUS INTERFACE 37D
`
`69
`
`EXIT
`(RETURN TO ENTRY POINT A IN
`TIME INTERVAL MEASUREMENT
`CIRCUIT MAIN PROGRAM 500)
`
`READ FILTER TIME CONSTANT (F CONSTANT)
`AND VERNIER INDEX (V INDEX) THAT HAVE BEEN
`DDMNLOADED- FROM HOST MICRDPROCESSDR 205
`
`)- 625
`EXECUTE OFT ROUTINE 700 TO PERFORM COURSE FREOUENCY SEARCH:
`SAMPLE LEFT VELOCITY MAVEFDRM (CHANNEL 1) AT FIXED SAMPLE OF 640 HZ
`AND CALCULATE MAGNITUOE OF DISCRETE FOURIER TRANSFORM (OFT)
`
`,- 630
`SELECT COURSE FREOUENCY VALUE (nmaxl
`AT WHICH MAGNITUOE OF OFT 1s MAXIMUM
`
`FIX VALUE OF 'n' (OFT FREOUENCY COMPONENT)
`TOn
`CALCULATE AND STORE CORRESPONDING DIVISOR (O) HITHIN
`
`-EXECUTE VERNIER SEARCH ROUTINE 800 TO REPETITIVELY INCREMENT VALUE
`OF SAMPLING INTERVAL AND CALCULATE DFT AT FIXED FREOUENCY TD CDMPUTE
`PDMER SPECTRA WITH .1 HZ RESOLUTION MITHIN RANGE OF nmax + 5 H2
`UNTIL MAXIMUM MAGNITUOE IS OBTAINED; AND
`-STORE DIVISOR VALUE, Omax. ASSOCIATED WITH MAXIMUM MAGNITUOE
`L 640
`
`RESCALE SAMPLING FREOUENCY
`(OUTPUT OF TIMER 340) USING
`STORED DIVISOR VALUE, Dmax, AND
`ADJUST SAMPLING FREOUENCY TD
`EOUAL 12B TIMER FUNDAMENTAL
`FLOM TUBE FREOUENCY
`
`(2g EXIT
`
`7
`
`

`
`US. Patent Jun. 19, 1990
`
`Sheet 7 of 35
`
`4,934,196
`
`FIG. 7
`
`ENTER
`
`g)
`
`OFT ROUTINE ,
`m
`
`\/\
`705
`
`INITIALIZE VARIABLES:
`n-1
`N——12s
`MAG OLD‘O
`T
`SET CONTENTS OF
`TIMER 340 TO INITIALLY \AHO
`PROVIDE 540 HZ SAMPLING
`FREOUENCY
`__L
`EXECUTE REAL-IMAG COMPONENT ROUTINE 900
`TO DETERMINE VALUES OF REAL AND
`IMASINARY COMPONENTS OF LEFT VELOCITY SENSOR
`MAVEFORM ON CHANNEL 1 (R81, Ami) AT
`FREOUENCY n
`
`1 715
`COMPUTE MAGNITUDE:
`nAsNEwf-nef +Im12 v‘ 720
`
`N0
`
`730
`
`YES
`
`\A 735
`
`STORE: __
`MAGOLD
`MAGNEN
`
`v‘ 740
`
`765 A/
`
`STORE n ‘VALUE:
`nmax__n W750
`
`INCREMENT FREQUENCY: v~755
`n_-n+1
`
`nzN
`YES
`HETUHN
`
`8
`
`

`
`US. Patent Jun. 19,1990
`
`Sheet 8 of 35
`
`4,934,196
`
`F I G . 8
`VERNIER SEARCH
`ROUTINE
`m
`
`" ?g) ENTER
`
`_
`mmAtlixcgiABLEs'
`MAGu1d_-0
`0*(1 x 107) [Max-L5)
`Dmin_"'(I X
`LRmaX‘E)
`
`\,_ 810
`
`_.___L.
`
`820
`j.
`EXECUTE REAL-IMAG CDMPDNENT RDUTINE 900
`TO DETERMINE VALUES OF REAL AND IMABINARY
`COMPONENTS OF LEFT VELOCITY SENSDR NAVEFDRMIRE1, Im1)
`FDR FREQUENCY CDMPDNENT nmax
`
`COMPUTE MAGNITUDE:
`MAGnm?-R
`
`STORE n VALUE;
`Dmax“D
`I__
`
`f 870
`DECREMENT D BY USER SUPPLIED VERNIER INDEX (V INDEX)
`D-D - V INDEX
`AND LDAD VALUE INTU TIMER A TD INCREASE [SLENI
`SAMPLING EREDUENCY
`
`9
`
`

`
`US. Patent Jun. 19, 1990
`
`Sheet 9 of 35
`
`4,934,196
`
`(X) ENTER
`
`F I 6 . 9
`FIG_
`9A
`FIG.
`9B
`
`INITIALIZE:
`EMF-0 W903
`INDEXM
`
`FIG.9A
`REAL~IMAG coNPoNENT
`ROUTINE
`
`‘ _|_—'_—‘
`
`£99
`
`$908
`
`906
`
`NR
`
`CHANNELi
`PRESENT?
`
`YES_
`
`i
`
`HEAD SAMPLED VALUE, S. m 9“
`FROM A/D 32o
`
`r915
`RESET INPUT
`ovERFLoN
`FLAG
`
`SET INPUT
`OVERFLOH T
`FLAG
`
`SEND FAULT MESSAGE
`TO HOST RP VIA BUS @923
`INTERFACE 37o
`
`(éEXIT
`
`(RETURN TO ENTRY POINT
`TIME INTERVAL ME
`EM
`CIRCUIT MAIN PRO
`5001
`
`955~
`
`10
`
`

`
`US. Patent Jun. 19,1990
`
`Sheet 10 of 35
`
`4,934,196
`
`CDAHSE on
`VEHNIER SEARCHES
`
`YES
`
`EXECUTE CHANNEL 2 HEAL—IMAG
`
`w
`ggapg?é'?TgNgFlgég?mY
`VELOCITY SENSOR SIGNAL
`(CHANNEL 2)
`
`926
`
`FIG’ 95
`FEJAMLP-OIPgNGTE
`ROUTINE
`99g
`fez-11
`5352952239591025901525“,
`CALCULATIONS 0F DFT HEAL AND IMAGINARY
`COMPONENTS OF LEFT VELOCITY
`SENSOR SIGNAL (CHANNEL 1)
`
`_
`
`INCHEMENT coum: A 941
`coum-coum + 1
`
`INCHEMENT INDEX: V944
`INDEX-INDEX+1+n
`
`955A,
`
`947
`
`N0
`-
`
`INDEX >
`1%?
`
`YES
`
`MODIFY INDEX;
`INDEX_-INDEX-12B
`
`\A 951
`
`11
`
`

`
`US. Patent Jun. 19, 1990
`
`Sheet 11 of 35
`
`4,934,196“
`
`FIG.1O
`
`CHANNEL 1 REAL-IMAG
`ODMPUTE ROUTINE
`
`INITIALIZEI
`He 1-0 $1020
`Im1—-0
`
`1030 [
`COMPUTE ADDRESS, INDEXC, TO COSINE VALUES IN SINE VALUE
`LOOK UP TABLE; INDEX "'INDEX + STARTC.
`HHERE STARTC IS STARTING AUDRESS FDR COSINE VALUES
`
`UPDATE VALUE OF REAL COMPONENT:
`Re1—- Rel + S*TABLE(INDEXd
`
`“ 104°
`
`COMPUTE ADDRESS, INDEXS. TO SINE VALUES IN SINE
`LOOK UP TABLE: INDEXS <-INDEX + STARTS, WHERE M1050
`STARTC IS STARTING ADDRESS FOR SINE VALUES
`
`UPDATE VALUE OF IMAGINARY COMPONENT:
`Im1-- 1111 + S*TABLE (INDEXg)
`
`V‘ 1060
`
`<2) RETURN
`
`12
`
`

`
`US. Patent Jun. 19, 1990
`
`Sheet 12 of 35
`
`4,934,196
`
`FIG.11
`CHANNEL 2
`REAL-IMAG
`COMPUTE
`ROUTINE
`1M
`
`INITIALI'ZEZ
`R82 ~I-U
`11112 ‘D
`
`“1120
`
`COMPUTE ADDRESS, INDEXC, TO COSINE VALUES IN SINE
`LOOK UP TABLE: INDEXg<~INDEX + STARTC, WHERE
`STARTC IS STARTING ADDRESS FOR [IOSINE VALUES
`
`“1130
`
`UPDATE VALUE OF REAL COMPONENT:
`Her-neg + 5*TABLE (INDEXQ) “114°
`
`COMPUTE ADDRESS, INDEXS, TO SINE VALUES IN SINE
`LOOK UP TABLE: INDEX3<—INDEX + STARTS, WHERE
`STARTS IS STARTING ADDRESS FOR SINE VALUES
`
`UPDATE VALUE OF IMAGINARY COMPONENT:
`Img_-Im2 + sxTABLE (INDEXg)
`
`RETURN
`
`13
`
`

`
`v US. Patent Jun.19, 1990
`
`Sheet 13 0f 35
`
`4,934,196
`
`PHASE ANGLE CALCULATION
`ROUTINE
`1 0O
`
`SET FREQUENCY INDEX n
`TO MEASURED FUNDAMENTAL FLOR TUBE $1210
`nmvme FREOUENCY,nmaX:
`
`EXECUTE REAL-IMAG COMPONENT ROUTINE 900 TO DETERMINE
`VALUES OF REAL AND INAGINARY COMPONENTS OF BOTH CHANNELS
`(mum) AND (Reg.Img) ONLY AT TUBE nmvms FREQUENCY nmax ‘A1220
`
`COMPUTEI
`
`HBATTHBE + Im 1*Im2
`
`FILTER VALUE OF PHASE USING THO STAGE RECURSIVE
`(SINGLE POLE) DIGITAL FILTER GIVEN USER
`SUPPLIED FILTER CONSTANT (F CONSTANTTIAND
`STORE FILTERED PHASE VALUE AS PHASE2
`
`“1240
`
`(% RETURN
`
`14
`
`

`
`US. Patent Jun. 19,1990
`
`Sheet 14 of 35
`
`4,934,196 v
`
`FIG. 13
`FREQUENCY TRACKING
`ROUTINE
`ll
`
`(X) ENTER
`‘i
`READ SAMPLED VALUE, 8.
`FROM A/D 320 FOR LEFT V1310
`VELOCITY SENSOR NAVEFORM
`
`V1315
`
`EXECUTE REAL-IMAG COMPONENT ROUTINE 900 TO DETERMINE VALUES OF REAL AND
`IMAGINARY COMPONENTS OF LEFT VELOCITY SENSOR MAVEFORM (R81, Im1) AT PRESENT
`FLOM TYUBE FUNDEMENTAL DRIVING FREQUENCY, nmax
`I
`COMPUTE PHASE MEASUREMENT WITH RESPECT TO ZERO CROSSING
`FOR LEFT VELOCITY SENSOR NAVEFORM:
`m $1340
`PHASE —— Re 1
`
`FILTER VALUE OF PHASE USING TMO STAGE
`RECURSIVE SINGLE POLE DIGITAL FILTER GIVEN $1350
`USER SUPPLIED FILTER CONSTANT (F CONSTANT) AND
`STORE FILTERED PHASE VALUE AS PHASE
`
`‘
`
`.
`
`'
`\/\1360
`
`SCALE PHASE1 VALUE;
`PHASE1—-PHASE1 * a, WHERE:
`a = SCALING FACTOR
`I
`UPDATE VALUE OF DIVISDR FOR TIMER 340 TO
`ACCOUNT FOR FREQUENCY ERRORI
`DmaX<—DmaX - PHA5E1
`I
`LOAD Dmax INTO TIMER 340 TO MAINTAIN SAMPLING
`RATE AT 128 TIMES'FUNDAMENTAL TUBE DRIVING FREOUENCY “1380
`
`V1370
`
`CALCULATE DENSITY:
`DENSITY‘- PHASE
`AND OUTPUT TO DI‘
`
`I) + DENSITYO ‘A1390
`Y, IF DESIRED
`
`é EXIT
`
`15
`
`

`
`US. Patent
`
`Jun. 19,1990
`
`Sheet 15 0135
`
`4,934,196
`
`Q) 'PoNES ON RESET
`
`;1402
`—
`INITIALIZE N
`
`FIG- 14A
`HOST MICROPROCESSOR
`iP-P) MAIN PROGRAM
`m
`
`CONFIGUHE SYSTEM
`
`.
`
`.................... ..
`
`FIG.
`
`14
`
`FIG.
`
`FIG.
`
`FIG.
`
`14A
`14B
`140
`
`FIG.
`
`140
`
`$1403
`
`.
`
`i
`RESET DISPLAY S
`DISPLAY INITIAL BANNER
`'
`PERFORM DIAGNOSTICS
`(DISPLAY, POWER SUPPLY.
`MICHOPROCESSOR RAM, EPROM.
`NOVRAM, A/Oi
`
`$1404
`
`IAoP-m
`
`Y1 405
`FLAG AS FAULT
`CONDITION S ENTER
`CORRESPONDING FAULT
`CODE D TIME/DATE STAMP
`IN FAULT STACK IN NOVRAM
`y1407
`
`EXECUTE FAULT
`ROUTINE 1800
`
`J
`
`RE-ALCESS
`PARAMETER
`L141B
`1417
`
`i
`i
`i
`Y
`1
`(FAULT
`CONDITION)
`y1419
`Y
`i
`
`FLAG AS FAULT
`CONDITION C ENTER
`CORRESPONDING FAULT
`CODE 8 TIME/DATE STAMP
`IN FAULT STACK IN NOVRAM
`1420\ EXECUTE FAULT
`ROUTINE 1800
`
`1
`
`RETRIEVE PARAMETERS FROM NOVRAM
`(ALARM LIMITS, INPUT FILTER.
`TIME CONSTANT)
`
`|_ _____ ____
`
`PARAMETER
`VALIDATION
`ROUTINE 1410
`
`SET:
`N-'0
`
`|
`l
`
`l
`l
`
`|
`l
`
`|
`|
`
`l
`l
`
`I
`I
`
`l
`\
`
`l
`I
`
`l
`l
`
`l
`I
`
`16
`
`

`
`US. Patent Jun.19, 1990
`
`Sheet 16 of 35
`
`4,934,196
`
`F IB- 14B ENABLE UMIvE CIRCUIT
`
`421
`
`r1425
`
`EXCESS
`DRIVE SIGNAL
`
`F433
`
`{142a
`FLAG AS FAULT CONDITION s
`YES ,ENTEM CORRESPONDING FAULT
`DRIVE SIGNAL
`FAULT CODE & TIME/DATE STAMP IN
`0N,’
`'
`CDND TIUN)
`FAULT STACK IN NOVRAM
`N0
`F430
`-
`ExEcUTE FAULT
`SET up
`MUUTINE 1800
`1435 ’\-' INTEMMUPT MASK
`1
`“37¢ ENABLE At MEASUREMENT
`COMPLETE INTERHUPT
`
`v
`
`{1443
`FLAG AS FAULT cUNUITIUN 8
`ENTEH CORRESPONDING FAULT
`cUUE & TIME/UATE STAMP IN
`FAULT sTAcM IN NUvMAM
`444
`F
`EXECUTE FAULT
`MUUTINE 1800
`
`445
`F
`
`,
`1439M SETTEOEAQEEFWQEHS-
`_
`TIMING INTEHVALS.
`S_C0UNT1<-TIME0UT1
`S_C0UNTg-TIME0UT2
`
`1441~PEHFORM sENsUM
`DIAGNOSTICS
`
`YES
`
`442
`
`17
`
`

`
`US. Patent Jun. 19,1990
`
`Sheet 17 of 35
`
`4,934,196
`
`FIG. 14C
`
`{1446
`YES EXECUTE MENU ROUTINE 1500
`TO OBTAIN USER PARAMETERS
`
`r1451
`HEAD PREVIOUS USER
`PARAMETERS FROM NOVRAM
`
`2 5 4
`CONFIGURE SERIAL OUTPUT
`
`RESET FAULT ALARM
`[1455
`ENABLE 100 msec
`INTERRUPT
`
`SET:
`LOOP COUNT~—0
`A4461
`
`463
`
`FLAG AS FAULT CONDITION O
`,ENTEH CORRESPONDING FAULT
`N0
`CODE 8 TIME OATE STAMP IN
`7
`0K‘ CUMUIATAUAT
`FAULT sTAcK IN NOVRAM
`
`EXECUTE FAULT
`ROUTINE 1800
`
`A LOOP a DIAGNOSTIC
`A ROUTINE 1450
`i
`i
`i
`i
`i
`i
`i
`i
`
`18
`
`

`
`U.S. Patent
`
`Jun. 19,1990
`
`Sheet 18 of 35
`
`4,934,196
`
`471 FIG.
`
`14D
`
`RESET DIAGNOSTIC
`REOUEST FLAG
`
`477
`
`1
`
`;
`
`DEPENDING UPON LOOP COUNT
`
`PERFORM ONE OF THE FOLLOWING
`DIAGNOSTICS
`-A/D TEST
`-PONER LEVELS TEST
`-INPUT CHANNEL TEST
`
`
`
`
`
`
`
`-1/4 MICROPROCESSOR RAM TEST
`
`
`-1/5 NOVRAM TEST
`
`
`C INTERLEAVE THESE SEPARATE
`
`
`DIAGNOSTIC TESTS NITH SENSOR
`
`TEST DIAGNOSTIC
`
`
`
`1493
`
`479
`
`&
`FLAG AS FAULT CONDITION
`YE5 ENTER CORRESPONDING FAULT
`CODE 8 TIME/DATE STAMP IN
`
`
`FAULT STACK IN NOVRAM
`
`
`
`
`
`
`DIAGNOSTIC
`FAILED?
`
`“W”
`CONDITION)
`437
`"0
`LOOP COUNT<-LOOP coum + 1
`
`
`
`484
`EXECUTE FAULT KISS,
`ROUTINE 1800
`;
`
`489
`
`L
`
`
`
`LOOP COUNT‘-O '
`
`492
`
`19
`
`

`
`US. Patent Jun. 19, 1990
`
`Sheet 19 of 35
`
`4,934,196
`
`ENTER .
`FIG . 15A
`MENU
`
`ROOTINE
`
`9:‘ ExIT
`(NORMAL RETURN}
`
`F I G . 15
`
`FIG
`15A
`Fm
`15B
`
`HAS USER
`SELECTED TICKET
`PRINTER?
`
`r1509
`ACCESS TIME, OATE O FLOM TOTALs
`- (RESETTABLE TOTALIZER & INVENTORY TOTAL)
`O PRINT ON TICKET USING TICKET PRINTER
`
`71512
`I
`DISPLAY INVENTORY TOTAL
`AS NEXT MENu ITEM
`r1514
`i
`EXECUTE SCALING PARAMETER
`INPOT ROOTINE 1600
`
`{I521
`DISPLAY CURRENT VALUE DF SPAN DE
`FREQUENCY DUTPUT D PERMIT USER TD
`SEDUENTIALLY SELECT DESIRED SPAN
`I
`r1524
`DISPLAY CURRENT VALUE OF FULL SCALE
`OOTPOT FREQUENCY PERCENTAGE 8 PERMIT
`USER TO CHANGE PERCENTAGE
`
`1'1527
`DISPLAY CURRENT ANALOG v/I OOTPOT MOOE
`FUR v: 0-5 OR 1-5 VULTS
`FOR 1: 0-20 OR 4-20 Ma; O
`PERMIT USER TO CHANGE MORE
`r1530
`I
`DISPLAY 8 ALLDN USER TO SELECT
`CURRENT ANALOG V/I FULL SCALE PERCENTAGE
`G PERMIT USER TO CHANGE PERCENTAGE
`I
`
`20
`
`

`
`US. Patent
`
`Jun. 19, 1990
`
`Sheet 20 of 35
`
`4,934,196
`
`FIG - 155
`
`EXECUTE SERIAL COMMUNICATION
`PARAMETER ENTRY RUUTINE 1700
`
`1533
`
`SEDUENTIALLY DISPLAY ALL ENTRIES
`IN FAULT STACK sTUREU IN NDVRAM
`
`536
`
`538
`
`.
`DISPLAY CURRENT
`TIME 8 DATE
`
`YES
`
`1537
`ND
`
`1539
`ALLDH USER TO CHANGE TIME 8
`DATE IN REAL TIME CLOCK
`
`1542
`
`
`
`RESET MASS TOTALIZERS
`TO ZERO
`
`USING USER SELECTED PERCENTAGES OBTAINED
`THROUGH SCALING PARAMETER INPUT ROUTINE 700
`CALCULATE, NUMERICAL VALUES FOR
`HIGH ALARM LEVEL VALUE
`LON ALARM LEVEL VALUE
`LOM FLOM CUTOFF VALUE
`FREQUENCY CONSTANT
`V/I CONSTANT
`
`IN TERMS OF NORMALIZED MASS UNITS
`
`15
`+5VPOMER
`OK?
`
`F UL CNITI N) ND
`A‘
`7 °”
`0
`
`551
`CDFERESEPNAEDIFNSJLIRAUCIIIEDCIIIDIEJNS EIIEANET/EIJRATE
`STAMP IN FAULT STACK IN NOVRAM
`1554
`
`54BYES
`
`557
`SAVE ALE CALCULATED EAWETEE5
`“SE” SELECTIONS 1” “W”
`
`v
`EXECUTE FAULT
`'6‘ EX”
`RUUTINE 1800
`(RETUN TD ENTRY
`POINT A IN MAIN PROGRAM 1400)
`
`' EXIT (NORMAL
`.‘ RETURN)
`
`21
`
`

`
`U.S. Patent
`
`Jun. 19, 1990
`
`Sheet 21 of 35
`
`4,934,196
`
`ENTER 93
`
`YES
`
`1501
`
`NO
`
`16A
`FIG.
`SCALING PARAMETER
`INPUT ROUTINE
`E99
`
`
`
`
`
`1606
`-READ METER SIZE PHASE MEASUREMENT FILTER TIME
`CONSTANT AND VERNIER INDEX FROM INPUT SWITCHES
`-PERFORM TABLE LOOK UP, USING METER SIZE. TO
`ALLOW USER TO SEGUENTIALLY DISPLAY AND SELECT
`OUTPUT MASS AND MASS FLOH RATE UNITS {FOR LCD
`DISPLAY, V/I AND FREDUENCY OUTPUTS)
`I
`
`
`
`
`
`FIG ,
`
`FIG.
`
`16A
`
`1603
`
`
`DISPLAY CURRENT OUTPUT
`
`G
`UNITS (FOR LCD DISPLAY,
`V/I G FREOUENCY OUTPUTS)
`
`
`
` DOWNLOAD VALUES FOR FILTER TIME
`CONSTANT AND VERNIER INDEX
`
`TO TIME INTERVAL MEASUREMENT
`151°
`CIRCUITS VIA DATA LINES 36
`
`
`YES
`
`
`
`NO
`
`
`
`
`
`DISPLAY CURRENT OUTPUT
`PERFORM TABLE LOOK UP, USING METER
`
`
`UNIT FOR SCALED
`SIZE TO ALLOW USER TO SEDUENTIALLY
`PULSE OUTPUT
`DISPLAY 8 SELECT OUTPUT UNITS
`
`FOR SCALED PULSE OUTPUT
`
`
`IE3 No
`
`1520
`
`1523
`
`DISPLAY CURRENT
`HIGH ALARM LEVEL
`
`1626
`
`ALLOM USER TO DISABLE HIGH ALARM OR
`SET HIGH ALARM LEVEL IN INCREMENTS
`OF .11 OF F.S. READING
`
`22
`
`22
`
`

`
`U.S. Patent
`
`Jun. 19, 1990
`
`Sheet 22 of 35
`
`4,934,196
`
`I
`YES
`
`1530
`
`NO
`
`FIG. 165
`
`1536
`
`DISPLAY CURRENT
`LDM ALARM LEVEL
`
`ALLDM USER TO DISABLE LON ALARM
`DR SET LUM ALARM LEVEL IN INCREMENTS DF
`.11 DF F.S. READING
`
`
`
`DISPLAY CURRENT LDM
`FLOM CUTDFF VALUE
`
`1646
`
`ALLUM USER TO SELECT LDM
`FLUH CUTDFF VALUE AS:.2,.5
`1 .2 .5, DR 10% DF F.S. READINGS
`
`1550
`
`Yes 1 1552
`
`DISPLAY CURRENT VALUE OF
`INPUT FILTER TIME CONSTANT
`
`ALLDN USER TO SELECT INPUT
`FILTER TIME CONSTANT, TC.
`(.2,.5,1,2,4,7 DR 15 sec)
`
`9:0 EXIT
`
`23
`
`23
`
`

`
`U.S. Patent
`
`Jun. 19,1990
`
`Sheet 23 of 35
`
`4,934,196
`
`FIG. 17
`
`Q ENTER
`
`SERIAL PARAMETER
`INPUT ROUTINE
`
`mm
`
`
`
`ALLOM USER TO SELECT DESIRED
`TYPE OF SERIAL COMMUNICATION
`(RS-232C, RS-485 OR NONE)
`
`DISPLAY CURRENT
`TYPE OF SERIAL
`COMMUNICATION
`
`
`
`
`
`
`
`
`ALLON USER TO SELECT DESIRED PARITY
` (ODD, EVEN, NONE)
`
`DISPLAY CURRENT PARITY
`
`24
`
`
`ALLOW USER TO SEOUENTIALLY
`DISPLAY C SELECT DESIRED BAUO RATE
`(150 BAUD - 19.2 kBAUDT
`
`
`
`DISPLAY CURRENT
`
`BAUD RATE
`
`24
`
`

`
`U.S. Patent
`
`Iun.19,1990
`
`Sheet 24 of 35
`
`4,934,196
`
`
`
`
`
`SET FAULT
`ALARM OUTPUT
`
`810
`
`FIG .
`
`1 8
`
`FAULT ROUTINE
`
`LEM
`
`
`
`DISPLAY LATEST
`
`O20
`
`ENTRY (FAULT CODE
`
`DATE 8 TIME)
`
`IN FAULT STACK
`
`
`
`O30
` CLEAR
`PUSHBUTTON
`DEPRESSED?
`
`
`
`
` CLEAR
`INSTRUCTION
`RECEIVED OVER
`SERIAL INPUT?
`
`
`
`(WAIT FOR USER
`INTERVENTION)
`
`(RETURN TO ENTRY POINT A
`IN HDSTTLP MAIN PROGRAM 1400)
`
`25
`
`25
`
`

`
`U.S. Patent
`
`Jun. 19,1990
`
`Sheet 25 of 35
`
`4,934,196
`
`0:0 ENTER (100 msec INTERRUPT)
`
`I903
`FLAG AS FAULT CONDITION,
`R
`ENTER CORRESPONDING FAULT
`CODE G TIME/DATE STAMP IN
`FAULT STACK IN NOVRAM
`
`
`
`
`
`
`
`
`
`
`
`
`1905
`EEESVKEF
`
`9:4 EXIT
`
`(RETURN TO ENTRY POINT A
`IN HOST
`P MAIN PROGRAM 1400
`L‘
`
`J
`
`FLAG FAULT CONDITION. AND
`
`
`
`
`
`
`
`ERA“A“T?T§‘”RAPE‘}”o”AIF“E“RAJ
`
`IN FAULT STACK IN NOVRAM
`1908
`
`1909
`
`F15- 194
`100 msec INTERRUPT
`ROUTINE
`M
`
`
`
`
`-1901
`HAS
`
`YES
`HATCH [me
`
`
`TIMER TIMED
`OUT?
`
`"0
`1904
`EEEEENGUFTNARE TIMER
`sjcoUNT§’—-TINEUUTQ
`
`1906
`
`F_‘[G_ 19
`
`FIG.
`
`19A
`
`FIG. 198
`
`FIG.
`
`190
`
`DECREMENT SOFTWARE TIMER,
`S_C0UNT1:
`S_COUNT1——S_CUUNT1 - 1
`
`1907
`
`
`
`
`
`
`HAS
`SOFTWARE TIMER
`YES
`s.c0U~T1Ti-FRUNTFRT
`
`
`TINEU OUT?
`i.e.
`(FAULT
`LCUUNTF 0?)
`
`CONDITION)
`
`EXECUTE FAULT ROUTINE 1800
`
`9Q
`
`‘ EXIT
`
`N0
`EXECUTE RATE FACTOR CALCULATION
`ROUTINE 2000 TO CALCULATE TEMPERATURE
`COMPENSATED RATE FACTOR, RF
`
`1911
`
`1914
`
`[RETURN TO ENTRY POINT A
`IN HOST [JP MAIN PROGRAM 1400)
`
`
`
`ACCESS LATEST At
`VALUE OBTAINED FROM
`TIME INTERVAL
`MEASUREMENT CIRCUIT 30
`
`
`
`
`
`
`
`1917
`
`UPDATE FLDM DIRECTION OUTPUT
`GIVEN SIGN OF At
`
`1920
`
`CALCULATE NORMALIZED MASS FLOM
`RATE (IN mg/sec):
`RATE <-At
`* RF
`
`RATEa "-RATE
`
`26
`
`26
`
`

`
`U.S. Patent
`
`Jun. 19,1990
`
`Sheet 26 of 35
`
`4,934,196
`
`FIG. 19B
`
`
`
`1925
`
`
`RATE < LON
`FLON CUTOFF
`VALUE?
`
`
`
`
`
`
`1932
`
`RESET HIGH
`RATE > HIGH
`ALARM OUTPUT
`ALARM LEVEL
`
`VALUE?
`
`
`
` SET HIGH
`ALARM OUTPUT
`
`1939
`
`RESET LON
`ALARM OUTPUT
`
`
`RATE < LON
`ALARM LEVEL
`VALUE?
`
`SET LON
`ALARM OUTPUT
`
`
`PERFORM TABLE LOOK UP TO ACCESS
`APPROPRIATE MASS CONVERSION FACTOR, MCF
`
`FOR CONVERTING NORMALIZED RATE, RATE
`INTO DESIRED OUTPUT MASS UNIT/SECOND
`(e.g.
`lbs/sec)
`CALCULATE
`
`
`
`
`
`RATE 5-” HATE x MCF
`
`
`
`
`
`
`
`27
`
`27
`
`

`
`U.S. Patent
`
`Jun. 19,1990
`
`Sheet 27 of 35
`
`4,934,196
`
`FIG. 19C
`
`1943
`
`
`
`
`SET: TOTALg1d"' mm; AND
`UPDATE TOTALS:
`TOTAL‘-RATES + mm
`mv TOTAL<- mes + INV mm
`
`
`
`
`1945
`
` CLEAR
`PUSHBUTTON
`
`
`DEPRESSED?
`
`
`NO
`
`1943
`
`YES
`
`SEE
`TOTAL‘- 0
`
`1950
`
`STORE VALUES OF TOTAL 8
`INV TOTAL IN NOVRAM
`
`PRODUCE A PULSE AT SCALED PULSE OUTPUT IF THE VALUE
`OF
`(TOTAL-TOTALoldT Z USER SELECTED OUTPUT UNIT
`
`1953
`
`1956
`
`
`
`CONVERT RATE3 TO DESIRED OUTPUT TIME UNIT USING
`APPROPRIATE TIME SCALING FACTOR. TF,
`(e.g.
`lbs/min)
`TO YIELD MASS FLOM RATE VALUE FOR DISPLAY. RATED:
`
`
`
`RATED--RATE3 x TF
`
`

`
`1959
`
`CONVERT RATED O TOTAL TO BCD,&
`DISPLAY RATED 8 TOTAL
`
`1962
`
`UPDATE FREOUENCY C V/ I OUTPUTS USING
`NORMALIZED RATE VALUES RATE 5} RATE‘-5:
`
`
`
`OUTPUT FREO.-- RATE * FRED. CONSTANT
`V/I OUT --RATEa X V/I CONSTANT
`
`
`
`28
`
`28
`
`

`
`U.S. Patent
`
`Jun. 19,1990
`
`Sheet 28 of 35
`
`4,934,196
`
`FIG. 190
`
`1987
`
`
`EXECUTE MENU
`
`
`
`ROUTINE 1500
`
`
`
`
`
`
`
`
`MENU
`pU3H3UT1gN
`_DEpgE33EDg
`
`1973
`
`
`
`EXECUTE ZERO
`FLOU OFFSET
`ROUTINE 2200
`
`
`ADJUST
`FOR ZERO
`FLOH?
`
`
`
`
`
`SET DIAGNOSTIC
`REOUEST FLAG
`
`
`
`
`
`
`0:0 EXIT
`
`(RETURN)
`
`29
`
`29
`
`

`
`U.S. Patent
`
`Jun. 19,1990
`
`Sheet 29 of 35
`
`4,934,196
`
`FIG. 20
`
`RATE FACTOR
`CALCULATION ROUTINE
`
`EDOQ
`
`
`
`ENTER
`
`
`
`t a/d.
`READ RTD TEMPERATURE,
`THROUGH A/D 220 (FIG. 3
`
`
`
`
`
`
`FROM
`READ VALUE OF METER FACTOR, MF.
`INPUT SMITCHES 8 ACCESS APPROPRIATE
`TEMPERATURE COEFFICIENT VALUE, k.
`FROM MEMORY
`
`
`
`
`CALCULATE RATE FACTOR, RF,
`CALCULATE RATE FACTOR, HF.
`AS:
`AS:
`
`RF-—MF x (1 + kTf)
`(1 . flf)
`RF——MF as
`& smns IN NOVRAM
`& STORE IN NUVHAM
`
`
`
`
`
`
`
`30
`
`
`
`
`
`EXECUTE FILTER ROUTINE 2100
`TO YIELD FILTERED TEMPERATURE VALUE, Tf
`
`30
`
`

`
`U.S. Patent
`
`Jun. 19,1990
`
`Sheet 30 of 35
`
`4,934,196
`
`93 ENTER
`
`3110
`
`ACCESS APPROPRIATE DIGITAL FILTER
`PARAMETERS [T1 8 T2) FOR
`TEMPERATURE MEASUREMENT FILTERING
`
`
`
`
`
`FIG. 21
`
`FILTER ROUTINE
`HE
`
`21
`
`CALCULATE
`
`R‘-R - T1
`
`
`
`
`
`STORE VALUES OF FILTER
`PARAMETERS
`(T1 8 T2)
`IN
`NOVRAM FOR SUBSEGUENT USE
`
`
`
`
`
`SAVE FILTER OUTPUT VARIABLE
`
`
`
`
`T2. AS FILTERED TUBE
`TEMPERATURE. Tf,
`IN NOVRAM
`
`
`
`
`31
`
`

`
`US. Patent
`
`
`
`Jun. 19, 1990
`
`Sheet 31 of 35
`
`4,934,196
`
`FIG. 22
`
`9
`”
`
`FIG
`22A'
`
`FIGS
`22B
`
`FIG. 22A
`ZERO FLOW OFFSET
`ROUTINE
`2%
`
`2205
`DISPLAY APPROPRIATE BANNER
`
`.
`
`SAVE PREVIOUS ZERO ELOH OFFSET VALUE:
`OFFSET OLD —- OFFSET
`
`2210
`
`2215
`SET CURRENT VALUE OF ZERO FLOU OFFSET TO ZERO:
`OFFSET<-0
`
`MAIT FOR TRANSIENTS TO SETTLE OUT
`
`2220
`
`
`
`INITIALIZE PRIOR VALUE OF SLIDING AVERAGE
`EULD, TO ZERO AND SET SAMPLE COUNTER, m,
`EOLD"- 0
`
`m-0
`
`2230
`
`
`TD ZERO
`
`YES
`
`N0
`
`2240
`
`INCREMENT SAMPLE COUNTER BY ONE
`m<-m+1
`
`2245
`
`OBTAIN CURRENT TIME INTERVAL MEASUREMENT
`(i.e.z§t) FROM TIME INTERVAL MEASUREMENT
`CIRCUIT 30
`
`32
`
`32
`
`

`
`U.S. Patent
`
`Jun. 19,1990
`
`Sheet 32 of 35
`
`4,934,196
`
`FIG. 22B
`
`UPDATE CALCULATION OF SLIDING AVERAGE, E, OF
`zxt MEASUREMENTS,
`z§iM2
`THAT OCCURRED DURING INTERVAL:
`
`EOLD - In +AtM
`E ‘* _nT'+"T_
`
`DETERMINE MAXIMUM AND MINIMUM zxt VALUES
`AND STORE AS MAX AND MIN, RESPECTIVELY
`
`
`
`
`
` STORE CURRENT SLIDING AVERAGE VALUE AS
`
`PRIOR VALUE OF SLIDING AVERAGE
`
`
`
`CALCULATE
`A‘-MAX - MIN
`
`
`
`
`MUM PERMISSIBLE
`3230
`
`SET zeno new OFFSET
`TU PREVIOUS VALUE:
`OFFSET-OFFSETQLD
`
`
`
`
`SET OFFSET TO HOST
`RECENT VALUE OF zxt AND
`
`FLAG FAULT CONDITION, AND
`ENTER CORRESPONDING FAULT
`SAVE IN NDVRAM
`
`CODE AND TIME/DATE STAMP IN
`FAULT STACK IN NDVRAM
`
`_
`
`_
`
`2285
`
`
`
`EXECUTE FAULT
`ROUTINE 1800
`
`
`
`
`
`
`
`‘V
`(RETURN TO ENTRY POINT
`A IN MAIN PROGRAM 500) N
`
`33
`
`33
`
`

`
`U.S. Patent
`
`Jun. 19,1990
`
`Sheet 33 of 35
`
`4,934,196
`
`FI G. 23
`
`ENTER 9:4 [OCCUHENCE UF
`Axt MEASUREMENT
`COMPLETE INTERRURT)
`
`FIG _ 23A
`RESET INPUT
`- UVERFLUM FLAG
`
`33°‘;
`
`2315
`
`FI6. 23A
`TIME INTERVAL MEASUREMENT
`INTERRURT RUUTINE
`2.399
`
`15
`ExcESS DRIVE
`N0
`
`SIGNAL HIGH?
`
`2317
`
`
`
`MAIT 27 MIcRoSEcUNUS
`
`(FAULT cUNUITIoN)
`
`
`FLAS FAULT CONDITION, AND
`ENTER CORRESPONDING FAULT
`CODE AND TIME/DATE STAMP IN
`2324
`
`
`FAULT STACK IN NUVRAM
`
`
`
`
`
`FRUM TIME INTERVAL
`MEASUREMENT CIRCUIT 30
`THROUGH LEADS 35'
`
`3343
`
`
`
`
`FLAG FAULT CONDITION
`AND ENTER CORRESPONDING
`FAULT CODE AND
`TIMER/UATE STAMP
`
`
`IN FAULT STACK
`IN NOVRAM
`
`
`
`
`EXECUTE FAULT RUUTINE 1800
`
`
`
`9:‘ EX”
`P01N(TEAINH0Sm,MAIN
`PHOGRAM 1400)
`
`R TURN TU ENTRY
`
`2331
`
`FAULT
`MESSAGE FRoM TIME
`
`2339
`
`
`INTERN/IAFTLcL54IETAS3’oH?EMENT
`
`
`
`(At
`No
`VALUE
`READ)
`
`EXECUTE FAULT
`RUUTINE 1800
`
`YES
`
`EXIT 9:4 2347
`RETURN TO ENTRY POINT A
`IN HOST MICHUPHUCESSOR
`MAIN PROGRAM 1400
`
`34
`
`34
`
`

`
`US. Patent
`
`Jun. 19, 1990
`
`Sheet 34 of 35
`
`4,934,196
`
`2355
`
`
`FLAG FAULT CONDITION,
`AND ENTER CORRESPONDING
`FAULT CODE AND TIME/UATE
`STAMP IN FAULT STACK
`
`IN NOVRAM
`2358
`
`
`
`EXECUTE FAULT RUUTINE 1800
`
`
`
`390 TIME” OUT?
`‘SEE FIG-3’
`
`
`
`(FAULT
`CONDITION)
`
`YES
`
`
`
`
`
`NO
`
`
`SOFTWARE TIMER
`_
`1_e_ COUNTEII 3_C0UNT
`
`
`WED OUT? M 3
`S__COUNT2=0?T
`
`
`OX4 EXIT
`PTJUIRTURNIITOHDUTRYP
`MAIN PRUSRAM MOD)
`FLAG FAULT CONDITION AND
`'
`ENTER CORRESPONDING FAULT
`CODE ANU TIME/DATE STAMP
`
`IN FAULT STACK IN NOVRAM
`(FAULT
`CONDITION) 3353
`
`
`
`
`
`2357
`
`
`
`YES
`
`235°
`
`FIG.23B
`
`N0
`
`2352
`
`RESET TIMER 290
`T0 100 M
`
`2353
`
`‘
`TIRERT PETTTTE
`.
`_
`I:
`S_cUUNT .._ TIMEUUT1
`
`DECREMENT SDFTHARE
`TIMER‘ 3 COUNT?
`‘_ -
`3-COUNT?
`3—C°““T2
`
`2354
`
`_
`
`1
`
`"0
`
`2370
`INPUT 0;/ERFLOH
`'
`
`YES
`
`EXECUTE FAULT ROUTINE 1800
`93 EXIT
`(RETURN To ENTRY POINT
`A IN HOSTIIP MAIN
`
`
`
`
`+5v
`
`OK?
`YES
`
`9379
`
`2334
`
`SUBTRACT zERo FLOW OFFSET:
`At—-At - OFFSET
`
`I
`
`2386
`
`‘
`
`SAVE At IN NOVRAM
`
`9:4 EXIT
`(RETURN)
`
`(FAULT CDNDITIDNT
`FLAG FAULT CONDITION. AND
`ENTER CORRESPONDING FAULT
`CODE AND TIME/DATE STAMP
`IN STACK IN NUvRAM
`
`
`
`
`
`
`
`
`
`
`
`
`INPUT
`DVERFLQH FLAG
`gm
`
`(FAULT
`
`CONDITION’
`
`2374
`
`
`
`9330
`
`N0
`
`EXECUTE FAULT RUUTINE IUUU
`
`9375
`
`v
`
`M EX”
`(RETURN TU ENTRY
`PUINT A IN HOST UP
`MAIN PROGRAM 1400)
`
`SET INPUT UVERPLUN FLAG I
`
`.
`N EXIT
`‘
`RETURN’
`
`35
`
`35
`
`

`
`U.S. Patent
`
`Jun. 19,1990
`
`Sheet 35 of 35
`
`4,934,196
`
`mommmuomm
`
`mm
`
`
`
`:m_zH¢W~mxu__
`
`mmhmz
`
`muHzo¢HumWm
`
`ummmwmmummmnmmummmnmm
`
`
`WWWWWWWWWWWWWWWWWWWWW
`
`
`
`mzHWW<HHzmmm¢;Ham¢H=-~
`
`vm.mHL
`
`mmvuwm
`
`muHzomHumWw
`
`mm_m=
`
`muHzo¢HumWm
`
`36
`
`
`
`
`
`WEEEsews
`
`¢mWmz<¢_>geHm=uWmmWmz<¢H>goHm=u_
`
`
`
`
`
`W151:mzm=m>I_7
`
`«$.53.
`
`36
`
`
`
`
`
`

`
`1
`
`4,934,196
`
`2
`oppose the generated Coriolis forces are predominantly
`linear spring forces. Consequently, these spring forces
`cause one of the two side legs of the flow tube to pass
`through the midplane of oscillation before the other side
`leg does so. As such, the mass flow rate of the fluid that
`flows through the flow tube is proportional to the width
`of the time interval (time delay) occurring between the
`passage of the respective side legs of the tube through
`the mid-plane of oscillation. This time interval and,
`hence, the mass flow rate of the fluid can be measured,
`within a reasonable degree of accuracy, using optical
`sensors as disclosed in the ’45O reissue patent, or by
`using electromagnetic velocity sensors, as disclosed in
`U.S. Pat. No. 4,422,338 (issued to Smith on Dec. 27,
`1983).
`The ’45O reissue patent also teaches the use of a spring
`arm which extends from the manifold along with the
`U-shaped flow tube. When this spring arm is sinusoi-
`dally driven in opposition to the U-shaped flow tube,
`the combination of spring arm and U-shaped flow tube
`operates as a tuning fork. This operation substantially
`attenuates undesirable vibrations occurring at the tube-
`manifold and spring arm-manifold interfaces. This at-
`tenuation is extremely advantageous for the following
`reason. In practice, these undesirable vibrations often
`occur, particularly at the tube-manifold interfaces, with
`sufficient intensity to effectively mask tube movement
`caused by the small Coriolis forces and thereby intro-
`duce significant errors into the time interval measure-
`ments of the passage of the side legs of the U-shaped
`tube through the mid-plane of oscillation. Because the
`mass flow rate is proportional to the time interval mea-
`surements, these errors inject significant inaccuracies
`into the measured mass flow rate. Tuning fork operation
`substantially cancels these undesirable vibrations and
`thereby significantly increases measurement accuracy.
`In addition, reducing vibrations that occur at the mani-
`fold also decreases long term fatigue effects induced by
`vibrations that might otherwise occur on the meter
`mounting structure. The substitution of a second flow
`tube, having a similar configuration to the first flow
`tube, for the spring arm, provides an inherently bal-
`anced tuning fork structure. The inherent symmetries in
`such a structure further reduce undesirable vibrations
`and thereby further increase measurement accuracy.
`This teaching has been recognized in the design of den-
`simeters wherein measurements of the resonant fre-
`quency of filled flow tubes are used to determine the
`density of fluids in the tubes. See, for example, U.S. Pat.
`Nos. 2,635,462 (issued to Poole et al during Apr. 1957)
`and 3,456,491 (issued to Brockhaus during July 'l969).
`The art also teaches the use of a serial double flow
`tube configuration in a Coriolis mass flow rate meter.
`Such a configuration is described in U.S. Pat. Nos.
`4,127,028 (issued to Cox et. al. on Nov. 28, 1978);
`4,192,184 (also issued to Cox et al on Mar. ll, 1980) and
`4,311,054 (also issued to Cox et al on Jan. 19, 1982).
`Here, incoming fluid sequentially passes through one
`flow tube, then through an interconnecting conduit and
`lastly through another flow tube. Unfortunately, series
`type double flow tube meters possess an inherent draw-
`back: since all the fluid must pass through two flow
`tubes instead of one, the fluid pressure drop across the
`meter is greater than that of a non-serial type flow me-
`ter. One way to compensate for this increased pressure
`drop is to increase the pressure at which the incoming
`fluid is supplied to the meter. Unfortunately, this gener-
`
`‘
`
`CORIOLIS MASS FLOW RATE METER HAVING A
`SUBSTANTIALLY INCREASED NOISE
`IMMUNITY
`
`BACKGROUND OF THE INVENTION
`1. Field of the Invention
`
`10
`
`20
`
`25
`
`30
`
`35
`
`The present invention relates to apparatus for a Cori-
`olis mass flow rate meter which is substantially immune
`to noise, and more particularly, to such a meter that is
`substantially unaffected by noise that occurs at any
`frequency different from a fundamental frequency at
`which the flow tube(s) in the meter vibrates and meth-
`ods for use in such a meter.
`2. Description of the Prior Art
`Whenever a fluid flows through a rotating or oscillat-
`ing conduit, Coriolis forces are produced which are
`perpendicular to both the velocity of the fluid moving
`through the conduit and the angular velocity of the
`rotating or oscillating conduit. The magnitude of these
`Coriolis forces is proportional to the product of the
`mass flow rate of the flu

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket