throbber
0053] -699‘/“/E30/4203-0223$02.00/O
`
`]’HAnMAC0L0(;iCAi. REVIEWS
`Copyright CF?) 1990 by The American Society for Pharmacology and Flxperimental Therapeutics
`
`V01-427 N0- 3
`Printed in U. S.A.
`
`Antiepileptic Drugs: Pharmacological Mechanisms and
`Clinical Efficacy with Consideration of Promising
`Developmental Stage Compounds
`
`‘Neuronal Excitabilitgy Section, Medical Neurology Branch, and 20/‘flee of the Director, National .’n.slit'ute of Neurological Disorders and Stroke,
`National Institutes of Health, Bethesda, Maryland
`
`MICHAEL A. ROGAWSKIW AND ROGER J. PORTER”
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`I. Introduction .
`ll. Drugs used primarily in the treatment of partial seizures and generalized tonic~clonic seizures .
`A. Phenytoin .
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`_
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`1. Block of voltage-dependent Na+ channels .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`2." Block of voltage~dependent Ca2+ channels .
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`,
`.
`.
`3. Synaptic actions .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. ,
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`,
`,
`,
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`4. Special considerations applicable to the epileptic brain .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`5. Clinical efficacy .
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`B. Other hydantoins and phenacemide .
`.
`.
`.
`.
`_
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`..
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`C. Carbamazepine .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`1. Block of voltage-dependent Na" channels .
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`2. Interaction with adenosine receptors .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`3. Effects on catecholamine systems .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`,
`.
`.
`.
`4. Interaction with peripherahtype benzodiazepine receptors .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`5. Clinical efficacy
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`D. Barbiturates .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`1. Block of voltage-dependent Ca2+ channels .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`2. Potentiation of GABA~mediated inhibition .
`3. Relevance of GABAA receptor interactions to anticonvulsant efficacy .
`4. Other effects on voltage~dependent ion channels .
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`5. Block of excitatory transmission .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`6. Clinical efficacy .
`.
`.
`.
`,
`.
`.
`.
`.
`.
`,
`.
`.
`.
`_
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`. Drugs with a broad spectrum of clinical antiepileptic activity .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`A. Benzodiazepines
`,
`1. Potentiation of GABA-mediated inhibition .
`.
`2. Chronic effects .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`Nombenzodiazepine receptor mediated actions
`.
`,
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`4. Clinical efficacy .
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`B. Valproate .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`1. Effects on GABA systems .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`2. Block of voItage—dependent Na“° channels .
`.
`.
`.
`.
`3. Toward an understanding of the mechanism of action of valproate .
`4. Clinical efficacy .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. Drugs used primarily in the treatment of absence seizures .
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`A. Ethosuximicle .
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`1. Thalamocortical mechanisms in absence epilepsy .
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`2. Block of Twtype voltage—dependent Ca2+ channels .
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`,
`.
`3. Clinical efficacy
`B. Trimethadione
`
`.
`.
`.
`,
`.
`.
`.
`.
`
`.
`.
`.
`.
`,
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`,
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`,
`
`.
`.
`.
`.
`.
`.
`.
`.
`
`,
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`,
`,
`
`. 224
`. 226
`, 226
`. 227
`. 229
`. 229
`. 229
`. 230
`. 230
`. 230
`. 231
`. 232
`. 233
`. 233
`233
`. 234
`. 234
`. 235
`. 236
`. 236
`. 236
`. 237
`. 238
`238
`. 238
`. 240
`240
`. .. 241
`.
`.
`. 241
`.
`.
`. 242
`.
`.
`. 243
`.
`.
`. 243
`.
`.
`. 244
`.
`.
`. 244
`.
`.
`. 244
`.
`.
`. 244
`.
`.
`. 245
`
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`,
`,
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`,
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`,
`.
`._,
`
`.
`._
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`
`.
`,
`.
`.
`.
`.
`,
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`I
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`;
`.
`.
`.
`.
`,
`.
`.
`.
`
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`
`C. Phensuximide and methsuximide
`D. Acetazolamide
`
`Actavis v. Research Corp. Techs.
`|PR2014—O1126
`
`RCT EX. 2014 page 1
`
`Actavis v. Research Corp. Techs.
`IPR2014-01126
`RCT EX. 2014 page 1
`
`

`
`ROGAWSKI AND PORTER
`
`.
`
`A. Drugs whose anticonvulsant profile is similar to phenytoin .
`. Zonisamide .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`lmidazoles: Denzimol .
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. Imidazoles: Nafimidone .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`,
`,
`.
`.
`.
`.
`. CGS 18416A .
`.
`.
`.
`.
`,
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. Imidazoles: Other arylalkylimidazoles .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. Lamotrigine .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. Ralitoline .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`,
`,
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`,
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`,
`
`.
`,
`
`.
`,
`
`.
`,
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`.
`.
`,
`.
`.
`,
`.
`.
`
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`.
`.
`,
`.
`.
`.
`.
`.
`
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`,
`,
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`.
`.
`.
`.
`,
`.
`.
`.
`
`.
`.
`
`.
`.
`.
`.
`.
`.
`,
`.
`
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`
`,
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`
`,
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`,
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`,
`
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`,
`
`.
`_
`.
`,
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`
`. 248
`.
`_
`. 248
`.
`.
`. 249
`.
`.
`. 249
`.
`.
`. 249
`.
`.
`. 249
`.
`.
`. .. 250
`. .. 251
`
`.
`,
`
`.
`.
`
`. .. 251
`. .. 251
`
`. Topiramate .
`. Flunarizine .
`.
`
`.
`.
`
`.
`.
`
`10. Oxcarbazepine .
`11. Rernacemide .
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`,
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`,
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`,
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`,
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`,
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`,
`
`.
`.
`
`.
`.
`
`.
`,
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`_
`
`,
`.
`
`.
`.
`
`,
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`. .. 252
`.
`.
`. 253
`
`.
`
`,
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`. 255
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`B. Progabide, an agonist of the GABA receptor—Cl“" channel complex .
`C. Drugs which potentiate inhibition by an action that does not involve an interaction with the
`GABA receptor channel complex .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. 254
`1. Vigabatrin .
`.
`,
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. 254
`2. Stiripentol .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. 256
`3. Milacemide .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. 256
`4. Taltrimide .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. 257
`5. CL966 .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. 258
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`,
`.
`,
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`,
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`,
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`,
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`,
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`,
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`,
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`,
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`,
`
`,
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`6. Tiagabine .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`D. Drugs that bind to benzodiazepine receptors .
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`1. Clobazam .
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`,
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`_
`.
`,
`,
`,
`2. Flumazenil .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`E. Drugs that block excitatory amino acid receptors .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. Competitive antagonists of the NMDA recognition site .
`. Noncompetitive antagonists of the NMDA receptor~char1riel complex .
`. MK-801 .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`,
`,
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`_
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. ADCI
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`,
`.
`.
`.
`.
`.
`.
`. Dextrornethorphari and dextrorphan ,
`.
`.
`.
`_
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`'. Alternative strategies for NMDA receptor blockade .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`F. Drugs with a novel spectrum of anticonvulsant activity .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`1. Felbamate ,
`.
`.
`.
`_
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`. LY201116 .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`,
`,
`.
`.
`.
`
`.
`
`. Gabapentin .
`. Eterobarb .
`.
`.
`. U~54494A .
`.
`.
`. D-19275 .
`.
`.
`.
`. AHR-12245 .
`VI. Conclusion .
`.
`.
`.
`.
`.
`.
`.
`VII. References .
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`,
`.
`.
`.
`.
`
`.
`.
`.
`.
`,
`.
`.
`
`.
`.
`,
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`,
`.
`,
`.
`.
`
`.
`.
`.
`.
`,
`.
`.
`
`.
`.
`.
`.
`,
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`,
`.
`.
`.
`,
`,
`.
`
`.
`.
`.
`.
`,
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`,
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`_
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`_
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`,
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`,
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`,
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`,
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`,
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`,
`.
`.
`.
`.
`.
`
`,
`.
`.
`.
`.
`.
`.
`
`.
`.
`_
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`,
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`,
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`_
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`,
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`
`.
`.
`.
`,
`.
`.
`.
`
`. 258
`. 258
`,
`.
`. .. 258
`. .. 259
`.
`.
`. 259
`.
`.
`. 260
`.
`.
`. 261
`. .. 262
`. .. 264
`.
`.
`. 265
`.
`.
`. 265
`.
`.
`. 266
`. .. 266
`. .. 267
`
`.. 267
`.
`.
`. .. 268
`.
`.
`. 268
`. .. 269
`. .. 269
`. .. 270
`. .. 270
`
`.
`.
`.
`.
`.
`.
`.
`
`.
`.
`.
`.
`.
`.
`.
`
`I. Introduction
`
`Epilepsy is one of the most common afflictions of man.
`With a prevalence of approximately 1%, it is estimated
`that 50 million persons worldwide may have the disorder.
`Although many are well controlled with available thera-
`pies, perhaps one_qua1-tar of the total continue to have
`seizures. Since the introduction of valproate in 1978, no
`new antiepileptic drug has been approved in the United
`States for the primary therapy of epilepsy. Nevertheless,
`there is cause for optimism. A large number of promising
`compounds are currently undergoing preclinical and clin-
`ical evaluation, and several of these will undoubtedly
`
`become meaningful additions to the neurologist’s phar-
`macological armamentarium. Although many of these
`_
`‘
`compounds were discovered by the time—honored ap-
`_
`_
`_
`_
`_
`proach of empmcal drug Screening: the Creatlon of 59””
`‘"31 were based 0“ rational C0Y15id‘31'3fi0nS Of the P3310“
`physiological mechanisms of the epileptic syndromes in
`conjunction with a detailed understanding of central
`excitabillty m9Ch3niSmS and 10giC31 Principles Of drug
`d9Si8'n- In the fut‘-“'9: it can be expected that Such C071“
`siderations will play an even greater role in the process
`of antiepileptic drug development.
`Our purpose in this review is to consider the biological
`
`Actavis v. Research Corp. Techs.
`|PR2014—O1126
`
`RCT EX. 2014 page 2
`
`Actavis v. Research Corp. Techs.
`IPR2014-01126
`RCT EX. 2014 page 2
`
`

`
`MECHANISM AND EFFICACY OF ANTll<‘.Pl.LEPTlC IDRUGS
`
`mechanisms of action of currently marketed and devel~
`opmental stage antiepileptic drugs in the context of the
`clinical syndromes they are designed to treat. Since the
`time of Hughlings Jackson more than 100 years ago,
`epileptic seizures have been known to represent “an
`occasional, excessive. . .discharge of nerve tissue. .
`. .”
`(Taylor, 1931). Seizures are divided fundamentally into
`two groups: partial and generalized (Commission on
`Classification and Terminology of the International Lea-
`gue Against Epilepsy, 1981). Partial seizures have clinical
`or EEG evidence of a local onset, but the word partial
`does not imply a highly discrete focus; such a focus often
`does not exist. The abnormal discharge usually arises in
`a portion of one hemisphere and may spread to other
`parts of the brain during a seizure. Generalized seizures,
`however, have no evidence of localized onset; the clinical
`manifestations and abnormal electrical discharge give no
`clue to the locus of onset of the abnormality, if indeed
`such a locus exists (Porter, 1989).
`Partial seizures are divided into three groups: (:1) sim-
`ple partial seizures, (1)) complex partial seizures, and (c)
`partial seizures secondarily generalized. Simple partial
`seizures are associated with preservation of conscious»
`ness and usually with unilateral hemispheric involve-
`ment. Complex partial seizures are associated with alter-
`ation or loss of consciousness and usually with bilateral
`hemispheric involvement. A partial seizure may become
`secondarily generalized, i.e., may progress to a general-
`ized tonic-clonic seizure. if there is no evidence of local-
`ized onset, then the attack is a generalized seizure. The
`generalized seizures include: (a) generalized tonic—clonic
`seizures (grand mal), (b) absence seizures (petit mal), (c)
`myoclonic seizures, (d) atonic seizures,
`(:2) clonic sei«
`zures, and (f) tonic seizures. Although the majority of
`seizures occur without any obvious precipitating factor,
`in some patients seizures are triggered by environmental
`stimuli such as flickering light. Visually evoked seizures
`are not uncommon in humans but are rare in animals.
`
`On the other hand, certain mice and rats are susceptible
`to audiogenic (sound-induced) seizures, whereas true au-
`diogenic seizures (as opposed to music-induced or audi-
`tory startle—induced seizures) do not occur in humans
`(Niedermeyer, 1990). Seizures induced by a specific trig-
`gering factor are referred to as “reflex seizures.”
`Epilepsy, in contradistinction to seizures, is a chronic
`disorder characterized by recurrent seizures (Gastaut,
`1973). The “epilepsies” consist of a variety of diverse
`syndromes characterized by different seizure types, etiol-
`ogies, ages of onset, and EEG features; the classification
`of epileptic syndromes has recently been published
`(Commission on Classification and Terminology of the
`International League Against Epilepsy, 1989). The first
`major division of the epileptic syndromes is the same as
`that for seizures, i.e., into the partial epilepsies or the
`generalized epilepsies. Each of these is further subdivided
`into idiopathic (i.e., cause unknown) or symptomatic
`
`(cause known) and then according to age of onset. When
`possible, specification of a patient’s seizure disorder as a
`particular epileptic syndrome affords prognostic infor-
`mation that neither the seizure diagnosis nor the etiolog-
`ical diagnosis can provide and may assist in the selection
`of appropriate drug therapy.
`In the absence of a specific etiological understanding
`in any of the human seizure disorders, rational ap-
`proaches to drug therapy of epilepsy must necessarily be
`directed at the control of symptoms, i.e., the suppression
`of seizures. Antiepileptic drugs can control either the
`initiation and maintenance of the epileptic discharge or
`its spread within the brain. Recent advances in under-
`standing the cellular mechanisms of epileptogenesis from
`the kindling model suggest that approaches designed to
`interdict development of epilepsy may also be possible.
`Although there are a wide variety of specific molecular
`targets, all anticonvulsant drugs ultimately must exert
`their actions by altering the activity of th.e basic media-
`tors of neuronal excitability: voltage- and neurotrans-
`mitter~gated ion channels. In those cases in which drug
`mechanisms are reasonably well understood, three gen«
`eral themes encompass current views of antiepileptic
`drug action: (a) modulation of voltage-dependent ion
`channels involved in action potential propagation or
`burst generation, (1)) enhancement of GABA'l‘-mediated
`inhibition. and (c) suppression of acidic amino acid-
`mediated excitation. Because our understanding is in-
`complete, it must be recognized that these are not the
`only brain mechanisms by which currently available
`drugs could operate, nor are they the only mechanisms
`that ought to be targeted in the development of new
`drugs. Nevertheless, they do provide a useful framework
`for the classification of antiepileptic drugs and this struc-
`
`tAbbreviations: CNS, central nervous system; NMDA, N-methyl-K»
`aspartate; GABA, ~y-aminobutyric acid; CSF, cerebrospinal fluid; PTP,
`posttetanic potentiation; hm, steady~state inactivation; AMP, adenosine
`monophosphate; GTP, guanosine triphosphate; CDNA, complementary
`deoxyribonucleic acid; GABA~’1‘, GABA-wlretoglutarate transaminase;
`mRNA, messenger ribonucleic acid; THIP, 4,5,6,"/-tetrahydroisoxa
`zolo[/l—c]pyridine-3-ol; EEG, electroencephalogram;
`i.p.,
`intraperito»
`neal; p.o., oral; i.v,, intravenous; s.c., subcutaneous; i.m., intramuscular;
`GABAmide, 7-aminobutyramide; APH or AP.-5. 2~amino—’7—phospho-
`noheptanoic acid; APV or Al-"7, 2—amino-5-phosphonovalcric acid; CPP,
`3—(2—carboxypiperazin-4-yl)—propyl~1—phosphonic acid; PCP, phency—
`c lidine; PCA, 1phenyleyclohexylamine; MK-801, (+)—10,11-dihydro-
`5—methyl«v5H-dibenzo[a,d]cyclohepten—5,lO—imine or dizocilpine;
`ADCI, 5-aminocarbonyl-5H—dibenzo[a,cl]cyclohepten—5.10-irnine; LY2
`01116, 4—amino-N—(2,6~di1nethylphenyl) benzarnide; MM].-’, N-
`monornethoxymethyl-phenobar-bital; U-54494A, (i)—cis—.‘3,4~-dichl0ro—
`N—methyl1N-[2—(1.-pyrrolidinyl)-cyclohexyllbenzamidei: D»19Z"/4, 3-
`({2~amin0—6—[(4~flu1'ophenyl)rnethyllarni1‘1o—3—pyridinyl}2—oxazoli(li—
`none I-lCl); AHR—1‘224.3, 2-(4—chlorophenyl)—3H~imidazo(4,5—b]pyri—
`dlT1e~3~aCetamide; CGS 19755, cis-4-phosphonomethyl-2~piperidine—ca
`rboxylic acid; NFC 2626, Zvamino-4,5-(1,2~cyclohexyl)~”7-phosphono-
`heptanoic acid; D—CPP—ene, 1)-3—(2-carboxypiperazin-4—yl)-1~propenyl-
`1-phosphonic acid; CGP 37849, 2~amino-4—methyl-5—phosphono—3—
`pentenoic acid: CL966, [1-{2-[bis~4-(trifluorornethyl)phenyl]methoxy}
`ethyl] — l ,2,5,6~Letrahydro-- 3-pyridinecarboxylic acid.
`
`Actavis v. Research Corp. Techs.
`|PR2014-01126
`
`RCT EX. 2014 page 3
`
`Actavis v. Research Corp. Techs.
`IPR2014-01126
`RCT EX. 2014 page 3
`
`

`
`226
`
`ROGAWSKI AND PORTER
`
`ture allows the tentative categorization of the develop-
`mental stage compounds in the face of limited informa-
`tion regarding their pharmacological activity. Thus, in
`the following discussion, we often use the currently mar-
`keted drugs as prototypes and base our conclusions con-
`cerning the actions of the developmental stage corn~
`pounds on the presumed mechanisms of the prototypes.
`For each drug considered in this review, we briefly
`describe its anticonvulsant profile in animal seizure
`models because this can often give insight into its cellular
`mechanism of action. A wide variety of animal models
`are used to screen potential antiepileptic drugs (see re-
`views by Reinhard and Reinhard, 1977; Porter et al.,
`1984; Meldrum, 1986; Jobe and Laird, 1987; Lothrnan et
`al., 1988; Kupferberg, 1989a; Fisher, 1989). These include
`spontaneous or reflex models of epilepsy in inbred ani-
`mals, chemically induced seizures, and electrically in-
`. duced seizures. In addition, various models utilize chem-
`icals applied to the surface of the cortex or injected into
`the brain. Finally, the kindling model can be used to
`evaluate antiepileptic drugs. We consider the results of
`-testing with these diverse models when it is available,
`__l=__)ut we particularly focus on the data obtained in the
`maxim'al"'electrosh0ck seizure testand in the pentylene~
`tetrazol test. These two models are widely used, are
`highly reproducible, and provide a basis for comparing
`different chemical entities under relatively we1l-stand-
`ardized conditions. Results in these two models are es-
`
`"
`
`pecially apt to provide preliminary clues as to cellular
`mechanisms of action. The maximal electroshock test
`
`evaluates the ability of drugs to prevent electrically in-
`duced tonic hindlimb extension in mice and rats. Efficacy
`in this model has been shown to correlate with ability to
`prevent partial and generalized tonic-clonic seizures in
`man, and it is often" stated that this model evaluates the
`capacity of a drug to prevent seizure spread. Drugs that
`are active in the maximal electroshock test often have a
`
`phenytoin—like effect on voltage-dependent Na+ channels
`(table 1), although drugs that act specifically to block
`NMDA-type excitatory amino acid receptors or that
`increase synaptic norepinephrine levels (Burley and Fer-
`rendelli, 1984; Przegalinski, 1985) are also effective in
`this test. On the other hand, the pentylenetetrazol test
`as most commonly performed evaluates the ability of
`potential antiepileptic drugs to prevent clonic seizures
`and may correlate with activity against absence seizures;
`there are, however, several drugs that are active in this
`test but are not useful in absence attacks, such as phe-
`nobarbital. Activity in thisseizure model often indicates
`that a drug can affect GABAergic brain systems, either
`by enhancing brain GABA levels or by altering the
`sensitivity of postsynaptic GABA receptors. Specific an-
`tiabsence drugs, such as ethosuximide and trimetha—
`dione, which may act by blocking T—type voltage-depend
`ent Ca2+ channels, are also effective in the pentylenete-
`trazol test. The pentylenetetrazol model also appears to
`
`correlate with ability to retard the development of kin-
`dled seizures (Albertson et al., 1984a; Schmutz et al.,
`1988). (When activity of the drug against pentyelenete—
`trazol-induced tonic seizures is reported, the significance
`is different and is more comparable to the maximal
`electroshock test.)
`Following the discussion of drug activity in animal
`seizure models, we next consider data concerning the
`biochemical and cellular electrophysiological actions of
`the drug that may be relevant
`to its anticonvulsant
`activity in animals and man. Finally, we turn to a dis
`cussion of the clinical efficacy of the drug in human
`seizure disorders.
`
`II. Drugs Used Primarily in the Treatment of
`Partial Seizures and Generalized Tonic-Clonic
`Seizures
`
`A. Phenytoin
`
`The ideal antiepileptic would Prevent seizures without
`producing side effects that adversely affect the patient’s
`quality of life. The discovery of phenytoin (fig. 1) dem-
`onstrated that this ideal was approachable. At normal
`therapeutic serum concentrations of 10-20 pg/ml (40-80
`[.LM), phenytoin protects against seizures without causing
`sedation or otherwise interfering with normal CNS func-
`tion in most patients. In addition to revolutionizing
`epilepsy therapy, the introduction of phenytoin set a
`standard against which to measure potential new antic-
`pileptic agents. Phenytoin was the result of a search by
`Merritt and Putnam (1938) for a nonsedating analog of
`phenobarbital capable of suppressing electroshock-in-
`duced seizures in animals. The -drug has very specific
`effects on the pattern of electroshock seizures in that it
`completely abolishes the tonic phase (usually scored as
`hindlimb extension; ED,-,0, 9.5 mg/kg, i.p., in mice) but
`may enhance or prolong the clonic phase of the seizure
`(Toman et al., 1946; Swinyard et al., 1989). In contrast,
`phenytoin is ineffective against seizures induced by
`chemoconvulsants such as pentylenetetrazol, bicuculline,
`picrotoxin, penicillin, and strychnine (Swinyard et al.,
`1989; see Eadie and Tryer, 1989, for additional refer-
`ences); it is weak in protecting against myoclonic re-
`sponses in photosensitive baboons (Meldrum et al., 1975)
`and generalized seizures in alumina cream-lesioned cats
`(Majkowski et al., 1976); and it has variable effects
`against amygdaloid-kindled seizures in rats (Callaghan
`and Schwark, 1980; McNamara et al., 1989). Phenytoin
`has been shown to limit the propagation of epileptic
`activity from regions of epileptic cortex, even though it
`may actually increase the frequency of spiking in such
`foci (Morrell et al., 1959). As a consequence, it is often
`stated that phenytoin inhibits seizure spread but does
`not stop the initiation of epileptic discharges.
`Phenytoin is known to exert a wide variety of phar-
`macological actions on neurons many of which are com-
`patible with anticonvulsant activity. However, the chal-
`
`Actavis v. Research Corp. Techs.
`|PR2014—O1126
`
`RCT EX. 2014 page 4
`
`Actavis v. Research Corp. Techs.
`IPR2014-01126
`RCT EX. 2014 page 4
`
`

`
`MECHANISM AND EFFICACY OF ANTIEPILEPTIC DRUGS
`
`TABLE 1
`
`Anticonoulsant potencies and proposed cellular mechanisms of action of
`Mouse anticonvulsant screen
`(ms/ks. i-1:-)
`
`Seizure type/
`antiepileptic drug
`
`Voltage-dependent
`N51* channels
`
`ototype antiepileptic drugs*
`'l‘~type voltage-
`dependent Ca“
`channels
`
`GABAK
`receptor
`mechanisms
`
`+ +
`
`7‘
`
`Generalized tonic-clonic
`and partial seizures
`Phenytoin
`Carbamazepine
`Phenobarbital
`Broad spectrum
`Clonazepam
`Diazepam
`Valproate
`Absence seizures
`Ethosuximide
`Trimethadione
`
`No protection
`Potentiation
`13.2
`
`0.18
`0.17
`149
`
`130
`301
`
`92.7
`19.1
`272
`
`>1000
`.
`‘
`
`"‘ Abbreviations: MES, maximal electroshock (tonic) seizure test; I-""l‘Z, pentylenetetrazol (clonic) seizure test; E1350, median effective dose.
`Adapted from Porter et al. (1984) and Swinyard (1989).
`T The metabolite dimethadione was tested.
`
`ceptance, although some investigators have also impli-
`cated effects on voltage~dependent Ca2+ channels. We
`will consider the experimental observations supporting
`the idea that phenytoin is a selective blocker of voltage-
`dependent Na+ and Ca2+ channels. In addition, we will
`briefly consider data regarding the synaptic actions of
`phenytoin, including its ability to block neurally evoked
`excitatory transmitter release and its effects on excita-
`tory amino acid-induced excitation and GABA-mediated
`inhibition. When evaluating any of the diverse pharma-
`cological actions of phenytoin, one must always consider
`the data in light of the actual levels achieved in patients
`adequately treated by the drug. Although the usual ther-
`apeutic serum levels are 40-8O itM, phenytoin is highly
`protein bound so that only about 10% of the total is free
`and available to equilibrate with the CSF (Woodbury,
`1989). Most investigators have considered the CSF levels
`to be a reasonable estimate of the drugconcentration at
`the physiologically relevant acceptor site(s) because they
`are presumed to reflect the level in the extracellular
`compartment of the brain. We will follow this convention
`and focus on drug effects that occur at concentrations
`near the therapeutic CSF levels (approximately 4-8 ;M).
`However, it is of interest to note that the brain concen-
`tration may be substantially higher than the CSF con»
`centration, presumably because of binding to brain pro-
`teins and lipid (Goldberg and Crandall, 1978). Thus, the
`actual brain concentration is one to two times the total
`serum concentration (Wo0dbury, 1989) and the multi-
`tude of drug effects that occur at concentrations near the
`serum levels cannot therefore be discounted completely,
`although the physiologically relevant concentrations are
`presumed to be closer to the free brain concentration
`which is thought to be equivalent to CSF levels.
`1. Block of voltage-dependent Na"' channels. Investiga-
`tions of the cellular actions of phenytoin‘ lagged by more
`than a decade the original accounts by Putnam and
`
`H
`
`_
`
`.
`
`_
`
`NYC
`O o H
`N
`
`I
`
`-
`
`H
`
`NYC
`\
`N
`
`o
`
`PHENYTOIN
`
`MEPHENYTOIN
`
`HZNYQ
`N
`0
`“
`
`H N
`
`Y0
`N
`0 L.
`
`ETHOTOIN
`
`PHENACENIIDE
`
`FIG. 1. Structures of succinamide anticonvulsants and phenacw
`emide.
`
`lenge for researchers has been to explain its relative lack
`of neurological side effects at therapeutic doses. For
`example, in mice, phenytoin’s TD50 (dose at which 50%
`of animals exhibit toxicity) in the rotorod ataxia test is
`66 mg/kg so that its protective index (TD5o/ED50) is 6.9.
`Numerous excellent reviews of phenytoin’s diverse neu-
`ronal actions have appeared (e.g., Yaari et al., 1986;
`Selzer et al., 1988; Eadie and Tryer, 1989; De Lorenzo,
`1989) and the present account will focus on observations
`leading to a molecular understanding of its antiepileptic
`action. In recent years, it has been elegantly demon-
`strated that phenytoin can interact with the voltage-
`dependent Na"“ channels that are responsible for the
`action potential upstroke in a highly specific voltage-
`and frequency~dependent manner. This is the only
`known action of the drug that can easily explain its
`ability to suppress seizures without causing a generalized
`depression of the nervous system. Thus, the theory that
`Na* channel blockade is the mechanism underlying
`phenytoin’s clinical efficacy is gaining widespread ac-
`
`Actavis v. Research Corp. Techs.
`|PR2014—O1126
`
`RCT EX. 2014 page 5
`
`Actavis v. Research Corp. Techs.
`IPR2014-01126
`RCT EX. 2014 page 5
`
`

`
`228
`
`ROGAWSKI AND PORTER
`
`Merritt (1937) of its ability to protect cats from elec~
`troshock-induced seizures (Merritt and Putnam, 1938).
`However, the first such report (Toman, 1949) was strik-
`ingly prescient in foretelling the conclusions of an addi—
`tional 4() years of research. Frog sciatic nerve, when
`stimulated with a suprarnaximal shock, was shown to
`respond with an action potential followed by a second
`“rebound” spike. Phenytoin at near clinically effective
`concentrations (50 nM) prevented the rebound spike
`"’ without altering the initial spike. Thus, phenytoin could
`' produce a selective blockade of high-frequency repetitive
`neuronal firing; the obvious inference was that a similar
`action in the brain accounted for its ability to specifically
`block the spread of seizure discharges characterized by
`high-frequency neuronal activity. The lack of effect on
`the initial spike response was interpreted as reflecting
`the failure of phenytoin to cause a general depression of
`neuronal firing.
`Blockade of PTP, one of the best documented and
`most robust physiological actions of phenytoin, may
`' underlie the_ capacity of the drug to prevent seizure
`spread. "PTP refers to the_ability of high-frequency re-
`petitive synaptic stimulation (tetanus) to transiently en- -
`bance the responsiveness of that pathway to a single
`__stimulus. It has been suggested that PTP may be a
`mechanism that reinforces focal discharges by positive
`feedback and facilitates the spread of high»frequency
`impulses occurring in these foci to synaptically coupled
`cells in distant areas. In several preparations, phenytoin
`at low doses has been shown to prevent the augmentation
`of synaptic responses produced by a tetanizing stimulus
`(Esplin, 1957; Raines and Standaert, 1966; Selzer et al.,
`1985). For example, in the in vitro hippocampal slice
`preparation, PTP can be produced by high-frequency
`(100 Hz, 1~~2 s) stimulation of the Schaffer collateral/
`commissural pathway to CA1 pyramidal cells or by stim~
`ulation of the mossy fiber input to CA3 cells (Griffith
`and Taylor, 1988a). Phenytoin (l0e80 ram) accelerated
`the decay of l"’

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket