throbber
 
`

`

`

`

`

`

`

`

`

`

`
`EXHIBIT
`DSS-2006
`
`DSS—2 006
`
`EXHIBIT
`
`

`

`3/3/2015
`
`Willson Research Group ­ Research ­ Immersion
`
`Willson Research Group
`The University of Texas at Austin
`
`Immersion
`Lithography
`Theory
`Resist Extraction
`Measurements
`2nd Gen Immersion
`Fluid
`Anomalous Dispersion
`Modelling
`Publication
`Research Team
`Links
`
`Library
`
`Willson
`
`Teaching
`
`Research
`People
`Links
`Immersion Lithography
`
`Introduction
`
`Semiconductor microlithography is the primary process for printing circuit patterns
`for microelectronic devices.  In this process a substrate such as a silicon wafer is
`coated with a polymer film known as a photoresist.  Portions of the film are then
`exposed to narrow band width UV radiation that is passed through a partially
`chrome­plated quartz mask and focused with a lens system.  This exposure
`generates a solubility­switching reaction in the photoresist, rendering a portion of
`the film soluble in an aqueous base developer.  When the exposed regions of the
`film are rendered soluble, the resulting relief is called a positive tone image.  When
`the exposed regions become insoluble, the process is referred to as negative
`tone.  The remaining resist acts as an etch mask while the pattern is transferred
`into the underlying substrate before being stripped.[1]
`
`Background
`
`Figure 1
`
`The resolution (R) of the lithographic process is defined by the Rayleigh Equation,
`
`http://willson.cm.utexas.edu/Research/Sub_Files/Immersion/index.php
`
`1/4
`
`

`

`3/3/2015
`
`Willson Research Group ­ Research ­ Immersion
`where k1 is known as the Rayleigh coefficient,  is the vacuum wavelength of the
`exposing radiation, n is the index of refraction of the ambient medium through
`which the exposing radiation is focused, is the angular half aperture of the lens
`and NA stands for the numerical aperture of the lens. [2]
`
`Improvements in lithographic patterning have led to the continual shrinking of
`device feature sizes and the resulting performance improvements and cost
`reductions seen in today’s electronic devices.  These improvements have
`historically been achieved through the development of new exposure sources with
`lower wavelengths.  Accompanying incremental improvements in the lens system
`by the reduction of k1 and the increase of NA through larger q’s have also
`contributed. 
`
`Early exposure tools used 436 nm light from the g­line emission of a mercury arc
`lamp, followed by 365 nm light from its i­line emission.  Krypton­fluorine (KrF)
`excimer lasers then replaced mercury arc lamps for leading edge lithography with
`248 nm light, and the state of the art is now argon­fluorine (ArF) lasers producing
`light at 193 nm.
`
`http://willson.cm.utexas.edu/Research/Sub_Files/Immersion/index.php
`
`2/4
`
`

`

`3/3/2015
`
`Willson Research Group ­ Research ­ Immersion
`
`Illustration of exposure through mask and focusing by lens.
`
`With each step down in wavelength, optical systems had to be redesigned and
`new materials have had to be developed.[3]  To move below 193 nm, the
`development is complicated by the need for completely new materials for the lens
`systems as well as the photoresist platforms and the necessity for exposure to
`take place in vacuum.  The rising costs of such development has led to the
`resurrection of a novel lithographic process first proposed in the 1980s called
`immersion lithography.[4][5][6][7]  Immersion lithography with the 193 nm
`exposure wavelength is now considered the most likely candidate for printing
`features at 45nm and below.[8]
`
`Continue to Immersion Lithography Theory
`
`References
`
`1. Thompson, L.F.; Willson, C.G.; Bowden, M.J. Introduction to Microlithography.
`American Chemical Society, Washington, DC.  1989.
`
`2. M. Switkes, M. Rothschild, R. R. Kunz, S­Y. Baek, D. Cole, M. Yeung,
`Microlithography World 12(2), 4, 2003.
`
`3. Stewart, M.D.; Patterson, K.; Somervell, M.H.; Willson, C.G.  J. Phys. Org.
`Chem.  2000; 13: 767­774.
`
`4. A. Takanashi et al., US Patent No. 4480910, 6 Nov. 1984
`
`5. Lin, B. J. Microelectron. Eng.1987, 6, 31.
`
`6. Kawata, J.; Carter, J. M.; Yen, A.; Smith, H. I. Microelectron. Eng. 1989, 9, 31.
`
`7. H. Kawata, I. Matsumura, H. Yoshida, K. Murata, Jpn. J. Appl. Phys. 31, 4174,
`1992.
`
`8. International Technology Roadmap for Semiconductors: http://public.itrs.net/
`
`Version History
`
`http://willson.cm.utexas.edu/Research/Sub_Files/Immersion/index.php
`
`3/4
`
`

`

`3/3/2015
`
`Willson Research Group ­ Research ­ Immersion
`Original page created 02/23/06
`
`© 2015 Willson Research Group, The University of Texas at Austin
`
`Last updated Friday, August 3, 2012. Site best viewed in Firefox
`
`http://willson.cm.utexas.edu/Research/Sub_Files/Immersion/index.php
`
`4/4
`
`

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket